Full Paper View Go Back

Terpenoid Rich Concentrate of Phyllantus amarus (Schum Thonn) Whole Plant’s Potential in High Salt Steered Immunological Storm, Antioxidant and Blood Enzymes Derangement

Tope Israel Fasan1 , Olubukola Sinbad Olorunnisola2 , Adewale Adetutu3 , Bamidele Stephen Ajilore4 , Cyril Ohikhatemen Ahonsi5

Section:Research Paper, Product Type: Journal-Paper
Vol.9 , Issue.2 , pp.1-9, Aug-2022


Online published on Aug 31, 2022


Copyright © Tope Israel Fasan, Olubukola Sinbad Olorunnisola, Adewale Adetutu, Bamidele Stephen Ajilore, Cyril Ohikhatemen Ahonsi . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
 

View this paper at   Google Scholar | DPI Digital Library


XML View     PDF Download

How to Cite this Paper

  • IEEE Citation
  • MLA Citation
  • APA Citation
  • BibTex Citation
  • RIS Citation

IEEE Style Citation: Tope Israel Fasan, Olubukola Sinbad Olorunnisola, Adewale Adetutu, Bamidele Stephen Ajilore, Cyril Ohikhatemen Ahonsi, “Terpenoid Rich Concentrate of Phyllantus amarus (Schum Thonn) Whole Plant’s Potential in High Salt Steered Immunological Storm, Antioxidant and Blood Enzymes Derangement,” International Journal of Medical Science Research and Practice, Vol.9, Issue.2, pp.1-9, 2022.

MLA Style Citation: Tope Israel Fasan, Olubukola Sinbad Olorunnisola, Adewale Adetutu, Bamidele Stephen Ajilore, Cyril Ohikhatemen Ahonsi "Terpenoid Rich Concentrate of Phyllantus amarus (Schum Thonn) Whole Plant’s Potential in High Salt Steered Immunological Storm, Antioxidant and Blood Enzymes Derangement." International Journal of Medical Science Research and Practice 9.2 (2022): 1-9.

APA Style Citation: Tope Israel Fasan, Olubukola Sinbad Olorunnisola, Adewale Adetutu, Bamidele Stephen Ajilore, Cyril Ohikhatemen Ahonsi, (2022). Terpenoid Rich Concentrate of Phyllantus amarus (Schum Thonn) Whole Plant’s Potential in High Salt Steered Immunological Storm, Antioxidant and Blood Enzymes Derangement. International Journal of Medical Science Research and Practice, 9(2), 1-9.

BibTex Style Citation:
@article{Fasan_2022,
author = {Tope Israel Fasan, Olubukola Sinbad Olorunnisola, Adewale Adetutu, Bamidele Stephen Ajilore, Cyril Ohikhatemen Ahonsi},
title = {Terpenoid Rich Concentrate of Phyllantus amarus (Schum Thonn) Whole Plant’s Potential in High Salt Steered Immunological Storm, Antioxidant and Blood Enzymes Derangement},
journal = {International Journal of Medical Science Research and Practice},
issue_date = {8 2022},
volume = {9},
Issue = {2},
month = {8},
year = {2022},
issn = {2347-2693},
pages = {1-9},
url = {https://www.isroset.org/journal/IJMSRP/full_paper_view.php?paper_id=2917},
publisher = {IJCSE, Indore, INDIA},
}

RIS Style Citation:
TY - JOUR
UR - https://www.isroset.org/journal/IJMSRP/full_paper_view.php?paper_id=2917
TI - Terpenoid Rich Concentrate of Phyllantus amarus (Schum Thonn) Whole Plant’s Potential in High Salt Steered Immunological Storm, Antioxidant and Blood Enzymes Derangement
T2 - International Journal of Medical Science Research and Practice
AU - Tope Israel Fasan, Olubukola Sinbad Olorunnisola, Adewale Adetutu, Bamidele Stephen Ajilore, Cyril Ohikhatemen Ahonsi
PY - 2022
DA - 2022/08/31
PB - IJCSE, Indore, INDIA
SP - 1-9
IS - 2
VL - 9
SN - 2347-2693
ER -

132 Views    129 Downloads    39 Downloads
  
  

Abstract :
High salt diet driven immunological storm and blood enzymes dissymmetry are established global health challenges, deleteriously inflicting intracellular organelles and related inflammatory cytokines out of homeostatic threshold. Statistic proclaimed by World Health Organization (2012) also reveals the preponderance of about a quarter of the world’s global health linked oxidative damages to high salt-related influences. The aim of the study was to evaluate the serum enzymes’ protective effect, antioxidant and immuno-boosting efficacy of qualitatively affirmed terpenoid rich-concentrate (TRC) of Phyllanthus amarus (Schum and Thonn) whole plant against Dawley rats fed with 8% salty chow (HSD) for 56days. Healthy male rats (n=40) were grouped as follows: Group 1: received only normal rat chow as control group; Group 2: Administered 8% high salt diet (HSD) only; Group 3: co-administered HSD+80mg/kg/bwt., of TRC; Group 4: HSD + 160mg/kg/bwt., of TRC; Group 5: HSD + 200mg/kg/bwt., of TRC. The results (p<0.05) indicated that TRC has a lethal dose (LD50) greater than 5000 mg/kg /b.wt, with a significant increase in the levels of modulating cytokines [interleukin 8 (IL-8), interleukin 6 (IL-6), interleukin 2 (IL-2), and Tumor necrosis factor-alpha (TNF?)], serum enzymes (AST, ALP, CK and LDH), consequent significant reduction in enzymatic antioxidant (GSH, Cat, SOD), but with measurable up-regulation of radical product, MDA, in the serum of rats fed HSD. Though, the deranged parameters of interest were dose-dependently remediated to near normal coefficient in the rodents co-administered with the rich concentrates. It’s of interest that, the treated groups also expressed signs/physical improvement via; hair integrity, health status, and erection of fur to near normal. The results suggested that TRC contains bioactive compounds which could remediate HSD induced immunological storm, blood enzymes derangement and also complement orthodox medicine in the therapeutic search for oxidative related diseases triggered by high salt meals.

Key-Words / Index Term :
Blood antioxidant enzymes; Phyllanthus amarus (Schum and Thonn); Terpenoid rich concentrate; Immunological Cytokines; Aspartate transaminase; and lethal dose.

References :
[1] Organization World Health, “WHO | Sodium intake for adults and children,” World Health Organization, 2012.
[2] T. Kishimoto, “Interleukin-6: Discovery of a pleiotropic cytokine,” Arthritis Research and Therapy, 2006, doi: 10.1186/ar1916.
[3] B. K. Becker, J. G. Johnston, C. M. Young, A. A. Torres Rodriguez, C. Jin, and D. M. Pollock, “Endothelin B receptors impair baroreflex function and increase blood pressure variability during high salt diet,” Auton Neurosci, vol. 232, p. 102796, May 2021, doi: 10.1016/j.autneu.2021.102796.
[4] D. G. Butler, R. Zandevakili, and G. Y. Oudit, “Effects of ANG II and III and angiotensin receptor blockers on nasal salt gland secretion and arterial blood pressure in conscious Pekin ducks (Anas platyrhynchos),” J Comp Physiol B, vol. 168, no. 3, pp. 213–224, Apr. 1998, doi: 10.1007/s003600050139.
[5] A. J. Shah and A. H. Gilani, “Blood pressure-lowering and vascular modulator effects of Acorus calamus extract are mediated through multiple pathways,” Journal of Cardiovascular Pharmacology, 2009, doi: 10.1097/FJC.0b013e3181aa5781.
[6] O. S. Olorunnisola, G. Bradley, and A. J. Afolayan, “Ethnobotanical information on plants used for the management of cardiovascular diseases in NKonkobe municipality, South Africa,” Journal of Medicinal Plants Research, 2011.
[7] I. Monteleone et al., “Sodium chloride-enriched Diet Enhanced Inflammatory Cytokine Production and Exacerbated Experimental Colitis in Mice,” Journal of Crohn’s & colitis, 2017, doi: 10.1093/ecco-jcc/jjw139.
[8] N. Nishimoto and T. Kishimoto, “Inhibition of IL-6 for the treatment of inflammatory diseases,” Current Opinion in Pharmacology. 2004. doi: 10.1016/j.coph.2004.03.005.
[9] M. A. Vazquez-Prieto, C. Rodriguez Lanzi, C. Lembo, C. R. Galmarini, and R. M. Miatello, “Garlic and onion attenuates vascular inflammation and oxidative stress in fructose-fed rats,” Journal of Nutrition and Metabolism, 2011, doi: 10.1155/2011/475216.
[10] R. E. Elmslie, S. W. Dow, and G. K. Ogilvie, “Interleukins: Biological Properties and Therapeutic Potential,” Journal of Veterinary Internal Medicine, 1991, doi: 10.1111/j.1939-1676.1991.tb03135.x.
[11] S. K. Masenga et al., “HIV, immune activation and salt-sensitive hypertension (HISH): A research proposal,” BMC Research Notes, 2019, doi: 10.1186/s13104-019-4470-2.
[12] T. Andonova et al., “Antioxidant and DNA-Protective Potentials, Main Phenolic Compounds, and Microscopic Features of Koelreuteria paniculata Aerial Parts,” Antioxidants, vol. 11, no. 6, Art. no. 6, Jun. 2022, doi: 10.3390/antiox11061154.
[13] T. Gaber, S. El-Hamamsy, N. Ahmed, and M. Ali, “Amelioration Effect of Carica papaya Fruit Extracts on Doxorubicin -induced Cardiotoxicity in Rats,” Jun. 2020, doi: 10.37422/IJVS/xxx.
[14] G. Wang et al., “Liver Fibrosis Can Be Induced by High Salt Intake through Excess Reactive Oxygen Species (ROS) Production,” Journal of Agricultural and Food Chemistry, 2016, doi: 10.1021/acs.jafc.5b05897.
[15] A. D. Dobrian, S. D. Schriver, T. Lynch, and R. L. Prewitt, “Effect of salt on hypertension and oxidative stress in a rat model of diet-induced obesity,” American Journal of Physiology - Renal Physiology, 2003, doi: 10.1152/ajprenal.00388.2002.
[16] R. Ferriero, E. Nusco, R. De Cegli, A. Carissimo, G. Manco, and N. Brunetti-Pierri, “Pyruvate dehydrogenase complex and lactate dehydrogenase are targets for therapy of acute liver failure,” J Hepatol, vol. 69, no. 2, pp. 325–335, Aug. 2018, doi: 10.1016/j.jhep.2018.03.016.
[17] M. Roth, P. Y. Jaquet, and A. Rohner, “Increase of creatine kinase and lactate dehydrogenase in the serum of rats submitted to experimental intestinal infarction,” Clin Chim Acta, vol. 183, no. 1, pp. 65–69, Jul. 1989, doi: 10.1016/0009-8981(89)90273-8.
[18] S. S and P. Cj, “Liver enzymes, metabolomics and genome-wide association studies: from systems biology to the personalized medicine,” World journal of gastroenterology, vol. 21, no. 3, Jan. 2015, doi: 10.3748/wjg.v21.i3.711.
[19] T. Fukatsu, “[Alkaline phosphatase],” Rinsho Byori, vol. Suppl 116, pp. 27–35, Nov. 2001.
[20] Y. Soroida et al., “Increased activity of serum mitochondrial isoenzyme of creatine kinase in hepatocellular carcinoma patients predominantly with recurrence,” Journal of Hepatology, vol. 57, no. 2, pp. 330–336, Aug. 2012, doi: 10.1016/j.jhep.2012.03.012.
[21] E. M. Seymour et al., “Chronic intake of a phytochemical-enriched diet reduces cardiac fibrosis and diastolic dysfunction caused by prolonged salt-sensitive hypertension,” Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2008, doi: 10.1093/gerona/63.10.1034.
[22] G. Bagalkotkar, S. R. Sagineedu, M. S. Saad, and J. Stanslas, “ Phytochemicals from Phyllanthus niruri Linn. and their pharmacological properties: a review ,” Journal of Pharmacy and Pharmacology, 2006, doi: 10.1211/jpp.58.12.0001.
[23] Organization World Health, “WHO | Sodium intake for adults and children,” World Health Organization, 2012.
[24] B. Iranloye, K. Oyeusi, and A. Alada, “Effect of aqueous extract of Phyllantus amarus leaves on implantation and pregnancy in rats,” Niger J Physiol Sci, vol. 25, no. 1, pp. 63–66, Nov. 2010.
[25] A. A. Adedapo, A. Y. Adegbayibi, and B. O. Emikpe, “Some clinico-pathological changes associated with the aqueous extract of the leaves of Phyllanthus amarus in rats,” Phytother Res, vol. 19, no. 11, pp. 971–976, Nov. 2005, doi: 10.1002/ptr.1768.
[26] A. Y. Kabiru et al., “Evaluation of haematological changes in Plasmodium-berghei-infected mice administered with aqueous extract of Phyllantus amarus,” Pak J Biol Sci, vol. 16, no. 11, pp. 510–516, Jun. 2013, doi: 10.3923/pjbs.2013.510.516.
[27] N. A. Yao et al., “Preventive Beneficial Effect of an Aqueous Extract of Phyllanthus amarus Schum. and Thonn. (Euphorbiaceae) on DOCA-Salt-Induced Hypertension, Cardiac Hypertrophy and Dysfunction, and Endothelial Dysfunction in Rats,” J Cardiovasc Pharmacol, vol. 75, no. 6, pp. 573–583, Jun. 2020, doi: 10.1097/FJC.0000000000000825.
[28] E. N. Ismail, I. Jantan, S. Vidyadaran, J. A. Jamal, and N. Azmi, “Phyllanthus amarus prevents LPS-mediated BV2 microglial activation via MyD88 and NF-?B signaling pathways,” BMC Complement Med Ther, vol. 20, no. 1, p. 202, Jul. 2020, doi: 10.1186/s12906-020-02961-0.
[29] A. Alagan, I. Jantan, E. Kumolosasi, and N. Azmi, “Phyllanthus amarus protects against spatial memory impairment induced by lipopolysaccharide in mice,” Bioinformation, vol. 15, no. 8, pp. 535–541, 2019, doi: 10.6026/97320630015535.
[30] H. Harikrishnan, I. Jantan, A. Alagan, and M. A. Haque, “Modulation of cell signaling pathways by Phyllanthus amarus and its major constituents: potential role in the prevention and treatment of inflammation and cancer,” Inflammopharmacology, vol. 28, no. 1, pp. 1–18, Feb. 2020, doi: 10.1007/s10787-019-00671-9.
[31] A. M. Braga Ribeiro et al., “Antimicrobial activity of Phyllanthus amarus Schumach. & Thonn and inhibition of the NorA efflux pump of Staphylococcus aureus by Phyllanthin,” Microb Pathog, vol. 130, pp. 242–246, May 2019, doi: 10.1016/j.micpath.2019.03.012.
[32] N. Z. Abd Rani, K. W. Lam, J. Jalil, H. F. Mohamad, M. S. Mat Ali, and K. Husain, “Mechanistic Studies of the Antiallergic Activity of Phyllanthus amarus Schum. & Thonn. and Its Compounds,” Molecules, vol. 26, no. 3, p. 695, Jan. 2021, doi: 10.3390/molecules26030695.
[33] W. Qi, L. Hua, and K. Gao, “Chemical Constituents of the Plants from the Genus Phyllanthus,” Chemistry & Biodiversity, vol. 11, no. 3, pp. 364–395, 2014, doi: 10.1002/cbdv.201200244.
[34] S. Agatonovic-Kustrin, E. Kustrin, V. Gegechkori, and D. W. Morton, “Anxiolytic Terpenoids and Aromatherapy for Anxiety and Depression,” Adv Exp Med Biol, vol. 1260, pp. 283–296, 2020, doi: 10.1007/978-3-030-42667-5_11.
[35] S. S. Handa, S. P. S. Khanuja, G. Longo, and D. D. Rakesh, Extraction Technologies for Medicinal and Aromatic Plants. 2008. doi: 10.1021/np800144q.
[36] J.?; C. Mariajancyrani G.; Brindha, P.; Saravanan, P., “GC-MS analysis of terpenes from hexane extract of Lantana camara leaves,” International Journal of Advances in Pharmacy, Biology & Chemsitry, 2014.
[37] J. Azmir et al., “Techniques for extraction of bioactive compounds from plant materials: {A} review,” Journal of Food Engineering, 2013, doi: 10.1016/j.jfoodeng.2013.01.014.
[38] M. M. Cowan, “Plant products as antimicrobial agents,” Clinical Microbiology Reviews. 1999. doi: 10.1128/cmr.12.4.564.
[39] Harwoko, S. Pramono, and A. E. Nugroho, “Triterpenoid-rich fraction of centella asiatica leaves and in vivo antihypertensive activity,” International Food Research Journal, 2014.
[40] A. B. Sallau, R. N. Yakubu, S. M. Aliyu, A. Salihu, and B. Y. Boniface, “In vitro effect of terpenoids - rich extract of momordica charantia on alpha glucosidase activity,” Vitae, 2018, doi: 10.17533/udea.vitae.v25n3a05.
[41] P. R. M. and Prasad M. P., “Studies on Qualitative and Quantitative Phytochemical Analysis of Cissus quadrangularis,” Pelagia Research Library Advances in Applied Science Research, 2016.
[42] J. W. Gu, A. P. Bailey, W. Tan, M. Shparago, and E. Young, “Long-term high-salt diet causes hypertension and decreases renal expression of vascular endothelial growth factor in Sprague-Dawley rats,” Journal of the American Society of Hypertension, 2008, doi: 10.1016/j.jash.2008.03.001.
[43] A. Rispin et al., “Alternative methods for the median lethal dose (LD50) test: The up-and-down procedure for acute oral toxicity,” ILAR Journal, 2002, doi: 10.1093/ilar.43.4.233.
[44] E. Chinedu, D. Arome, and F. S. Ameh, “A new method for determining acute toxicity in animal models,” Toxicology International, 2013, doi: 10.4103/0971-6580.121674.
[45] J. Reinsberg, J. Dembinski, C. Dorn, D. Behrendt, P. Bartmann, and H. Van der Ven, “Determination of total interleukin-8 in whole blood after cell lysis,” Clinical Chemistry, 2000, doi: 10.1093/clinchem/46.9.1387.
[46] S. Sindhu, R. Thomas, P. Shihab, D. Sriraman, K. Behbehani, and R. Ahmad, “Obesity is a positive modulator of IL-6R and IL-6 expression in the subcutaneous adipose tissue: Significance for metabolic inflammation,” PLoS ONE, 2015, doi: 10.1371/journal.pone.0133494.
[47] R. K. Gupta, M. Jain, and R. K. Sharma, “Serum & urinary interleukin-2 levels as predictors in acute renal allograft rejection,” Indian Journal of Medical Research, 2004.
[48] D. Grotto et al., Importance of the lipid peroxidation biomarkers and methodological aspects for malondialdehyde quantification. 2009. doi: 10.1590/S0100-40422009000100032.
[49] N. D. Vaziri, X. Q. Wang, F. Oveisi, and B. Rad, “Induction of oxidative stress by glutathione depletion causes severe hypertension in normal rats,” Hypertension, 2000, doi: 10.1161/01.HYP.36.1.142.
[50] M. Sun and S. Zigman, “An improved spectrophotometric assay for superoxide dismutase based on epinephrine autoxidation,” Analytical Biochemistry, 1978, doi: 10.1016/0003-2697(78)90010-6.
[51] L. Góth, “A simple method for determination of serum catalase activity and revision of reference range,” Clinica Chimica Acta, 1991, doi: 10.1016/0009-8981(91)90067-M.
[52] N. Chinaka O., E. Linus K., O. Julius O., E. Charles E., and I. Godwin O., “Hepatotoxicity of Methanol Seed Extract of Aframomum melegueta [Roscoe] K. Schum. (Grains of paradise) in Sprague-Dawley Rats,” American Journal of Biomedical Research, 2014, doi: 10.12691/ajbr-2-4-1.
[53] N. J. Fernandez and B. A. Kidney, Alkaline phosphatase: Beyond the liver, vol. 36. 2007. doi: 10.1111/j.1939-165X.2007.tb00216.x.
[54] W. Fikry, “Lactate Dehydrogenase (LDH) as Prognostic Marker in Acute Leukemia ‘Quantitative Method,’” J Blood Disord Transfus, vol. 8, pp. 1–7, Mar. 2017, doi: 10.4172/2155-9864.1000375.
[55] K. Okwute Simon, C. Okolo Simon, R. Okoh-Esene, and O. Olajide Olutayo, “Biological and chemical evaluation of the extracts of the leaf of Phyllanthus amarus Schum,” International Journal of ChemTech Research, 2014.
[56] F. C. Amaechina and E. K. Omogbai, “Hypotensive effect of aqueous extract of the leaves of Phyllanthus amarus Schum and Thonn (Euphorbiaceae),” Acta Poloniae Pharmaceutica - Drug Research, 2007.
[57] N. Srividya and S. Periwal, “Diuretic, hypotensive and hypoglycaemic effect of Phyllanthus amarus,” Indian Journal of Experimental Biology, 1995.
[58] A. Desai et al., “Medicinal Plants and Cancer Chemoprevention,” Current Drug Metabolism, 2008, doi: 10.2174/138920008785821657.
[59] O. Oyebode, S. Oti, Y. F. Chen, and R. J. Lilford, “Salt intakes in sub-Saharan Africa: A systematic review and meta-regression,” Population Health Metrics, 2016, doi: 10.1186/s12963-015-0068-7.
[60] B. Yi et al., “Effects of dietary salt levels on monocytic cells and immune responses in healthy human subjects: a longitudinal study,” Transl Res, vol. 166, no. 1, pp. 103–110, Jul. 2015, doi: 10.1016/j.trsl.2014.11.007.
[61] S. S. Al Disi, M. A. Anwar, and A. H. Eid, Anti-hypertensive herbs and their mechanisms of action: Part I. 2016. doi: 10.3389/fphar.2015.00323.
[62] M. Straczkowski, S. Dzienis-Straczkowska, A. Stêpieñ, I. Kowalska, M. Szelachowska, and I. Kinalska, “Plasma interleukin-8 concentrations are increased in obese subjects and related to fat mass and tumor necrosis factor-? system,” Journal of Clinical Endocrinology and Metabolism, 2002, doi: 10.1210/jc.2002-020135.
[63] Y. Ma, F. J. He, and G. A. Macgregor, “High salt intake: Independent risk factor for obesity?,” Hypertension, 2015, doi: 10.1161/HYPERTENSIONAHA.115.05948.
[64] G. R. Gandhi et al., “Modulation of interleukin expression by medicinal plants and their secondary metabolites: A systematic review on anti-asthmatic and immunopharmacological mechanisms,” Phytomedicine. 2020. doi: 10.1016/j.phymed.2020.153229.
[65] O. Cernelev, “Nutrition Labelling – an Educational Tool for Reducing Risks of High Salt Intake in Population,” International Journal of Scientific Research in Multidisciplinary Studies, vol. 7, no. 3, pp. 1–7, Mar. 2021.
[66] E. Madrigal-Santillán et al., “Review of natural products with hepatoprotective effects,” World J Gastroenterol, vol. 20, no. 40, pp. 14787–14804, Oct. 2014, doi: 10.3748/wjg.v20.i40.14787.
[67] S. Sargazi, A. Moghaddam, and M. Heidarpour, “Protective Effect of Tert Butyl Hydroquinone on Diazinon-Induced Oxidative Stress in Brain and Heart of Male Rats,” Zahedan Journal of Research in Medical Sciences, vol. In Press, Jun. 2016, doi: 10.17795/zjrms-7356.
[68] M. H. Yang and K. M. Schaich, “Factors affecting DNA damage caused by lipid hydroperoxides and aldehydes,” Free Radical Biology and Medicine, 1996, doi: 10.1016/0891-5849(95)02039-X.
[69] T. Dhanani, S. Shah, N. A. Gajbhiye, and S. Kumar, “Effect of extraction methods on yield, phytochemical constituents and antioxidant activity of Withania somnifera,” Arabian Journal of Chemistry, vol. 10, pp. S1193–S1199, 2017, doi: 10.1016/j.arabjc.2013.02.015.
[70] D. L. Feairheller et al., “Exercise training, NADPH oxidase p22phox gene polymorphisms, and hypertension,” Medicine and Science in Sports and Exercise, 2009, doi: 10.1249/MSS.0b013e318199cee8.
[71] B. Németi, M. Poór, and Z. Gregus, “Reduction of the Pentavalent Arsenical Dimethylarsinic Acid and the GSTO1 Substrate S-(4-Nitrophenacyl)glutathione by Rat Liver Cytosol: Analyzing the Role of GSTO1 in Arsenic Reduction,” Chem Res Toxicol, vol. 28, no. 11, pp. 2199–2209, Nov. 2015, doi: 10.1021/acs.chemrestox.5b00368.
[72] M. A. Boegehold, The effect of high salt intake on endothelial function: Reduced vascular nitric oxide in the absence of hypertension. 2013. doi: 10.1159/000355270.
[73] E. E. Mason, Y. W. Li, and S. E. Ziffren, “Human liver catalase,” Bull Soc Int Chir, vol. 19, pp. 536–542, Oct. 1960.
[74] S. Ct et al., “Cholestatic liver disease results increased production of reactive aldehydes and an atypical periportal hepatic antioxidant response,” Free radical biology & medicine, vol. 143, Nov. 2019, doi: 10.1016/j.freeradbiomed.2019.07.036.
[75] S. Arima et al., “Hypertension exacerbates liver injury and hepatic fibrosis induced by a choline-deficient L-amino acid-defined diet in rats,” International Journal of Molecular Medicine, 2014, doi: 10.3892/ijmm.2013.1544.
[76] K. E. Moriles and S. A. Azer, “Alanine Amino Transferase,” in StatPearls, Treasure Island (FL): StatPearls Publishing, 2022. Accessed: Jun. 28, 2022. [Online]. Available: http://www.ncbi.nlm.nih.gov/books/NBK559278/
[77] L. Jiang et al., “Short-term high salt intake impairs hepatic mitochondrial bioenergetics and biosynthesis in SIRT3 knockout mice,” Free Radic Res, vol. 53, no. 4, pp. 387–396, Apr. 2019, doi: 10.1080/10715762.2019.1580499.
[78] T. Higashi, S. L. Friedman, and Y. Hoshida, “Hepatic stellate cells as key target in liver fibrosis,” Adv Drug Deliv Rev, vol. 121, pp. 27–42, Nov. 2017, doi: 10.1016/j.addr.2017.05.007.
[79] E. Brandon-Warner et al., “Adeno-Associated Virus Serotype 2 Vector-Mediated Reintroduction of microRNA-19b Attenuates Hepatic Fibrosis,” Hum Gene Ther, vol. 29, no. 6, pp. 674–686, Jun. 2018, doi: 10.1089/hum.2017.035.
[80] R. M. and V. K. Shrivastava, “Gentamicin Induced Hepatotoxicity: An approach of Hepatoprotecion by Garlic,” International Journal of Scientific Research in Biological Sciences, vol. 5, no. 6, pp. 150–156, Dec. 2018.
[81] F. Beheshti et al., “Nigella sativa prevented liver and renal tissue damage in lipopolysaccharide-treated rats,” Saudi J Kidney Dis Transpl, vol. 29, no. 3, pp. 554–566, Jun. 2018, doi: 10.4103/1319-2442.235184.
[82] J. Haberl, G. Zollner, P. Fickert, and V. Stadlbauer, “To salt or not to salt?-That is the question in cirrhosis,” Liver Int, vol. 38, no. 7, pp. 1148–1159, Jul. 2018, doi: 10.1111/liv.13750.
[83] A. MacHnik et al., “Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C-dependent buffering mechanism,” Nature Medicine, 2009, doi: 10.1038/nm.1960.
[84] R. Schindler and R. Mentlein, “Flavonoids and Vitamin E Reduce the Release of the Angiogenic Peptide Vascular Endothelial Growth Factor from Human Tumor Cells,” p. 6, 2006.
[85] P. Singh, A. Castillo, M. Toriqul Islam, and D. S. A. Majid, “Evidence for prohypertensive, proinflammatory effect of interleukin-10 during chronic high salt intake in the condition of elevated angiotensin II level,” Hypertension, 2017, doi: 10.1161/HYPERTENSIONAHA.117.09401.
[86] Nagede Ade, “HMOX1 and NQO1 Genes are Upregulated in Response to Contact Sensitizers in Dendritic Cells and THP-1 Cell Line: Role of the Keap1/Nrf2 Pathway | Toxicological Sciences | Oxford Academic,” 2009. https://academic.oup.com/toxsci/article/107/2/451/1682139?login=true (accessed Jun. 10, 2022).
[87] N. R. Barbaro et al., “Dendritic Cell Amiloride-Sensitive Channels Mediate Sodium-Induced Inflammation and Hypertension,” Cell Reports, 2017, doi: 10.1016/j.celrep.2017.10.002.
[88] S.-A. Shu et al., “The role of CD11c+ hepatic dendritic cells in the induction of innate immune responses,” Clinical and Experimental Immunology, vol. 149, no. 2, p. 335, Aug. 2007, doi: 10.1111/j.1365-2249.2007.03419.x.

Authorization Required

 

You do not have rights to view the full text article.
Please contact administration for subscription to Journal or individual article.
Mail us at  support@isroset.org or view contact page for more details.

Go to Navigation