Full Paper View Go Back

Approximation of D.I.Y. Water Rocket Dynamics Including Air Drag

L. Fischer1 , T. Günther2 , L. Herzig3 , T. Jarzina4 , F. Klinker5 , S. Knipper6 , F.G. Schürmann7 , M. Wollek8

Section:Research Paper, Product Type: Journal-Paper
Vol.6 , Issue.6 , pp.1-13, Dec-2019


CrossRef-DOI:   https://doi.org/10.26438/ijsrmss/v6i6.113


Online published on Dec 31, 2019


Copyright © L. Fischer, T. Günther, L. Herzig, T. Jarzina, F. Klinker, S. Knipper, F.G. Schürmann, M. Wollek . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
 

View this paper at   Google Scholar | DPI Digital Library


XML View     PDF Download

How to Cite this Paper

  • IEEE Citation
  • MLA Citation
  • APA Citation
  • BibTex Citation
  • RIS Citation

IEEE Style Citation: L. Fischer, T. Günther, L. Herzig, T. Jarzina, F. Klinker, S. Knipper, F.G. Schürmann, M. Wollek, “Approximation of D.I.Y. Water Rocket Dynamics Including Air Drag,” International Journal of Scientific Research in Mathematical and Statistical Sciences, Vol.6, Issue.6, pp.1-13, 2019.

MLA Style Citation: L. Fischer, T. Günther, L. Herzig, T. Jarzina, F. Klinker, S. Knipper, F.G. Schürmann, M. Wollek "Approximation of D.I.Y. Water Rocket Dynamics Including Air Drag." International Journal of Scientific Research in Mathematical and Statistical Sciences 6.6 (2019): 1-13.

APA Style Citation: L. Fischer, T. Günther, L. Herzig, T. Jarzina, F. Klinker, S. Knipper, F.G. Schürmann, M. Wollek, (2019). Approximation of D.I.Y. Water Rocket Dynamics Including Air Drag. International Journal of Scientific Research in Mathematical and Statistical Sciences, 6(6), 1-13.

BibTex Style Citation:
@article{Fischer_2019,
author = {L. Fischer, T. Günther, L. Herzig, T. Jarzina, F. Klinker, S. Knipper, F.G. Schürmann, M. Wollek},
title = {Approximation of D.I.Y. Water Rocket Dynamics Including Air Drag},
journal = {International Journal of Scientific Research in Mathematical and Statistical Sciences},
issue_date = {12 2019},
volume = {6},
Issue = {6},
month = {12},
year = {2019},
issn = {2347-2693},
pages = {1-13},
url = {https://www.isroset.org/journal/IJSRMSS/full_paper_view.php?paper_id=1620},
doi = {https://doi.org/10.26438/ijcse/v6i6.113}
publisher = {IJCSE, Indore, INDIA},
}

RIS Style Citation:
TY - JOUR
DO = {https://doi.org/10.26438/ijcse/v6i6.113}
UR - https://www.isroset.org/journal/IJSRMSS/full_paper_view.php?paper_id=1620
TI - Approximation of D.I.Y. Water Rocket Dynamics Including Air Drag
T2 - International Journal of Scientific Research in Mathematical and Statistical Sciences
AU - L. Fischer, T. Günther, L. Herzig, T. Jarzina, F. Klinker, S. Knipper, F.G. Schürmann, M. Wollek
PY - 2019
DA - 2019/12/31
PB - IJCSE, Indore, INDIA
SP - 1-13
IS - 6
VL - 6
SN - 2347-2693
ER -

829 Views    636 Downloads    123 Downloads
  
  

Abstract :
If you want to get accurate predictions for the motion of water and air propelled D.I.Y rockets, neglecting air resistance is not an option. But the theoretical analysis including air drag leads to a system of differential equations which can only be solved numerically. We propose an approximation which simply works by the estimation of a definite integral, and which is even feasible for undergraduate physics courses. The results only slightly deviate from the reference data (received by the Runge-Kutta method). The motion is divided into several flight phases that are discussed separately and the resulting equations are solved by analytic and numeric methods. The different results from the flight phases are collected and are compared to data that has been achieved by well explained and documented experiments. Furthermore, we theoretically estimate the rockets drag coefficient. The result is confirmed by a wind tunnel experiment.

Key-Words / Index Term :
Rocket equation, Thrust, Dynamics, Drag coefficient

References :
[1] M. Abramowitz, I. A. Stegun, “Handbook of mathematical functions with formulas, graphs, and mathematical tables”, Dover Publications, 1965.
[2] R. Barrio-Perotti, E. Blanco-Marigorta, K. Arguelles-Diaz, J. Fernandez-Oro, ”Experimental Evaluation of the Drag Coefficient of Water Rockets by a Simple Free-Fall Test“, European Journal of Physics, v30 n5 pp.1039-1048, 2009.
[3] Barrio-Perotti, E. Blanco-Marigorta, J. Fernández-Francos, M. Galdo-Vega, “Theoretical and experimental analysis of the physics of water rockets”, European Journal of Physics Vol.31, pp. 1131, 2010.
[4] I. N. Bronstein “Taschenbuch der Mathematik”, B.G.Teubner Stuttgart-Leipzig, ISBN-3-8154-2001-6, 1996.
[5] A. L. Buck, “New equations for computing vapor pressure and enhancement factor”, J. Appl. Meteorol., Vol.20, pp. 1527–1532, 1981.
[6] T. A. Campbell, M. Okutsu, “Model Rocket Projectfor Aerospace Engineering Course: Trajectory Simulation and Propellant Analysis”, arXiv:1708.01970 [physics.ed-ph], 2017.
[7] L. J. Clancy, “Aerodynamics”, Wiley, ISBN 978-0-470-15837-1, 1975.
[8] M. Clifford, K. Simmons, P. Shipway, “An Introduction to Mechanical Engineering”, CRC Press, 2006.
[9] G. A. Finney, “Analysis of a water-propelled rocket: A problem in honors physics”, American Journal of Physics Vol.68, pp. 223, 2000.
[10] C.J. Gommes, “A more thorough analysis of water rockets: Moist adiabats, transient flows and inertial forces in a soda bottle.”, American Journal of Physics Vol.78, pp. 236, https://doi.org/10.1119/1.3257702, 2010.
[11] G. M. Gregorek, “Aerodynamic Drag of Model Rockets.”, Estes Industries, Penrose, CO, pp. 2-51, 1970.
[12] International Civil Aviation Organization, “Manual of the ICAO Standard Atmosphere.”, Doc 7488-CD, Third Edition, ISBN 92-9194-004-6, 1993.
[13] R. Mehta, F. Alam, A. Subic, “Review of tennis ball aerodynamics, Sports Technology.” 1:1, pp. 7-16, DOI: 10.1080/19346182.2008.9648446, 2008.
[14] D. Kagan, L. Buchholtz, L. Klein, “Soda-bottle water rockets”, Phys. Teach. Vol. 33, pp. 150, 1995.
[15] Messerschmid und S. Fasoulas, “Die Ziolkowsky-Raketengleichung”, In: Raumfahrtsysteme, https://doi.org/10.1007/978-3-662-49638-1_2, Springer Vieweg, Berlin, Heidelberg, 2017.
[16] J. Moran, “An Introduction to Theoretical and Computational Aerodynamics.”, Wiley, New York, 1984.
[17] R.A. Nelson,M.E. Wilson, “Mathematical analysis of a model rocket trajectory Part I: The powered phase.” Phys. Teach. Vol. 14, pp. 150–161, 1976.
[18] J.M. Prusa, “Hydrodynamics of a Water Rocket.”, Siam Rev., Vol. 42, pp. 719, 2000.
[19] A. Romanelli, I. Bove, F.G. Madina, “Air expansion in the water rocket.”, American Journal of Physics Vol. 81, pp. 762, https://doi.org/10.1119/1.4811116, 2013.
[20] Simple Drag Tests for Water Rockets – seeds2lrn.com, http://fliphtml5.com/rftx/obtf, visited 05.03.2019.
[21] L. J. Slater, “Generalized Hyperbolic Functions.”, Cambridge University Press, 1966.
[22] H. Stöcker, “Taschenbuch der Physik”, Verlag Harri Deutsch, 1998
[23] K. E. Tsiolkovsky, “The Exploration of Cosmic Space by Means of Reaction Devices.”, The Science Review (in Russian) (5), 1903.
[24] A. Vodopivec, “wxMaxima 18.02.0.”, http://andrejv.github.io/wxmaxima/
[25] F. M. White: “Fluid Mechanics”, McGraw-Hill, ISBN 978-0-07-352934-9, seventh edition, 2011.

Authorization Required

 

You do not have rights to view the full text article.
Please contact administration for subscription to Journal or individual article.
Mail us at  support@isroset.org or view contact page for more details.

Go to Navigation