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Abstract— In this study, we examined the fractional order flow of Casson tri-nanofluid through an inclined artery, integrating 

gold (Au), copper (Cu), and alumina (Al2O3) nanoparticles into blood to form the tri-nanofluid. The flow was modelled as 

highly pulsatile. The mathematical formulation used differential forms of the conservation laws of mass, momentum, and 

energy, with the electric potential along the arterial wall accurately described by the Poisson-Boltzmann equation. The classical 

problem was converted into its fractional equivalents using the Caputo time-fractional derivative. Exact solutions for these 

transformed equations were derived using a combination of Laplace and finite Hankel transforms, with results computed and 

graphically presented using Mathcad software. The purpose of incorporating the tri-nanofluid was to enhance heat transfer by 

improving the fluid's thermal conductance. The findings revealed that the velocity profiles of the blood flow decreased with an 

increasing radiation parameter, while the opposite effect was observed with increasing porosity parameter. The temperature 

profile arose with higher fractional parameter values. This study holds potential for applications in targeted drug delivery using 

magnetic nanoparticles..  
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1. Introduction  
 

Fluids with low molecular weights, like water, and air, are 

classified as Newtonian fluids, characterized by a linear 

stress-strain rate relationship described by the Navier-Stokes 

equation. However, many fluids, such as polymer solutions, 

multi-grade engine oils, toothpaste, liquid soaps blood, and 

peanut butter, do not adhere to this classification and are 

termed as non-Newtonian fluids due to their combination of 

viscous and elastic properties, exhibiting a nonlinear stress-

strain rate relationship. The theoretical examination of non-

Newtonian fluid flow remains significant in literature owing 

to their increasing relevance in modern technology and 

industries. Non-Newtonian fluid flows are prevalent in 

various applications, including industrial processes involving 

synthetic fibres, plastic extrusion, and polymer solution 

flows. Non-Newtonian fluids involved in heat transfer 

processes play crucial roles in polymer processing, thrust 

bearing and radial diffuser design, oil thermal recovery, 

transpiration cooling, drag reduction, drug delivery, to 

mention a few among others.  

 

Due to the complex physical structure of non-Newtonian 

fluids, no single constitutive equation exists in the literature 

that can encompass all their flow properties. Consequently, 

numerous constitutive equations or models have been 

proposed, with significant attention given to Newtonian and 

non-Newtonian fluids. Pertinent contributions on these types 

of fluids have been made, by [1,2,3,4,5].  

 

Blood, as  non-Newtonian fluid, is crucial for life, mainly 

because it transports nutrients and oxygen throughout the 

body. It also plays a key role in removing metabolic waste 

products and carrying chemical signals to the kidneys for 

elimination. In the human circulatory system, the heart's 

rhythmic pumping creates a pulsatile pressure gradient that 

drives blood flow through the vessels. This pressure pulse, 

often measured at the wrist by physicians, reflects the heart's 

activity. 

 

Importantly, blood also acts as a carrier of drugs to artery cell 

membranes, initiating chemical reactions between arterial cell 

and circulating fluids. Optimizing the compatibility of these 

biological reactions can significantly contribute to the 

development of therapeutic interventions. Despite the pivotal 

roles fulfilled by blood in the human circulatory system, there 

remains a substantial loss of human life attributed to various 

forms of cardiovascular diseases such as cancer, arigina, 

stroke e.t.c. [6]. It is evident that the study of blood flow in 

the presence of an applied magnetics and electric field has 
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garnered significant attention from researchers because of its 

various applications in medical and physiological fields, as 

demonstrated by the works of [7,8,9,10]. Building on this 

established tradition, the current research seeks to explore a 

novel path by conducting an analysis of ternary nanofluid 

flow through an inclined artery using Caputo fractional 

derivative. The study aims to investigate the behavior of 

ternary hybrid nanofluids as they flow through an inclined 

artery under the influence of external magnetic fields and 

thermal radiation. This choice is motivated by the inherent 

characteristics of blood as a magnetic fluid, a concept 

previously acknowledged by [11,12,13,14,15,16]. 

Recognizing blood's magnetic properties, this research seeks 

to further our understanding of its behavior within the context 

of ternary nanofluid flow, taking into consideration of Casson 

fluid, thermal radiation, heat metabolism absorption and the 

permeability of the inclined artery. 

 

2. Related Work  
 

Biomagnetic fluid dynamics (BFD) is a burgeoning field 

within fluid mechanics dedicated to exploring the movement 

of bio-fluids (like blood) in the presence of magnetic fields. 

This area of research holds significant importance in 

medicine, particularly in applications such as drug delivery 

utilizing magnetic particles and in the treatment of conditions 

like excessive bleeding and malignant tumors [17,18]. In a 

recent study by [19], the non-Newtonian Casson fluid model 

was employed to analyze the one-way flow of blood through 

vessels with porous mediums. Because blood conducts 

electricity, researchers in [20,21] considered it to behave as a 

non-Newtonian fluid with characteristics of 

magnetohydrodynamics (MHD). Lately, [22] investigated 

both the flow of blood through vessels containing porous 

mediums and the motion of nanoparticles subjected to 

periodic vibration. The study incorporated aspects such as the 

non-Newtonian biviscosity fluid model, the Soret and Dufour 

effects, thermal radiation, and the linear variation of chemical 

reaction to depict thermo-solute transport using Caputo 

fractional order derivatives. Analytical solutions were derived 

utilizing methods including the Laplace transform, finite 

Hankel transform, and their respective inverses. 

 

3. Methodology 
 

We consider a model of axially symmetric, unsteady, 

incompressible blood flow developed for an inclined stenosed 

artery. In this model, three types of nanoparticles Cu, Au, and 

Al2O3are suspended in the blood (base fluid) to create a new 

composite, Cu, Au, Al2O3 Blood (tri-nanofluid), as depicted 

in figure 1. 

 
Fig. 1 Geometry of the physical problem 

 

Newton's second law of motion demonstrates how Maxwell's 

equations and the movement of magnetic particles determine 

the strength of the magnetic field. 
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The equation for the body acceleration in a vibrational 

environment is given by; 
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The model makes the following assumptions about the 

boundaries: 
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From Equation (1) and (2), we define the pressure gradient 

and heat radiation respectively as follows:
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When an electric field is applied axially to a nanofluid, an 

electrical double layer (EDL) forms at the vessel walls, 
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generating a net electrical body force (
ze E ). The Poisson 

equation describes the connection between electric potential 

~  and net charge density,
e  
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Where   represents dielectric constant. 

Equation (7) is known as the Boltzmann equation with the 

boundary conditions and the net charge density given as;  
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 Here e is the dielectric constant, 
nkenz g ,,, ,000 and 

n are the ion valence, concentration of ions, the electronic 

charge, the Boltzmann constant the local absolute temperature 

of the fluid, the density number of cations and anions, 

respectively. 

Using Debye–H u ckelparameter 
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And the linearized Boltzmann equation (7), we get the 

electric field potential equation as: 
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The solution of equation (10) subject to the boundary 

conditions in (8) is given by: 
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The dimensionless parameters that are under consideration in 

the context of dimensionless initial and boundary conditions 

are: 
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Utilizing the non-dimensional variable of Eq. (13) in Eqs. (1)-

(2) after dropping the bars, assume 

the following forms: 

)14(

sin

)()cos(

11
1

4

5

22

603

2

2

43























































u
K

B
GrB

rKeuMBktAB

r

u

rr

u
B

z

p

t

u
B

B








  )15(
1

002

2

21 
































QPeR

rrr
B

t
PeB

 

Where: 

Pr.Re,
4

,

,Re,
)()(

,Pr,,

2

0

2

1

2

0

00

0

2

0

2

010

2

02












Pe
k

R
R

R

k
K

v

uR

u

RTTg
Gr

k

CRRB
M

p

f

fTf

f

pf

f

f

f

f


















 

Are defined as Hartman Number, Pulsatile Reynolds number, 

Prandtl number, Grashof number, Reynolds number, Darcy 

number, thermal radiation parameter and Peclet number 

respectively. 

The boundary conditions in the non-dimensional form are: 
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The governing momentum and temperature equations are 

described in the time fractional model (12) as; 
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Applying the combined Laplace transform and the zero-order 

Hankel Transform together with the conditions in (16), we 

obtain the following for equation (17)-(18): 



Int. J. Sci. Res. in Mathematical and Statistical Sciences                                                                          Vol.11, Issue.3, Jun. 2024   

© 2024, IJSRMSS All Rights Reserved                                                                                                                                          60 

)19(
)(1)(

),( 1

11

02

n

n

n

m

nH
r

rJ

AssB

QB
sr 

















  

)20(

)(
)(

)(

))((

sin)(

)(

)(

1

sincos

),(

1

3

22

2

1

213

105

1

23

2203

22

10






































































































n

n

n

n

n

nn

m

n

n

n
nH

rJ
Bkrs

Ker

r

rJ

AsAsB

QGrB

r

rJ

AsB

sk

ks
AB

s

sa

s

a

sru















  

Now by applying the invers Henkel transform to equations 

(19)- (20), we have: 

)21()(
1)(

),(
11

02 r
AssB

QB
sr

n

m 
















  

)22(

)(
1

)(

))((

sin)(

)(
)(

1

sincos

),(

3

213

105

23

2203

22

10



































































































r
sB

r

AsAsB

QGrB

r
AsB

sk

ks
AB

s

sa

s

a

sru

nn

m

n















  

where 

 
 
 

 
 
 
















1 1

0

22

1 1

0

,
2

,
2

n nn

n

n

n

n nn

n

rJr

rrJ

kr

kr
r

rJr

rrJ
r

 

 

The inverse Laplace form of equations (21) -(22) was taken 

with the aid of Gerby-Stefan’s Algorithm and the results were 

simulated graphically with the aid of MATCARD software as 

shown in the next section. 

 

5. Results and Discussion 
 

In this section, we present and analyze the numerical results 

and graphical simulations depicting the behavior of ternary 

nanofluid flow through an inclined artery under the influence 

of electric and magnetic fields. 

4o 

 
Figure 2: Blood velocity for various values of Casson fluid parameter 

 

 
Figure 3: Blood velocity for various values of Peclet number 

 

 
Figure 4: Blood velocity for various values of Fractional parameter 
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Figure 5: Blood velocity for various values of Porosity parameter 

 

 
Figure 6: Blood velocity for various values angle of inclined artery 

 

 
Figure 7: Temperature profile values Fractional parameter 

 

 
Figure 8: Temperature profile for various values of heat metabolism 

absorption parameter 

 

 
Figure 9: Temperature profile for various values Prandtl number 

 

Figure 2 explored how changes in the Casson fluid parameter 

impacted the blood velocity within the inclined artery. The 

Casson model, commonly used to describe the non-

Newtonian behavior of fluids with yield stress, influenced the 

flow properties of such fluids. The plot in Figure 2 illustrated 

how the blood velocity varied across the inclined artery for 

different Casson fluid parameter values. Variations in the 

Casson fluid parameter affected the yield stress behavior of 

the ternary nanofluid, resulting in changes in flow patterns 

and velocity profiles.Figure 3 investigated how changes in the 

Peclet number influenced the blood velocity within the 

inclined artery. The Peclet number related the relative 

importance of convective transport to diffusive transport in 

the fluid flow, reflecting the balance between advection and 

diffusion processes. The plot in Figure 3 showed how the 

blood velocity varied across the inclined artery for different 

Peclet number values. Variations in the Peclet number 

impacted the dominance of convective or diffusive transport 

mechanisms, affecting the overall flow behavior and velocity 

profiles.Figure 4 explored how changes in the fractional 

parameter impacted the blood velocity within the inclined 
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artery. The fractional parameter was associated with 

fractional calculus, introducing memory and non-local effects 

into the mathematical modeling of fluid dynamics. The plot in 

Figure 4 illustrated how the blood velocity varied across the 

inclined artery for different fractional parameter values. 

Variations in the fractional parameter led to changes in the 

velocity profiles, reflecting the non-integer order dynamics of 

the ternary nanofluid flow. Figure 5 investigated how changes 

in the porosity parameter affected the blood velocity within 

the inclined artery. The porosity parameter represented the 

fraction of void space in the porous medium, influencing the 

flow behavior and resistance to fluid motion. The plot in 

Figure 5 illustrated how the blood velocity varied across the 

inclined artery for different porosity parameter values. 

Alterations in porosity resulted in variations in flow 

velocities, indicating how the presence of void spaces 

impacted the fluid flow dynamics.The plot in Figure 6 

showed how the blood velocity varied across the inclined 

artery for different angles of inclination. Higher or lower 

inclination angles could lead to variations in flow velocity 

profiles, affecting the fluid dynamics and transport properties 

within the artery. The temperature profile depicted in Figure 7 

demonstrated how changes in the fractional parameter 

influenced the distribution of temperature along the flow 

domain of the inclined artery. Different fractional parameter 

values could lead to distinct temperature profiles, reflecting 

the complex nature of the fluid flow behavior. Figure 8 

explored how different values of this parameter influenced 

the temperature distribution within the ternary nanofluid as it 

flowed through the inclined artery. The temperature profile 

showcased how the temperature varied across the flow 

domain of the inclined artery for varying heat metabolism 

absorption parameters. Changes in this parameter could lead 

to alterations in the heat absorption or release rates, affecting 

the overall thermal behavior of the fluid. In Figure 9, different 

values of the Prandtl number were considered, indicating 

variations in the relative rates of momentum and heat transfer 

within the ternary nanofluid. The temperature profile depicted 

in Figure 9 showcased how the temperature varied across the 

flow domain of the inclined artery for different Prandtl 

numbers. Higher Prandtl numbers typically indicated a higher 

thermal diffusivity relative to momentum diffusivity, leading 

to different temperature distributions within the fluid. 

 

6. Conclusion and Future Scope  
 

The analysis of blood flow in the context of ternary nanofluid 

dynamics within an inclined artery presents valuable insights 

into the complex interplay of fluid properties, rheological 

behavior, and transport phenomena. The findings across all 

figures provide a detailed examination of how variations in 

the Casson fluid parameter, Peclet number, and fractional 

parameter influence blood velocity and temperature profile 

within the artery, shedding light on the intricate dynamics of 

non-Newtonian fluid flow in biomedical applications. The 

findings underscore the significance of considering factors 

such as yield stress effects, convective-diffusive transport 

mechanisms, and fractional calculus in Modeling and 

understanding the behavior of ternary nanofluids in complex 

geometries. The research contributes to advancing knowledge 

in fluid dynamics, particularly in the context of biomedical 

applications were precise control over blood flow dynamics is 

crucial for therapeutic interventions. 

 

Therefore, further exploration into the influence of magnetic 

and electric fields on ternary nanofluid flow dynamics in 

inclined arteries can expand the scope of research in bio 

magnetic fluid dynamics. Investigating the impact of external 

fields on blood velocity and transport properties can lead to 

advancements in targeted drug delivery and medical 

treatments. By addressing these recommendations and 

delving deeper into the complexities of ternary nanofluid flow 

in biomedical settings, researchers can further advance the 

understanding of fluid dynamics in physiological systems and 

pave the way for innovative applications in medical 

technology and treatment methodologies. 
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