
 © 2020, WAJES All Rights Reserved 47

World Academics Journal of ___ Survey Paper.
Engineering Sciences

Vol.7, Issue.4, pp.47-52, December (2020) E-ISSN: 2348-635X

Digital VLSI for Neural Networks

Priyanjali Jain

1
*, Priyanshu Jain

2

1
Dept. of Electronics and Communication, Dhirubhai Ambani Institute of Information and Communication Technology,

Gandhinagar (Ahmedabad) Gujrat, India
2
Dept. of AVIONICS, Indian Institute of Space Science and Technology, IIST,

2
Dept. of Space, Govt. of India, Valiamala P.O., Thiruvananthapuram – 695547, Kerala, India

*Correspondence Author: 2710priyanjali@gmail.com,Mob no +91 9425436379

Available online at: www.isroset.org

Received: 10/Oct/2020, Accepted: 05/Nov/2020, Online: 31/Dec/2020

Abstract- This chapter discusses digital electronic implementations of ANNs. First, we look at the differences between

digital and analog design techniques with a focus on cost- performance trade-offs. Second, we consider the use of

traditional processors in parallel configurations for ANN emulation. Third, to convey a sense of some of the

issues involved in designing digital structures for ANN emulation, a custom digital ANN processor is discussed:

the Adaptive Solutions CNAPS. Although this chip is no longer produced, it is still being used. It’s simple

architecture makes it a good vehicle to understand the trade-offs inherent in emulating neural structures digitally.

And fourth, we look briefly at FPGA technology as a promising alternative for digital implementation of ANNs.

Keywords:- VSLI, Digital, Network ANN , CNAPS, FPGA

I. INTRODUCTION

The computational overhead required to simulate

Artificial Neural Network (ANN) models, whether

simplistic or realistically complex, is a key problem in

the field because of the computational complexity of

these models.

Network simulations are required both for research

and for commercial products. Most researchers

currently perform these simulations on standard

computer technology, such as high-end workstations

or personal computers. However, as the field

progresses, researchers are moving to larger and ever

more complex models that challenge even the fastest

computers.

A reasonably realistic neural model could approach

one million neurons and tens of billions of

connections, where a "connection'' is a data transfer

path between two neurons. In addition to size, the

models themselves are becoming more complex as we

move from simple inner-products to spiking neurons

with temporal time course that require a convolution

to be performed at each synapse.

For these reasons, there has been much interest in

developing custom hardware for ANNs. The inherent

parallelism in ANN and connectionist models

suggests an opportunity to speed up the simulations.

Their simple, low precision computations also suggest

an opportunity to employ simpler and cheaper, low-

precision digital hardware implemented by full-

custom silicon or by FPGAs (Field Programmable Gate

Arrays).

II. WHY DIGITAL?

Cost-Performance

One commonly-held belief in the ANN research

community is that analog computation, where signals

are transmitted and manipulated as strengths,

generally voltage or current, is inherently superior to

digital computation, where signals are transmitted

and manipulated as serial or parallel streams of 1s

and 0s. But in fact, both technologies have advantages

and disadvantages. The best choice depends on a

variety of factors.

Why is analog appealing? An important reason is

that it provides 10-100 times greater computational

density than digital computation.

Computational density - the amount of computation

per unit area of silicon - is important because the cost

of a chip is generally proportional to its total area.

In analog circuitry, complex, non-linear operations

such as multiply, divide, and hyperbolic tangent can

be performed by a handful of transistors. Digital

Circuitry requires hundreds or even thousands of

wires and transistors to perform the same operations.

Analog computation also performs these operations

using far less power per computation than digital

computation.

If analog is so good, why are people still building

http://www.isroset.org/

 World Academics Journal of Engineering Sciences Vol.7, Issue.4, Dec 2020

 © 2020, WAJES All Rights Reserved 48

digital chips, and why are most commercial products

digital? One important reason is familiarity. People

know how to build digital circuits, and they can do it

reliably, no matter the size and complexity of the

system. This is partly the legacy of having thousands

of digital designers all over the world constantly

tweaking and improving design techniques and

software. It is also easier to create a digital version of

a computation, where a computer program represents

the algorithm, than an analog version, where the

circuit itself represents the algorithm. This is

particularly true if you are trying to build a system that

is robust and reliable over the wide temperature and

voltage ranges needed in commercial products.

Analog design is an uncommon capability. And it is

becoming less common as people find they can do

more with digital circuitry. For example, Digital Signal

Processors (DSPs) now perform most of what was once

the domain of analog circuitry. Another advantage to

the digital emulation of neural networks is that it

significantly eases the integration of the neural

network portion of the design with the larger digital

system that it connects to.

Flexibility

Another factor working in favor of digital is that

analog designs are generally algorithms wired into

silicon. Such designs are inflexible. Though there is

an interesting class of designs that are programmable

analog. Perhaps the most powerful and widely

studied is the CNN – Cellular Neural Network (Chua

and Roska, 2001).

Digital designs can be either hardwired or

programmable. Their flexibility is a major benefit,

since it allows software control as well as an arbitrary

level of precision (low to high, and fixed or floating

point). The price of this flexibility is reduced

performance /cost, but the result is a chip that can

solve a larger part of a problem. It also leads to a

device that has broader applicability and that can

track incremental algorithm improvements by

changing the software, not by redesigning the

circuitry.

The role flexibility plays in system performance /cost

can be understood more clearly by examining

Amdahl's law (Hennessy and Patterson, 1991) that

describes the execution time benefits of parallelizing a

computation. Briefly, a computing task has portions or

subtasks that often can be executed in parallel.

Other, sequential tasks, cannot begin until a previous

task has completed, which forces a sequential

ordering of these tasks.

Amdahl's law states that no matter how many processors

are available to execute subtasks, the speed of a particular

task is roughly proportional to those subtasks that cannot

be executed in parallel. In other words, sequential

computation dominates as parallelism increases. Amdahl

quantifies the relationship:

S = 1/(ops + (opp / p))

Where S is the total speed-up, ops the number of

operations in the serial portion of the computation, opp the

number of operations in the parallel portion, and p the

number of processors. As p gets large, S approaches 1/ops.

For example, suppose we have two chips to choose

from. The first can perform 80% of the computation

with a 20x speed up on that 80%. The second can

perform only 20% of the computation, but executes

that 20% with a 1000x total system speed up. Plugging

into the equation, the first chip gives us a total speed

up of over 4x, while the second - and "faster" - chip has

only a 1.25x total system speed up. A programmable

device that accelerates several phases of an application

generally offers a much larger benefit than a dedicated

device.

Below we discuss FPGAs (Field Programmable Gate

Arrays), which are flexible to the point of allowing the

arbitrary configuration of physical digital circuitry.

They are a promising approach to efficiently

implementing the inherent parallelism of neural-like

structures.

Signal Intercommunication

One difference between silicon and biological networks is

that for silicon internode communication is relatively

more expensive than for biological systems. Although

several levels of wire interconnect (8-10 today)

available in most silicon processes, each level is

restricted to two-dimensional interconnection because

wires on the same level cannot pass over or touch one

another.

Two-dimensional layout and large expensive wires

require us to modify our biologically-derived

computational models to more closely match the

strengths and weaknesses of the implementation

technology. To show the need for such modifications,

Bailey and Hammerstrom (Bailey and Hammerstrom,

1988) modeled a hypothetical neural circuit.

The first calculation assumed a direct implementation

- that is, one connection per wire. This billion-

connection ANN required tens of square meters of

silicon for dedicated communication pathways. Since

silicon averages tens of dollars per square centimeter,

such a system is too costly to be practical. These costs

result from a theorem showing that the metal area

required by direct communication is proportional to

the cube of the fan-in or “convergence” at each node.

Their second calculation assumed a multiplexed

interconnect structure – where several connections

shared a metal wire. Wire multiplexing adds

complexity at each end. Likewise an address must be

 World Academics Journal of Engineering Sciences Vol.7, Issue.4, Dec 2020

 © 2020, WAJES All Rights Reserved 49

sent with each data packet to identify the sender, and

some decoding must be performed on that address.

Bailey and Hammerstrom showed that with the

proper communication architecture, a 100x reduction

in silicon area over the direct approach was possible

with little impact on performance. Since for these

large networks only a few nodes will be active in any

given time interval, multiplexing interconnect makes

even more sense.

Even analog designers of neuromorphic circuitry

have recognized the need for multiplexed

interconnect.

However, Analog voltages and currents are difficult to

multiplex. One alternative is to represent analog

values by using pulses. There are several ways that

pulses can be used to represent information, including

pulse rate, phase, and inter-pulse-interval. It is

possible for different pulse streams to share a single

wire by sending, at the time the pulse occurs, the

address of the pulse stream. This approach is called

Address Event Representation or AER (Boahen, 2000).

Pulse or “spike” signal representation is also much

more neurobiologically plausible.

III. DIGITAL NEURAL NETWORKS: OFF-THE-

SHELF PROCESSORS

One successful approach to high-speed ANN

simulation has been to use arrays of commercial

microprocessors. This approach works because

desktop machines, thanks to Moore’s law have

achieved a tremendous level of performance/cost.

Moore’s law states that the number of transistors that

can be manufactured economically on a single silicon

die doubles every 24 months. Moore’s law has held

constant for roughly 32 doublings, which is truly

impressive. There are not many industries that can

claim exponential growth over such a long period.

In addition to raw clock speed, another effect of

Moore’s law is that more transistors are available to

dedicate to specialized functionality. Today the latest

microprocessors offer on-board SIMD (Single

Instruction Multiple Data) parallel co-processors. For

Intel these coprocessors have evolved from MMx to

SSE (Pentium III), and now to SSE2 (Pentium IV)

(Intel, 2001). The Motorola / IBM PowerPC has the

similar AltiVec system. Although these coprocessors have

been designed primarily for basic image processing, video

codecs, and graphics, they can also be used to emulate

certain ANN models.

A problem these machines have though is limited

memory bandwidth. Most applications have a fair

amount of referencing locality, where a collection of

physically contiguous addresses are referenced

multiple times. Reference locality allows the processor

to use several layers of cache memory (the Pentium

IV has 3).

However, neural network algorithms typically require

that an entire network be accessed for each state

update. Since this network can be very large, it

generally does not fit in the caches. Consequently,

there is a significant slowdown as the processor ends

up waiting for data from memory.

Perhaps the best approach is to use a commercial

multi-processor machine that hides the memory

bandwidth problems by providing large numbers of

processors. For example, the NASA Ames Research

Center, has several large Silicon Graphics parallel

machines (Shan, Singh et al., 2000). The largest

currently has a 1024 processor machine. These

systems use very high speed interconnect and are able

to emulate large, complex neural network structures.

Our research group at OGI has simulated simple

association networks approaching one million nodes

on this machine.

However, such computational power is typically not

available to the average researcher. One popular

alternative has been to build large computer clusters

using relatively inexpensive PCs. Often known as

Beowulf clusters (Reschke, Sterling et al., 1996), these

systems connect large numbers of simple processors

and are typically built from off-the-shelf hardware

(PCs and LAN switches). The software is usually

free. Programming is done using traditional languages

and MPI (the Message Passing Interface) or PVM

(Parallel Virtual Machine). Unfortunately, the inter-

processor communication tends to be fairly slow

relative to the computation, which compromises the

total speed-up to some degree. However, they can be

fairly efficient if complex models of the neuron are

used that require more computation than

intercommunication.

As neural network models become larger and more

complex, the model connectivity issues become a major

factor in the speed of emulation regardless of the hardware

platform. Real neural structures demonstrate

sparseness, small subset of all possible connections are

actually made, and locality, there is a higher

probability of connections to neurons that are

physically near each other. However, ANN models

have typically not exhibited significant sparseness or

locality, which is another reason for researchers to

study more biologically plausible systems, so that we

can create structures that are computationally robust

and have sparse, localized connections.

IV. DIGITAL NEURAL NETWORKS: FULL

CUSTOM PROCESSORS: CNAPS

Designing specialized architectures customized for

ANN simulation permits significant improvements in

performance/cost, since the processors andtheir

interconnection architecture are optimized for

computations they perform. This section discusses the

 World Academics Journal of Engineering Sciences Vol.7, Issue.4, Dec 2020

 © 2020, WAJES All Rights Reserved 50

Adaptive Solutions CNAPS architecture, which was,

for a time, a successful commercial product, but is no

longer produced. It represents the specialized

functionality end of the design spectrum of digital

chips.

The CNAPS architecture (Hammerstrom, 1995) had

multiple Processor Nodes (PNs) connected in a one-

dimensional structure, forming a Single Instruction

Multiple Data (SIMD) array (Figure 1). SIMD

architectures have one instruction storage and decode

unit and many execution units, simplifying system

design and reducing costs. Unlike a PC cluster, each

CNAPS PN did not have program storage and

sequencing hardware, and each executed the same

instruction each clock. Node outputs were broadcast

from each PN to all the others over a single broadcast

bus.

Another major simplification of the CNAPS

architecture, which is found in other digital ANN

chips, was the use of limited-precision, fixed-

point arithmetic. Many researchers have shown that

floating point and high precision are unnecessary in

ANN simulation (Fahlman and Hoehfeld,1992).

CNAPS supported 1-, 8-, and 16-bit precision in

hardware. Consequently, the PNs were smaller and

cheaper. This reduced precision was more than

adequate for the applications implemented on

CNAPS.

The CNAPS architecture had 64 PNs per chip. At the

then frequency of 25 MHz, each chip executed at a

rate of 1.6 billion connections computed per second.

A single chip executed back-propagation learning at a

rate of 300 million connection updates per second-

each update consists of reading the weight associated

with the connection, modifying it, and then writing it

back. Each PN (Figure 2) had 4096 bytes of on-chip

local memory, used to store synaptic weight data and

other local values. Hence a 64 PN chip could store up

to 256 KB of information.

Multiple chips could be combined to create larger,

more powerful systems. The general

programmability of the device allowed it to execute a

large range of functions, including many non-ANN

algorithms such as the discrete Fourier transform,

nearest neighbor classification, image processing, and

dynamic time warping.

Figure 3 shows a simple two layer network mapped to

a CNAPS array. The network nodes are labeled CN0-

CN7; the processor PN0-PN3. Multiple network

nodes map to a single processor node - in this

example, one node from each layer is mapped to a

single PN. For feed forward calculation, assume that

the outputs of nodes CN0-CN3 have been computed.

To compute the inner product of nodes CN4-CN7,

the output value of node CN0 is broadcast on the bus

to all PNs in the first clock. Each PN then multiplies

the CN0 output with the corresponding weight

element, which is different for each PN. On the next

clock, CN1's output is broadcast, etc. After four clocks,

all sixteen products have been computed - O(n2)

connections in O(n) time.

V. DIGITAL NEURAL NETWORKS: FPGA (Field

Programmable Gate Arrays)

Perhaps the most promising approach to emulating

neural models digitally is the FPGA, Field

Programmable Gate Array (Sharma, 1998). Briefly, an

FPGA is a device with a large number of generic logic

blocks and generic interconnect between those blocks.

The functions the logic blocks implement and how

these blocks are connected to one another is

determined by configuration bits that are loaded into

the chip as one would load a program into a

computer’s memory. Because of Moore’s law, it is

now possible to buy FPGAs that are capable

emulating millions of logic gates at frequencies

approaching several hundred megahertz. There are

very sophisticated design tools that allow logic to be

expressed in a high-level hardware description

language and then be converted to FPGA

configuration bits by an automated synthesis

process. These devices can implement large neural

structures in parallel, see, for example, Hatano

(Hatano and al., 1999).

Although FPGAs are appearing with larger on-chip

memory, they still cannot approach the density of

commercial DRAM. So for emulating very large

networks, off- chip memory needs to be used to store

the various parameters and state information

associated with each neuron. However, unlike

traditional processors, FPGAs are capable of

supporting the access to several high-speed memory

structures at once. Consequently, a board with several

FPGAs could emulate networks at much higher

speeds than a high speed desktop PC. In addition,

the inherent parallelism in each FPGA would allow

parallel implementation of the various structures

within the neuron, such as sophisticated spike based

computation.

VI. DISCUSSION

It is difficult to predict technology trends, but

speculation is always possible. Today most ANNs

are used for pattern recognition. The final stage

of most pattern recognition algorithms involves

checking a series of classification results to see if

they fit in the larger context of the domain in question.

Including this contextual knowledge can be as simple

as spell checking; or it can be as complex as accessing

high order rules or schemas that reflect complex

syntactical and semantic relationships. Since

classification is imperfect, contextual processing,

 World Academics Journal of Engineering Sciences Vol.7, Issue.4, Dec 2020

 © 2020, WAJES All Rights Reserved 51

which makes knowledge of such higher order

relationships available to the classification process, is

essential to guarantee the accuracy of the final result.

Although the results are still speculative, research

(Ambros-Ingerson, Granger et al., 1990; Braitenberg and

Schüz, 1998) has shown that scaling to large contexts

requires networks with relatively sparse interconnect and

sparse activation, where only a few nodes are actively

firing at a time. Based on research into VLSI

connectivity (Bailey, 1993), digital-based systems can

handle such networks more efficiently than analog.

Therefore at some point in the processing, the data

will probably need to be converted from analog to

digital representation. Today the conversion is done at

or just after the input transducer. Based on the state of

analog technologies, systems of the future will

probably take advantage of the computational density

of analog VLSI to perform the feature extraction and

some preliminary classification at the front end, with

conversion to digital form for contextual processing

and final classification by “higher level brain regions.”

FIGURE CAPTIONS

Figure 1. CNAPS Architecture. This is a Single Instruction Multiple Data (SIMD) architecture, where all processor nodes

(PNs) execute the same instruction on each clock. There is a single broadcast data bus that allows efficient one to many and

many to many communication.

Figure 2. CNAPS PN Architecture. A single PN has a multiplier, accumulator, logic /shifter unit, register file, and separate

memory address adder. Each PN also has its own memory for storing weights, lookup tables, and other data. Each PN

generates its own unique address to memory.

 World Academics Journal of Engineering Sciences Vol.7, Issue.4, Dec 2020

 © 2020, WAJES All Rights Reserved 52

Figure 3. Mapping of a Simple Two-Layer Feedforward Network to the CNAPS Array. When emulating a feedforward network, each

layer is spread across the PN array. The neuron outputs of one layer are broadcast sequentially to all PNs while they compute the

multiply-accumulations for the next layer of neurons.

REFERENCES

[1] Ambros-Ingerson, J., R. Granger, et al., 1990, Simulation of

Paleocortex Performs Hierarchical Clustering, in Science 247,

pp.1344-1348.

[2] Bailey, J., 1993, A VLSI Interconnect Strategy for Biologically

Inspired Artificial Neural Networks, PhD Thesis, Department of

Computer Science / Engineering, Beaverton, OR, Oregon

Graduate Institute.

[3] Bailey, J. and D. Hammerstrom, 1988, Why VLSI

Implementations of Associative VLCNs Require Connection

Multiplexing, 1988 International Conference on Neural

Networks, pp.173-180.

[4] Boahen, K. A., 2000, Point-to-Point Connectivity Between

Neuromorphic Chips Using Address Events, IEEE Transactions

on Circuits and Systems II - Analog and Digital Signal

Processing , 47(5), pp.416-434.

[5] Braitenberg, V. and A. Schüz, 1998, Cortex: Statistics and

Geometry of Neuronal Connectivity , Springer-Verlag.

[6] Chua, L. and T. Roska, 2001, Cellular Neural Networks and

Visual Computing , Cambridge University Press.

[7] Fahlman, S. E. and M. Hoehfeld, 1992, Learning with Limited

Numerical Precision Using the Cascade-Correlation Algorithm,

IEEE Transactions on Neural Networks , 3(4), pp. 602-611.

[8] Hammerstrom, D., 1995, A Digital VLSI Architecture for Real-

World Applications, An Introduction to Neural and Electronic

Networks , S. F. Zornetzer, J. L. Davis, C. Lau and T.

McKenna, San Diego, CA, Academic Press, pp.335-358.

[9] Hatano, F. and et al., 1999, Implementation of Cell Array

Neuro-Processor by Using FPGA, International Joint

Conference on Artificial Neural Networks, Washington DC,

IEEE.

[10] Hennessy, J. L. and D. A. Patterson, 1991, Computer

Architecture: A Quantitative Approach , Palo Alto, CA, Morgan

Kaufmann.

[11] Intel, 2001, IA-32 Intel Architecture Software Developer’s

Manual, Volume 1: Basic Architecture, Intel, 2001.

[12] Reschke, C., T. Sterling, et al., 1996, A Design Study of

Alternative Network Topologies for the Beowulf Parallel

Workstation , High Performance and Distributed Computing.

[13] Shan, H., J. P. Singh, et al., 2000, A Comparison of Three

Programming Models for Adaptive Applications on the

Origin2000 , Proceedings of SC2000, Dallas, TX.

[14] Sharma, A. K., 1998, Programmable Logic Handbook - PLDs,

CPLDs & FPGAs , McGraw-Hill Handbooks.

