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Abstract- This chapter discusses digital electronic implementations of ANNs. First, we look at the differences between 

digital and analog design techniques with a focus on cost- performance trade-offs. Second, we consider the use of 

traditional processors in parallel configurations for ANN emulation. Third, to convey a sense of some of the 

issues involved in designing digital structures for ANN emulation, a custom  digital ANN processor is discussed: 

the Adaptive Solutions CNAPS. Although this chip is no longer produced, it is still being used. It’s simple 

architecture makes it a good vehicle to understand the trade-offs inherent in emulating neural structures digitally. 

And fourth, we look briefly at FPGA technology as a promising alternative for digital implementation of ANNs. 
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I. INTRODUCTION 

 

The computational overhead required to simulate 

Artificial Neural Network (ANN) models, whether 

simplistic or realistically complex, is a key problem in 

the field because of the computational complexity  of  

these models. 

 

Network simulations are required both for  research  

and  for commercial products. Most researchers 

currently perform these simulations on standard 

computer technology, such as high-end workstations 

or personal computers. However, as the field 

progresses, researchers are moving to larger and ever 

more complex models that challenge even the fastest 

computers. 

 

A reasonably realistic neural model could approach 

one million neurons and tens of billions of 

connections, where a "connection'' is a data transfer 

path between two neurons. In addition to size, the 

models themselves are becoming more complex as we 

move from simple inner-products to spiking neurons 

with temporal time course that require a convolution 

to be performed at each synapse. 

 

For these reasons, there has been much interest in 

developing custom hardware for ANNs. The inherent 

parallelism in ANN and connectionist models 

suggests an opportunity to speed up the simulations. 

Their simple, low precision computations also suggest 

an opportunity to employ simpler and cheaper, low-

precision digital hardware implemented by full-

custom silicon or by FPGAs (Field Programmable Gate 

Arrays). 

 

II. WHY DIGITAL? 

 

Cost-Performance 

One commonly-held belief in the ANN research 

community is that analog computation, where signals 

are transmitted and manipulated as strengths, 

generally voltage or current, is inherently superior to 

digital computation, where signals are transmitted 

and manipulated as serial or parallel streams of 1s 

and 0s. But in fact, both technologies have advantages 

and disadvantages. The best choice depends on a 

variety of factors. 

 

Why is analog appealing? An important reason is 

that it provides 10-100 times greater computational 

density  than digital computation. 

  

Computational density - the amount of computation  

per unit area  of silicon - is important because the cost 

of a  chip  is  generally  proportional  to  its  total  area. 

In analog circuitry, complex, non-linear operations 

such as multiply, divide, and hyperbolic tangent can 

be performed by a handful of transistors. Digital 

Circuitry requires hundreds or even thousands of 

wires and transistors to perform the same operations. 

Analog computation also performs these operations 

using far less power per computation than digital 

computation. 

 

If analog is so good, why are people still building 
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digital chips, and why are most commercial products 

digital? One important reason is familiarity. People 

know how to build digital circuits, and they can do it 

reliably, no matter the size and complexity of the 

system. This is partly the legacy of having thousands 

of  digital  designers all  over the world constantly 

tweaking and  improving  design techniques and  

software.  It is also easier to create a digital version of 

a computation, where a computer program represents 

the algorithm, than an analog version, where the 

circuit itself represents the algorithm. This is 

particularly true if you are trying to build a system that 

is robust and reliable over the wide temperature and 

voltage ranges needed in commercial products. 

Analog design is an uncommon capability. And it is 

becoming less common as people find they can do 

more with digital circuitry. For example, Digital Signal 

Processors (DSPs) now perform most of what was once 

the domain of analog circuitry. Another advantage to 

the digital emulation of neural networks is that it 

significantly eases the integration of the neural 

network portion of the design with the larger digital 

system that it connects to. 

 

Flexibility 

Another factor working in favor of digital is that 

analog designs are generally algorithms wired into 

silicon. Such designs are inflexible. Though there is 

an interesting class of designs that are programmable 

analog. Perhaps the most powerful and widely 

studied is the CNN – Cellular Neural Network (Chua 

and Roska, 2001). 

 

Digital designs can be either hardwired or 

programmable. Their flexibility is a major benefit, 

since it allows software control as well as an arbitrary 

level of precision (low to high, and fixed or  floating  

point). The price of this flexibility is reduced 

performance /cost, but the result is a chip that can 

solve a larger part of a  problem.  It also leads to a 

device that has broader applicability and that can 

track incremental algorithm improvements by 

changing the software, not by redesigning the 

circuitry. 

 

The role flexibility plays in system performance /cost 

can  be  understood  more clearly by examining 

Amdahl's law (Hennessy and Patterson, 1991) that 

describes the execution time benefits of parallelizing a 

computation. Briefly, a computing task has portions or  

subtasks  that  often  can  be  executed in parallel. 

 

Other, sequential tasks, cannot begin until a previous 

task has completed, which forces a sequential 

ordering of these tasks. 

 

Amdahl's law states that no matter how many processors 

are available to execute subtasks, the speed of a particular 

task is roughly proportional to those subtasks that cannot 

be executed in parallel. In other words, sequential 

computation dominates as parallelism increases. Amdahl 

quantifies the relationship: 

S = 1/(ops + (opp / p)) 

 

Where S is the total speed-up, ops the number of 

operations in the serial portion of the computation, opp the 

number of operations in the parallel portion, and p the 

number of processors. As p gets large, S approaches 1/ops. 

 

For example, suppose we have two chips to choose 

from. The first can perform 80%  of the computation 

with a 20x speed up on that 80%. The second can 

perform only 20%  of the computation, but executes 

that 20% with a 1000x total system speed up. Plugging 

into the equation, the first chip gives us a total speed 

up of over 4x, while the second - and "faster" - chip has 

only a 1.25x total system speed up. A programmable 

device that accelerates several phases of an application 

generally offers a much larger benefit than a dedicated 

device. 

 

Below we discuss FPGAs (Field Programmable Gate 

Arrays), which are flexible to the point of allowing the 

arbitrary configuration of physical digital circuitry. 

They are a promising approach to efficiently 

implementing the inherent parallelism of neural-like 

structures. 

 

Signal Intercommunication 

One difference between silicon and biological networks is 

that for silicon internode communication is relatively 

more expensive than for biological systems. Although 

several levels of wire interconnect (8-10 today) 

available in most silicon processes, each level is 

restricted to two-dimensional interconnection because 

wires on the same level cannot pass over or touch one 

another. 

 

Two-dimensional layout and large expensive wires 

require us to modify our biologically-derived 

computational models to more closely match the 

strengths and weaknesses of the   implementation   

technology. To   show the need for such modifications, 

Bailey and Hammerstrom (Bailey and Hammerstrom, 

1988) modeled a hypothetical neural circuit. 

 

The first calculation assumed a direct implementation 

- that is, one connection per wire. This billion-

connection ANN required tens of square meters of 

silicon  for dedicated communication pathways. Since 

silicon averages tens of dollars per square centimeter, 

such a system is too costly to be practical. These costs 

result from a theorem showing that the metal area 

required by direct communication is proportional to 

the cube of the fan-in or “convergence” at each node. 

 

Their second calculation assumed a multiplexed 

interconnect structure – where several connections 

shared a metal wire. Wire multiplexing adds 

complexity  at  each end. Likewise an address must be 
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sent with each data packet to identify the sender, and 

some decoding must be performed on that address. 

Bailey and Hammerstrom showed that with the 

proper communication architecture, a 100x reduction 

in silicon area over the direct approach was possible 

with little impact on  performance.  Since for these 

large networks only a few nodes will be active in any 

given time interval, multiplexing interconnect makes 

even more sense. 

Even analog designers of neuromorphic circuitry 

have recognized the need for multiplexed 

interconnect. 

 

However, Analog voltages and currents are difficult to 

multiplex. One alternative is to represent analog 

values by using pulses. There are several ways that 

pulses can be used to represent information, including 

pulse rate, phase, and inter-pulse-interval. It is 

possible for different pulse streams to share a single 

wire by sending, at the time the pulse occurs, the 

address of the pulse stream.  This approach is called 

Address Event Representation or AER (Boahen, 2000). 

Pulse or “spike” signal representation is also much 

more neurobiologically plausible. 

 

III. DIGITAL NEURAL NETWORKS: OFF-THE-

SHELF PROCESSORS 

 

One successful approach to high-speed ANN 

simulation has been to use arrays of commercial 

microprocessors. This approach  works because  

desktop  machines, thanks to Moore’s law have 

achieved a tremendous level of performance/cost. 

Moore’s law states that the number of transistors that 

can be manufactured economically on a single silicon  

die  doubles  every 24 months. Moore’s law has held 

constant for roughly 32 doublings, which is truly 

impressive. There are not many industries that can 

claim exponential growth over such a long period. 

 

In addition to raw clock speed, another effect of 

Moore’s law is that more transistors are available to 

dedicate to specialized functionality. Today the latest 

microprocessors offer on-board SIMD (Single 

Instruction Multiple Data) parallel co-processors. For 

Intel these coprocessors have evolved from MMx to 

SSE (Pentium III), and now to SSE2 (Pentium IV) 

(Intel, 2001). The Motorola / IBM PowerPC has the 

similar AltiVec system. Although these coprocessors have 

been designed primarily for basic image processing, video 

codecs, and graphics, they can also be used to emulate 

certain ANN models. 

 

A problem these machines have though is limited 

memory bandwidth. Most applications have a fair 

amount of referencing locality, where a collection of 

physically contiguous addresses are referenced 

multiple times. Reference locality allows the processor 

to  use  several layers of  cache  memory (the Pentium  

IV   has 3). 

However, neural network algorithms typically require 

that an entire network be accessed for each state 

update. Since this network can be very large, it 

generally does not fit in the caches. Consequently, 

there is a significant slowdown as the processor ends 

up waiting for data from memory. 

 

Perhaps the best approach is to use a  commercial  

multi-processor  machine  that hides the memory 

bandwidth problems by providing large numbers of 

processors. For example, the NASA Ames Research 

Center, has several large Silicon Graphics parallel 

machines (Shan, Singh et al., 2000). The largest 

currently has a 1024 processor machine. These 

systems use very high speed interconnect and are able 

to emulate large, complex neural network structures. 

Our research group at OGI has simulated simple 

association networks approaching one million nodes 

on this machine. 

 

However, such computational power is typically not 

available to the average researcher. One popular 

alternative has been to build large computer clusters 

using relatively inexpensive PCs. Often known as 

Beowulf clusters (Reschke, Sterling et al., 1996), these 

systems connect large numbers of simple processors 

and are typically built from off-the-shelf hardware 

(PCs and LAN switches). The software is usually 

free. Programming is done using traditional languages 

and MPI (the Message Passing Interface) or PVM 

(Parallel Virtual Machine). Unfortunately, the inter-

processor communication tends to be fairly slow 

relative to the computation, which compromises the  

total  speed-up  to some degree. However, they can be 

fairly efficient if complex models of the neuron are 

used that require more computation than 

intercommunication. 

 

As neural network models become larger and more 

complex, the model connectivity issues become a major 

factor in the speed of emulation regardless of the hardware 

platform. Real neural structures demonstrate 

sparseness, small subset of all possible connections are 

actually made, and locality, there is a  higher 

probability  of connections to neurons that are  

physically near  each other. However, ANN models 

have typically not exhibited significant sparseness or 

locality, which is another reason for researchers to 

study more biologically plausible systems, so that we 

can create structures that are computationally robust 

and have sparse, localized connections. 

 

IV. DIGITAL NEURAL NETWORKS: FULL 

CUSTOM PROCESSORS: CNAPS 

 

Designing   specialized architectures customized for   

ANN simulation  permits significant improvements in 

performance/cost, since the processors andtheir 

interconnection architecture are optimized for 

computations they perform. This section discusses the 
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Adaptive Solutions CNAPS architecture, which was, 

for a time,  a successful commercial product, but is no 

longer produced. It represents the specialized 

functionality end of the design spectrum of digital 

chips. 

 

The CNAPS architecture (Hammerstrom, 1995) had 

multiple Processor Nodes (PNs) connected in a one-

dimensional structure, forming a Single Instruction 

Multiple Data (SIMD) array (Figure 1). SIMD 

architectures have one instruction storage and decode 

unit and many execution units, simplifying system 

design and reducing costs.  Unlike a PC cluster, each 

CNAPS PN did not have program storage and 

sequencing hardware, and each executed the same 

instruction each clock. Node outputs were broadcast 

from each PN to all the others over a single broadcast 

bus. 

 

Another major simplification of the CNAPS 

architecture, which is found in other digital ANN  

chips,  was  the  use  of  limited-precision, fixed-

point  arithmetic. Many researchers have shown that 

floating point and high precision are unnecessary in 

ANN simulation   (Fahlman and Hoehfeld,1992). 

CNAPS supported 1-, 8-, and 16-bit precision in 

hardware. Consequently, the PNs were smaller and 

cheaper. This reduced precision was more than 

adequate for the applications implemented on 

CNAPS. 

 

The CNAPS architecture had 64 PNs per chip. At the 

then frequency of 25 MHz, each chip executed at a 

rate of 1.6 billion connections computed per second.  

A single chip executed back-propagation learning at a 

rate of 300 million connection updates per second- 

each update consists of reading the weight associated 

with the connection, modifying it, and then writing it 

back. Each PN (Figure 2) had 4096  bytes  of on-chip 

local memory, used to store synaptic weight data and 

other local values. Hence a 64 PN chip could store  up  

to 256  KB  of information. 

 

Multiple chips could be combined to create larger, 

more powerful systems. The general 

programmability of the device allowed it to execute a 

large range of functions, including many non-ANN 

algorithms such as the discrete Fourier transform, 

nearest neighbor classification, image processing, and 

dynamic time warping. 

 

Figure 3 shows a simple two layer network mapped to 

a CNAPS array. The network nodes are labeled CN0-

CN7; the processor PN0-PN3. Multiple network 

nodes map to a single processor node - in this 

example, one node from each layer is mapped to a 

single PN. For feed forward calculation, assume that 

the outputs of nodes CN0-CN3 have been computed. 

To compute the inner product of nodes CN4-CN7, 

the output value of node CN0 is broadcast on the bus 

to all PNs in the first clock. Each PN then multiplies 

the CN0 output with the corresponding weight 

element, which is different for each PN. On the next 

clock, CN1's output is broadcast, etc. After four clocks, 

all sixteen products have been computed - O(n2) 

connections in O(n) time. 

 

V. DIGITAL NEURAL NETWORKS: FPGA (Field 

Programmable Gate Arrays) 

 

Perhaps the most promising approach to emulating 

neural models digitally is the FPGA, Field 

Programmable Gate Array (Sharma, 1998). Briefly, an 

FPGA is a device with a large number of generic logic 

blocks and generic interconnect between those blocks. 

The functions the logic blocks implement and how 

these blocks are connected to one another is 

determined by configuration bits that are loaded into 

the chip as  one would load a program into a 

computer’s memory. Because of Moore’s law, it is 

now possible to buy FPGAs that are capable 

emulating millions of logic gates at frequencies 

approaching several hundred megahertz. There are 

very sophisticated design tools that allow logic to be 

expressed in a high-level hardware description 

language and then be converted   to  FPGA  

configuration  bits  by  an  automated  synthesis  

process. These devices can implement large neural 

structures in parallel, see, for example, Hatano 

(Hatano and al., 1999). 

 

Although FPGAs are appearing with larger on-chip 

memory, they still cannot approach the density of 

commercial DRAM. So for emulating very large 

networks, off- chip memory needs to be used to store 

the various parameters and state information 

associated   with each neuron. However, unlike 

traditional processors, FPGAs are capable of 

supporting the access to several high-speed memory 

structures at once. Consequently, a board with several 

FPGAs could emulate networks at much higher 

speeds than a  high  speed desktop PC. In addition, 

the inherent parallelism in each FPGA would allow 

parallel implementation of the various structures 

within the neuron, such as sophisticated spike based 

computation. 

 

VI. DISCUSSION 

 

It is difficult to predict technology trends, but 

speculation is always possible. Today most   ANNs  

are   used   for pattern  recognition. The final stage  

of most pattern recognition algorithms involves 

checking a series of  classification  results  to see  if  

they fit in the larger context of the domain in question. 

Including this contextual knowledge can be as simple 

as spell checking; or it can be as complex as accessing 

high order rules or   schemas   that   reflect   complex   

syntactical and semantic relationships. Since 

classification is imperfect, contextual processing, 
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which makes knowledge of such higher order 

relationships available to the classification process, is 

essential to guarantee the accuracy of the final result. 

 

Although the results are still speculative, research 

(Ambros-Ingerson, Granger et al., 1990; Braitenberg and 

Schüz, 1998) has shown that scaling to large contexts 

requires networks with relatively sparse interconnect and 

sparse activation, where only a few nodes are actively 

firing at a time. Based on research into VLSI 

connectivity (Bailey, 1993), digital-based systems can 

handle such networks more efficiently than analog. 

Therefore at some point in the processing, the data 

will probably need to be converted from analog to 

digital representation. Today the conversion is done at 

or just after the input transducer. Based on the state of 

analog technologies, systems of the future will 

probably take advantage of the computational density 

of analog VLSI to perform the feature extraction and  

some  preliminary classification at  the front end, with 

conversion to digital form for contextual processing 

and final classification by “higher level brain regions.” 

 

FIGURE CAPTIONS 

 

 
Figure 1. CNAPS Architecture. This is a Single Instruction Multiple Data (SIMD) architecture, where all processor nodes 

(PNs) execute the same instruction on each clock.  There is a single broadcast data bus that allows efficient one to  many and 

many   to many communication. 

 

 
Figure 2. CNAPS PN Architecture.  A single PN has a multiplier, accumulator, logic /shifter unit, register file, and separate 

memory address adder. Each PN also has  its own memory for storing weights, lookup tables, and other data. Each PN 

generates its own unique address to memory. 
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Figure 3. Mapping of a Simple Two-Layer Feedforward Network to the CNAPS Array. When emulating a feedforward network, each 

layer is spread across the PN array. The neuron outputs of one layer are broadcast sequentially to all PNs while they compute the 

multiply-accumulations for the next layer of neurons. 
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