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Abstract— This study explores unsteady blood flow in bifurcated arteries influenced by a constant transverse magnetic field and 

heat source. For easy analysis of axial velocity, temperature distribution, concentration of blood component and normal velocity, 

complex partial differential equations are transformed into ordinary differential equations by the method of separation of 

parameters subject to the conditions defined. Analytical solution illustrates how varying factors such as Hartmann number (Ha), 

Prandtl number (Pr), Schmidt number (Sc), Soret parameter (Sr) and Decay parameter (λ) affect blood flow dynamics. The 

analysis was made using Matlab and the results are presented graphically for better understanding.  
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Table 1. Nomenclature 

Nomenclature 

 Ρ Density of blood K
t
 Coefficient of thermal conductivity 

 Μ Dynamic viscosity of the blood (constant) C
p
 Specific heat at constant pressure 

 P Pressure of blood Q Quantity of heat 

 𝜎 Electrical conductivity of the blood 𝜃 Temperature distribution 

 B
o
 Intensity of the magnetic field φ Concentration 

 G Gravitational acceleration Pr Prandtl number 

 Β Coefficient of volume expansion due to temperature Sc Schmidt number 

 β' Coefficient of volume expansion due to concentration Sr Soret parameter 

 T Temperature of blood Ha Hartmann number 

 T
o
 Temperature of the wall (fixed temperature) τ Kinematic viscosity 

 𝜆 Decay parameter   

 

1. Introduction 
 

Numerous studies have explored blood flow dynamics and 

the impact of magnetic fields on physiology of fluids, 

particularly blood, owing to its electrical conductivity. This 

interaction, described through magnetohydrodynamics 

(MHD), has shown potential for treating cardiovascular 

diseases and related circulatory conditions. Researchers have 

investigated various mathematical models to understand 

blood flow behavior under external magnetic influences.  

 

Authors such as Tzirtzilakis [1], Ramamurthy and Shanker 

[2], Das and Saha [3], and others have investigated blood 

flow characteristics, especially in narrow channels or through 

porous media, under the effect of transverse magnetic fields. 

These studies consider factors like periodic body acceleration, 

lubricating layers, variable viscosity, and heat transfer in 

biological systems. The current study extends the work of 

Islam [4], in which a mathematical model of unsteady blood 

flow through parallel plate channel under the action of an 

applied constant transverse magnetic field is proposed. Singh 

and Rathee [5] provided a precise solution for a two-

dimensional blood flow model with changing viscosity within 

a narrowed artery affected by the presence of low-density 

lipoproteins in a magnetic field. Their study highlights that 

individuals with hypertension may be more susceptible to 

heart circulatory issues. Additionally, Dulal and Ananda [6] 

examined the influence of a consistent transverse magnetic 

field on the pulsating movement of blood through a 

symmetrically shaped tube. Meanwhile, Zamir and Roach [7] 
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focused on analyzing blood flow after a two-dimensional 

division with an even, continuous flow. The idea of 

electromagnetic fields in medical research was firstly given 

by Kolin [8] and later Korchevskii et al. [9] discussed the 

possibility of regulating the movement of blood in human 

system by applying magnetic field. Usman and Mohyud Din 

[10] proposed their studies on blood flow with nano 

suspensions flowing through a porous vessel and heat transfer 

in presence of magnetic field. Tripathi [11] suggested in his 

study that inclined magnetic field provides modified blood 

flow results. Allwood and Burry [12] provided effects of heat 

transfer on blood flow in different parts of the body. Ogulu 

and Abbey [13] have analyzed the simulation of heat transfer 

on an oscillatory blood flow in an indented porous artery. 

Allwood and Burry [14], and Charm et al. [15] 

experimentally investigated heat transfer in small tubes of 

diameter 0.6mm in a water bath, while Victor and Shah [16] 

computed heat transfer for uniform heat flux and uniform 

wall temperature cases for fully developed flow and in the 

entrance region. Haldar [17] and Vardanyan [18] conducted 

studies on blood flow, treating blood as a Newtonian fluid. 

Varshney et al. [19] explored the effects of a magnetic field 

on blood flow through arteries with multiple stenoses. Jha and 

Gambo [20,21,22,23] presented a comprehensive analytical 

study of Soret and Dufour effects for time-dependent free 

convection flow in different geometries. Isah et. al. [24] 

provided analytical and numerical solutions addressing 

transient magnetohydrodynamic free convection flow in a 

vertical channel, accounting for the presence of the Soret 

effect, Dufour effect, thermal radiation, and magnetic field. 

However, the effects of Soret and Dufour on unsteady MHD 

blood flow through bifurcated arteries have not been studied. 

 

The aim of this paper is to provide an analytical study of 

Soret effect (The ratio of thermal coefficient to diffusion 

coefficient) on unsteady MHD blood flow through bifurcated 

arteries. The study provides analytical expressions for axial 

velocity, temperature distribution, concentration of blood 

component and normal velocity, considering the same 

boundary conditions as Islam [4]. The study build on the 

work of Islam [4] by considering Soret effect. The 

investigation focuses on understanding the impact of 

Hartmann number (Ha), heat source parameter (S), Schmidt 

number (Sc), Soret parameter (Sr), Decay parameter (λ) and 

Prandtl number (Pr) on blood flow dynamics. This model 

seeks to simplify the understanding of blood flow behavior, 

benefiting those involved in physiological fluid dynamics 

research and medical practice.  

 

1.1 Problem Formulation 

The natural blood circulation system comprises elastic tubes 

with three-dimensional structures, varying cross-sections, and 

bifurcation angles. However, for mathematical ease, a two-

dimensional bifurcation model resembling the geometry 

proposed by Islam [4] was chosen, allowing analysis of heat 

effects on unsteady blood flow dynamics. In this study, blood 

is assumed to be Newtonian, incompressible, homogeneous, 

and viscous, flowing through a non-conductive parallel plate 

channel from the main trunk to the branches (see Figure 1 and 

2). The mass flow rate perpendicular to the flow direction is 

represented as (m=2bϱV), where V stands for mean flow 

velocity, b is the branch diameter, and ϱ is the blood density. 

For simplicity, the bifurcation angle is assumed to be zero, 

leading to a division of a parallel stream into two. 

Additionally, the wall thickness at the bifurcation is deemed 

negligibly small, allowing the mass flow rate in a cross-

section of the branched channel to be represented as m/2. Due 

to the considerably larger breadth of the channel (parallel to 

the large artery and larger than 1mm) the blood viscosity is 

treated as constant throughout this analysis, disregarding the 

Fahreus-Lindquist effect. 

 

 
Figure 1. Diagram indicating angle of bifurcation not zero 

 

 
Figure 2. Diagram indicating angle of bifurcation equal to zero 

 

2. Related Work  
 

This work is build on Islam [4] and the concept used is in line 

with the other literature that appears in the paper.  

 

3.1 Theory/Calculation 

 
∂u∗

∂t∗
+

1

𝜌

∂p∗

∂x∗
=

μ

𝜌

∂²u∗

∂y∗²
−

σB₀²

𝜌
𝑢∗ + gβ(T −  T₀)

∗
+

gβ(C −  C₀)
∗
          (1) 

∂u∗

∂x∗
+

∂v∗

∂y∗
 = 0                       (2) 

∂T∗

∂t∗
=

K_t 

ρC_p

∂²T∗

∂y∗²
+

𝑄

𝜌𝐶𝑝
 (T - T₀)*           (3) 

 
∂C∗

∂t∗
 = D

∂C∗

∂y∗
+ Sr*

∂²T∗

∂y∗²
           (4) 

 



Int. J. Sci. Res. in Mathematical and Statistical Sciences                                                                          Vol.11, Issue.6, Dec. 2024   

© 2024, IJSRMSS All Rights Reserved                                                                                                                                          68 

Non-dimensional variables are defined as follows 

x = 
x∗

b
 , u = 

u∗

(m/ (2bρ))
 , h(x,t) = (dp*/dx*) / (ηm / (2b³ρ)),    

τ=μ/ρ, y = 
y∗

b
 , v = v*/(m / (2bρ)),  t = t*/(b²ρ/η),     

θ=θ*(2b³ρ²)/(mμ),       Sr = Sr*/D,    φ = φ*(2b³ρ²) / (mμ)  (5) 

Substituting Equation (5) into Equations (1)-(4) we have 

 
∂u

∂t
+ h =

∂²u

∂y²
  - Ha²u + gβθ + gβ'ϕ           (6) 

 
∂u

∂x
+

∂v

∂y
 = 0            (7) 

 
∂θ

∂t
 = (1/τPr) 

∂²θ

∂y²
 + (S/τPr)θ           (8) 

 
∂ϕ

∂t
 = (1/Sc) 

∂²ϕ

∂y²
 + (Sr/Sc) 

∂²θ

∂y²
          (9) 

 

Looking into Equation (8) we observe that the temperature 

distribution has 1st order derivative in time $(t)$, from this 

observation we can use the method of separation of 

parameters on the equation and the solution will be in the 

following form: 

 

θ = H(y) 𝑒−𝜆2𝑡           (10) 

 

ϕ = I(y) 𝑒−𝜆2𝑡           (11) 

 

u = F(y) 𝑒−𝜆2𝑡           (12) 

 

v = G(y) 𝑒−𝜆2𝑡           (13) 

 

With the help of observations in the previous section, the 

boundary conditions can be chosen as follows. 

 

u = e^(-λ²t),  v = e^(-λ²t),  θ = e^(-λ²t),  ϕ = e^(-λ²t)  at y = -1     

            (14)                     

u = 0,  v = 0,  θ = 0,  ϕ = 0  at y = 1         (15)

  

 

Substituting Equations (10)-(13) into Equations (6)-(9) we get 

the following equations 

 

Here are the equations in a Microsoft Word document format: 

 
∂²H

∂y²
 + (S + λ²τPr)H = 0          (16) 

 
∂²I

∂y² 
 + Scλ²I = -Sr

∂²H

∂y²
          (17) 

 
∂²F

∂y²
+ (λ² - Ha²)F = ħ - gβH - gβ'I         (18) 

 

G = B (Constant)            

(19) 

 

Where ℏ=
h

𝑒−𝜆2𝑡
 

 

The boundary conditions defined in Equation (14)-(15) are 

transformed using Equations (10)-(13) to 

 

F = 1,  H = 1,  I = 1  at y = -1         (20) 

 

F = 0,  H = 0,  I = 0  at y = 1         (21) 

 

3.2 Solution to the Problem 

From Equation (16) 

Let Ω = √(S + λ²τPr) 

H = 
cos(Ωy) 

2 cos(Ω)
- 

sin(Ωy) 

2 sin(Ω)
          (22) 

 

Using Equation (22), the temperature distribution is given by 

 

θ = [
cos(Ωy) 

2 cos(Ω)
- 

sin(Ωy) 

2 sin(Ω)
] 𝑒−𝜆2𝑡         (23) 

 

From Equations (17) and (22) we have 

 

I = [1 −
(Ω²Sr)

(Scλ² − Ω²)
]

cos(λ√Scy) 

(2cos(λ√Sc))
- [1 - 

(Ω²Sr) 

(Scλ² − Ω²)
] [

sin(λ√Scy) 

(2sin(λ√Sc))
] 

+ [
(Ω²Sr)

(2(Scλ² − Ω²)
cosΩ)] cos(Ωy)         (24) 

 

It can be deduced from Equation (24) that the concentration 

of blood component is given by 

 

ϕ = {[1 −
 (Ω²Sr)

(Scλ² − Ω²)
] [

cos(λ√Scy)

(2cos(λ√Sc))
] - [1 −

 (Ω²Sr)

(Scλ² − Ω²)
] [

sin(λ√Scy)

2sin(λ√Sc)
 

]+[
(Ω²Sr)

(2(Scλ² − Ω²)cosΩ)
]cos(Ωy)- [

(Ω²Sr)

(2(Scλ² − Ω²)sinΩ)
 ]sin(Ωy)} 𝑒−𝜆2𝑡

           (25) 

 

Using Equations (22) and (24)  and letting  

ξ = √(λ² - Ha²),  α = [
1 − (Ω²Sr)

(Scλ² − Ω²)
], and Ω = √(S + 

λ²τPr).      

u={[1 - 2(
ħ 

ξ²
 ) + (

gβ

(ξ² − Ω²)
 ) + (

gβ′α

2(ξ² − λ²Sc)
)+ (

gβ′Ω²Sr

(ξ² − Ω²)(Scλ² − Ω²)
)] 

[
cos(ξy)

(2cosξ)
 ] - [1 + (

gβ

(ξ² − Ω²)
) + (

gβ′α

(ξ² − λ²Sc)
 ) + (

gβ′Ω²Sr

(ξ² − Ω²)(Scλ² − Ω²)
] 

[
sin(ξy)

(2sinξ)
 ] + (

ħ

ξ²
) - (

gβ

2(ξ² − Ω²)cosΩ
)cos(Ωy)+ 

(
gβ

2(ξ² − Ω²)sinΩ)
)sin(Ωy) - (

gβ′αcos(λ√Sc

(2(ξ² − λ²Sc)
)) cos(λ√Scy) + 

(
gβ′αsin(λ√Sc)

(2(ξ² − λ²Sc)
)sin(λ√Scy)–(

gβ′Ω²Sr(cosΩ)

2(ξ² − Ω²)(Scλ² − Ω²)
)cos(Ωy) 

+
gβ′Ω²Sr(sinΩ)

2(ξ² − Ω²)(Scλ² − Ω²)
) sin(Ωy)} 𝑒−𝜆2𝑡       (26) 

 

Lastly, the normal velocity is obtained from Equation (19) as 

 

v= B 𝑒−𝜆2𝑡         (29) 

 

4. Results and Discussion 
 

This analysis yields theoretical outcomes including the axial 

velocity, normal velocity, concentration of blood component 

and temperature distribution within the blood. It is worth 

noting that setting the Soret parameter and the coefficient of 

volume expansion due to concentration to be zero (i.e., Sr=0, 

β'=0), the solution in this paper correspond to those presented 
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by Islam [4]. The numerical solutions for axial and normal 

velocity as well as temperature and concentration are 

graphically presented across varying values of the Hartmann 

number (Ha), Prandtl number (Pr), Soret parameter (Sr), 

Decay parameter (λ) and heat source parameter (S) against y, 

enhancing comprehension of the scenario.  

 

4.1.1 Temperature for Different Values of Heat Source 

and Prandtl Number 
In Figure 2, we examine the temperature distribution changes 

concerning y at λ=0.5, τ=0.5, Pr=1 and t=1 for various values 

of the heat source parameter (S=0,1.00,1.25,1.50,1.75,2.00). 

Notably, for a fixed y value, the temperature field escalates 

with higher values of the heat source parameter. Moreover, 

the temperature field rises, reaching its peak towards the 

middle of the channel and subsequently declines. Also, in 

Figure 3, the Temperature field shows the same behaviour 

with different values of Prandtl number 

(Pr=0.5,1.00,3.00,5.00,7.00) but the temperature reaches it 

peak at around y=−0.2. 

 

 
Figure 3. Temperature variation with heat source (S) 

 

 
Figure 4. Temperature variation with heat Prandtl Number  (Pr) 

 

4.1.2 Temperature for Different Values of Decay 

Parameter and Kinematic Viscosity 
The analysis reveals that the temperature field in Figure 4 

experiences a decrease with an increasing decay parameter. 

The most significant impact of the decay parameter on the 

temperature field occurs at y=-1, while there is almost no 

effect of the decay parameter on the temperature distribution 

at y=1. Also, in Figure 5, the kinematic viscosity serves as a 

significant indicator, exhibiting a proportional relationship 

with blood temperature. As the kinematic viscosity increases, 

the blood temperature rises in tandem. This correlation is 

most notable at the midpoint of the artery, reaching a peak 

temperature before gradually subsiding. The dynamics 

between kinematic viscosity and blood temperature provide 

insights into the fluid behavior within the artery, emphasizing 

a distinctive pattern of temperature variation along the arterial 

path. 

 

 
Figure 5. Temperature variation with decay parameter (λ) 

 

 
Figure 6. Temperature profile for different values of τ 

 

4.1.3 Tempareture for Different Values of Time 
The temperature difference observed in Figure 6 is consistent 

for equal intervals of time. As time passes, the temperature 

changes by a constant amount during each successive 

interval. This proportional relationship signifies a steady and 

predictable pattern in the evolution of temperature over time.  
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Figure 7. Temperature profile for different values of t 

 

4.1.4 Concentration for Different Value of Soret 

Parameter 
In Figure 7, it is evident that the concentration of a blood 

component near a bifurcation region undergoes a substantial 

elevation as the Soret parameter increases. This finding is 

particularly relevant to cardiovascular health, suggesting that 

variations in the Soret parameter significantly influence blood 

composition near bifurcation regions. Notably, a more 

pronounced concentration rise occurs within the range of 

Sr=1.6 to Sr=3.5, indicating a critical threshold that may have 

implications for cardiovascular diseases and the 

understanding of blood flow dynamics.  

 

 
Figure 8. Concentration for different values of Sr 

 

4.1.5 Concentration for Different Values of Heat Sources 

and Decay Parameter 
Figure 8 reveals that, the concentration exhibits a minor 

increase with an increasing value of the heat source. 

However, a more noticeable rise is observed in the 

concentration between y=−1 to y=0.6. Also, in Figure 9, the 

analysis reveals that the Concentration experiences a decrease 

with an increasing decay parameter. The significant decrease 

in concentration occurs as the value of y increases. 

Figure 9. Concentration for different values of S 

 

Figure 10. Concentration for different values of λ 

 

4.1.6 Concentration for Different Values of Prandtl 

Number and Schmidt Number 
The concentration shows no significant change with respect 

to the Prandtl number as observed in Figure 10. However, 

there is a noticeable sudden decrease in concentration as the 

value of y increases. Figure 11 shows the impact of Schmidt 

number is irregular, nevertheless, the concentration exhibits a 

gradual decline from y=−1 to y=−0.8 followed by a sudden 

and significant decrease towards the opposite boundary. This 

irregularity in the Schmidt number’s influence suggests a 

non-uniform pattern in how it affects the concentration 

distribution. The concentration’s nuanced behavior, 

characterized by a subtle reduction followed by a more 

pronounced decrease, highlights the complex interaction 

between the Schmidt number and concentration across the 

specified range. 



Int. J. Sci. Res. in Mathematical and Statistical Sciences                                                                          Vol.11, Issue.6, Dec. 2024   

© 2024, IJSRMSS All Rights Reserved                                                                                                                                          71 

   
Figure 11. Concentration for different values of Pr 

 

   
Figure 12. Concentration for different values of Sc 

 

4.1.7 Concentration for Different Values of Time 
Figure 12, shows that, the rate of concentration change 

exhibits proportionality with time, meaning that equal time 

intervals result in consistent temperature differences. 

Additionally, at t=0, the concentration is higher compared to t 

values greater than zero. This emphasized that initially, the 

blood component concentration is elevated, and over time, the 

body gradually absorbs the concentration, leading to a 

decrease in concentration as time progresses. 

 

   
Figure 13. Concentration for different values of t 

4.1.8 Axial Velocity for Different Values of Soret 

Parameter 
As the Soret parameter increases in Figure 13, there is a 

noteworthy decrease in blood velocity, demonstrating a 

substantial impact, especially within the range of Sr=1.6 to 

Sr=3.5. This observation holds significant implications for 

cardiovascular health, suggesting that variations in the Soret 

parameter exert a considerable influence on blood velocity. 

The wide-ranging effects observed within the specified Sr 

values highlight a critical range where alterations in blood 

flow dynamics may occur, providing valuable insights into 

potential cardiovascular conditions associated with changes in 

the Soret parameter. 

 

 
Figure 14. Velocity profile for different values of Sr 

 

4.1.9 Axial velocity for Different Value of Prandtl and 

Schmidt Number 
Figure 14 depicts the impact of the Prandtl number on the 

axial velocity distribution at λ=0.5, μ=0.5, t=1, h=0.5, Ha=1, 

g=9.81, β=0.5, β'=0.5, Sc=0.78, Sr=0.15. The illustration 

reveals a rise in axial velocity with an increase in the Prandtl 

number. Figure 15 depicts the impact of the Schmidt number 

on the axial velocity distribution at λ=0.5, μ=0.5, Pr=1, S=1, 

τ=0.5, t=1, h=0.5, Ha=1, g=9.81, β=0.5, β'=0.5, S=1, τ=0.5, 

Sr=0.15. The illustration reveals a rise in axial velocity with 

an increase in the Schmidt number.  

 

Figure 15. Velocity profile for different values of Pr  
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Figure 16. Velocity profile for different values of Sc 

 

4.1.10 Axial Velocity for Different Values of Heat Source 

and Decay Parameter 
Figure 16 illustrates the axial velocity distribution for various 

heat source parameter values (0.50, 0.75, 1.25, 1.50, 1.75) at 

λ=0.5, τ=0.5, Pr=1, t=1, h=0.5, Ha=1, g=9.81, β=0.5, β'=0.5, 

Sc=0.78, Sr=0.15. The observation indicates that axial 

velocity escalates as the heat source parameter (S) increases. 

Also, a noteworthy rise in blood velocity has been observed 

in figure 17 as the decay parameter decreases through 

(1.50,1.25,1.00,0.75,0.50) at constant μ=0.5, Pr=1, S=1, 

τ=0.5, t=1, h=0.5, Ha=1, g=9.81, β=0.5, β'=0.5, Sc=0.78, 

Sr=0.15.  

 

Figure 17.  Velocity profile for different values of S 

  

 
Figure 18. Velocity profile for different values of λ  

4.1.11 Axial Velocity for Different Values of Hartmann 

Number and Time 
In Figure 18, the influence of different Hartmann numbers 

(Ha) on axial velocity is evident. Notably, at Ha=1 and Ha=2, 

the velocity exhibits an increase from the left boundary 

towards the middle of the artery, followed by a subsequent 

decline. Conversely, at Ha=4 and Ha=6, the velocity 

experiences a sudden decrease towards y=−6 and then 

proceeds to decline gradually. This distinct trend highlights 

the sensitivity of axial velocity to variations in the Hartmann 

number, offering valuable insights into the complex dynamics 

of fluid flow under the influence of magnetic fields. The axial 

velocity pattern depicted in Figure 19 displays a consistent 

behavior over equal time intervals, indicating a steady and 

predictable evolution of the fluid flow. As time progresses, 

the temperature consistently changes by a constant amount 

during successive intervals, highlighting a proportional 

relationship between time and temperature variations. 

Notably, the most pronounced velocity is observed at the 

midpoint of the artery, suggesting a region of heightened fluid 

motion at this specific location over the course of time. This 

observation provides valuable insights into the dynamic and 

spatial aspects of fluid flow within the artery, contributing to 

our understanding of the overall flow patterns.   

 

 
Figure 19.  Velocity profile for different values of Ha  

 

 
Figure 20. Velocity profile for different values of t  
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4.1.12 Normal Velocity for Different Values of Decay 

Parameter 
Figure 20 shows how the decay parameter affects the 

distribution of normal velocity. It is demonstrated that when 

the decay parameter increases, the normal velocity falls. At 

low decay parameter values (0.50), the normal velocity falls 

slowly but at high decay parameter values (1.50), it decreases 

rapidly and leads to zero.  

 

Figure 21. Normal velocity profile for different values of λ 

 

5. Conclusion and Future Scope  
 

This research investigates the unsteady blood flow through a 

bifurcated artery, incorporating the significant influence of 

the Soret effect and crucial factors such as heat source, 

magnetic field, Prandtl number and Schmidt number. The 

Soret effect, represented by the parameter Sr, emerges as a 

key player in altering concentration patterns and, 

consequently, blood velocity. As Sr decreases, a notable 

increase in blood velocity is observed, with a wide-ranging 

impact within specific Sr values. This emphasizes the 

importance of considering the Soret effect in understanding 

and predicting variations in blood flow dynamics, 

cardiovascular diseases and diseases that have abnormal 

blood circulation such as peripheral vascular disease and 

hypertension. The research, conveyed through graphical 

representations, contributes valuable insights into the 

complex interplay of parameters and their effects on blood 

behavior, particularly shedding light on the pivotal role of the 

Soret effect in influencing blood flow characteristics. 
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