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Abstract - Safeguarding of facilities has been at a major focus in graph theoretical research which has led to a surge of various 

parameters of locating dominating sets in graphs. However, in all those parameters, a single intruder is assumed to be present 

in a network. In this paper, we introduce Multiple Intruder Locating Dominating (MILD) sets where one is interested in finding 

the presence as well as the locations of intruders at multiple (possibly all) locations in a network. The number of vertices in the 

smallest MILD set of a graph G is called its MILD number, denoted by MILD(G). For a simple connected graph of order n, the 

MILD number lies between n/2 and n-1, both inclusive. The graphs which attain these bounds are characterized.   
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I.  INTRODUCTION  

The problem of finding a smallest subset S of vertices, 

called a dominating set of a graph G = (V, E) where every 

vertex not in S is dominated by (or adjacent to) at least one 

vertex in S of G, has vast applications ranging from social 

networks to mobile networks to resource management. 

Hence there has been an explosion of interest in the topic 

leading to the emergence of research papers on many 

variations of the problem and books documenting them 

[1],[2],[4],[5],[12]. The problem of safeguarding a facility 

with optimal number of detectors leads to one such variation 

of domination called location - domination and has been 

studied in many papers [6],[7],[8],[10],[11]. In all those 

works, the presence of a single intruder in a network is 

considered. Suppose there are multiple intruders in a network, 

possibly at all locations, then we are interested in knowing 

precisely each of the locations where intruders are present. 

To achieve this, suppose a network is represented using a 

graph G = (V, E). We place a detector each at a set       of 

vertex locations. A vertex location with detector is called a 

codeword. Each detector at a vertex   can transmit four 

signals: 

   if no intruder is in  , -   ( )   . 

   if an intruder is in  ( )  (   ) and no intruder 

is at  . 

   if an intruder is at   and no intruder is in  ( )  

(   ). 

   if the intruders are at both   and  ( )  (   ). 

where  ( )  *        +  is called the open 

neighborhood of  . 

Suppose             such that   ( )  (   )  
* +  then based on the signals sent by the detectors, intruders 

at any number of locations in a network can be located 

precisely. For example, consider the network in Figure 1. 

Here,   *       +. Suppose intruders are at the locations 

      and  , then the signals received from the detectors will 

be (3, 3, 0, 1). By this, we can see that the intruders can be 

located unambiguously. Hence, a subset       with the 

above said property is called a Multiple Intruder Locating 

Dominating set of G, or in short, a MILD set of G. The 

minimum cardinality of a MILD set in G is called the 

Multiple Intruder Locating Domination number of G, 

denoted by MILD(G) or    ( ). 
 

 
 

 

Figure 1. An example of a MILD set in a graph 

 

Whenever for a vertex   in    ,       such that  ( )  
(   )   , we say   is the devout dominator of   and   is 

the secure non - codeword of  . A devout dominator together 

with its secure non - codeword is called a code pair. 

http://www.isroset.org/
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The definitions of devout dominator and secure neighbor 

resemble with the ones of „sole dominator‟ and „private 

neighbor‟ defined by Peter J Slater [11]. The vertex   is 

called a sole dominator of   and   is called a private 

neighbor of   whenever   , -     . The following 

examples illustrate the differences. 

(A)   (B)  

Figure 2. Sole dominator vs. Devout dominator 

 

In the Figure 2(A),   is the sole dominator of   but not a 

devout dominator and   is a private neighbor but not the 

secure neighbor of  . In the Figure 2(B),   is the devout 

dominator of   and   is not,   is the secure neighbor of   and 

not of  . Also observe that   is not a sole dominator of  .  

Throughout this paper, the graphs considered are simple, 

connected and of order  . The notations are used as per 

Teresa W. Haynes et. al. [4],[5] and D. B. West [13]. 

The organization of this paper is as follows. In Section 2, we 

device a method called chaining scheme to find the MILD 

number of a graph. In Section 3, we establish the bounds on 

MILD number of a graph, as well as, characterize the graphs 

which attain those bounds. The concluding remarks are given 

in the Section 4. 

II. CHAINING SCHEME 

To form a MILD set of the least cardinality for a graph G, 

one must form as many code - pairs as possible in it. It can 

be seen that this depends upon the number of Matchings 

possible in G, since it is a set M of independent edges which 

happen to establish a pairing of the vertices incident to each 

edge in M (refer [3]). Such a pair of adjacent vertices 

together with the edge connecting them is called link (Figure 

3). No two links share a vertex. Two links are adjacent if at 

least two vertices, one from each link, are adjacent. 

       Figure 3. A Link 

A vertex which could not be a part of any link is called a 

lonely vertex. Since a matching need not be unique for a 

graph, links can be formed in different ways without altering 

their overall number in the graph (Figure 4). If the matching 

is perfect, then every vertex of the graph is a part of some 

link. 

    Figure 4. Different formations of links 

A chain is a series of adjacent links where all the constituent 

vertices together induce a path or a cycle. The smallest chain 

is a single link itself. Two chains are adjacent if at least two 

vertices, one from each chain, are adjacent. Grouping the 

links of a graph so as to form chains is called chaining. 

Consider a vertex of a chain and label it with one of the 

numbers „1‟ or „2‟. Without loss of generality, suppose the 

vertex is labelled „1‟, then the other vertex in the link must 

be labelled „2‟. Now in the chain, the vertex of an adjacent 

link that is adjacent to „1‟ will be labelled „1‟ and the one 

adjacent to „2‟ will be labelled „2‟, as shown in the Figure 5. 

This process is carried out until all the vertices in the chain 

are labelled. By doing the same to all chains in a graph, we 

get a numbering of vertices which helps in building a MILD 

set for a graph. Hence this procedure is called MILD-

numbering. Formation of links through matching, then 

chaining and MILD-numbering altogether form a chaining 

Scheme.  

 

           Figure 5. Two ways of MILD-numbering a chain 

Once a chaining scheme is applied to a graph G, let us shade 

all the lonely vertices (if any) and all the vertices numbered 2 

(or 1) with a color, say black. Suppose we consider the 

shaded vertices as codewords, we can proceed to check if 

they form a MILD set. Since this shading of vertices helps in 

forming a MILD set of G, it is called a MILD-shading. 

Now, by applying the MILD-shading technique, we discuss 

the MILD number of paths    and then, extend it to cycles 

  . 

Proposition 1. Consider a path   . Perform the chaining 

scheme, and then, by applying a MILD-shading it can be 

easily seen that    (  )  ⌈   ⌉ 
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Proposition 2.    (  )     (  )    where 

   {
                 

                               
 

Proof. We consider the following cases that can arise. 

(i) When MILD shading is applied to           and 

     , joining of the two end vertices will not 

affect the MILD set. 

(ii) When MILD shading is applied to      , one end 

vertex, say u, will be a devout dominator. Thus, 

joining u with the other end vertex say v, which 

will be a non-codeword, affects its devout 

domination. Thus, either v, or the secure non-

codeword adjacent to u must also become a 

codeword. 

 This proves the result.       

III. BOUNDS ON MILD NUMBER OF A GRAPH 

Proposition 3. For a graph G with      

       ( )     . 

Proof. Every codeword can devout dominate only one non-

codeword. Hence the least number of codewords in a graph 

will be in a case where every codeword devout dominates a 

non-codeword. Thus, the lower bound follows, and is 

attained by paths    , cycles     (    ), etc. 

 Consider two vertices v and u in G. Suppose u must 

devout dominate v. If all other vertices (if any) in G are 

adjacent to u, then all those vertices must be codewords. In 

such a scenario, the upper bound follows and is attained by 

star graphs, complete graphs, etc. 

 

A. The Upper Bound. 

Lemma 4. If a graph G has   or    as induced subgraph 

then    ( )     . 

Proof. If a given graph G has    or    as induced subgraph, 

then by applying chaining scheme and MILD shading for 

that portion of the graph, we have two secure non-

codewords. By making all other vertices (if any) adjacent to 

the devout dominators into codewords, the result follows.

  

Corollary 5. If a graph G has    or    as induced subgraph 

then    ( )       (  )         ( )       (  ) 
respectively. 

Proposition 6. ([12]) If a graph G does not have    or    as 

induced subgraph then G has a vertex adjacent to all other 

vertices. 

Theorem 7. For a graph G, if    ( )      then  ( )  
   . 

Proof. Suppose  ( )      for the given graph G. By 

contrapositive of Proposition 3.4, G contains    or   as 

induced subgraph. Then by Lemma 3.2,    ( )     . 

This proves the result.  However, the converse is not 

true. The next result proceeds on that matter. 

Proposition 8. For a graph  (   ) with      , if  ( )  

    then 
 

 
      ( )      

Proof. The upper bound is the general one established in 

Proposition 3.1. With  ( )     , G can have the 

maximum number of secure non-codewords when the 

vertex/vertices of degree     are non devout dominating 

codewords, so that, when the remaining vertices (not of 

degree      ) induce     or     (     ), the lower bound 

would follow.  

Theorem 9. For a graph G with        ( )      if 

and only if G contains        or butterfly-graph as induced 

subgraph. 

Proof. Suppose    ( )     , then there are more than 

one code pairs in G. Consider two code pairs with vertices, 

say, p1-q1 and p2-q2 and let them form links L1 and L2 

respectively. Then the two links are either adjacent or non-

adjacent. 

They are adjacent (i.e, the distance between them is one) if 

and only if their vertices together induce    or   . 

If they are not adjacent, then the distance between them must 

be two or more. Suppose the links are at a distance two from 

each other, then there will be a vertex, say x, connecting the 

links. If only one vertex from each link is adjacent to x, then 

   is formed which contains    in itself. If two vertices of a 

link, say L1, and one vertex, say p2, of the other link L2 are 

adjacent to x, then q2, p2, x and p1 induce   . If both the 

vertices from each link are adjacent to x then butterfly graph 

is induced. 

Suppose they are at a distance three, then there are two 

vertices, say x and y, on the path connecting the links. 

Without loss of generality, suppose p1 from L1 is adjacent to 

x and p2 from L2 is adjacent to y. Then p1xyp2 induce   . 

Similar argument follows if there are three vertices on the 

path connecting the links (and if four are there, then they 

induce    themselves!). 

Conversely, suppose   or    is induced, then by Lemma 3.2, 

there are at least two code pairs in G. In case of a butterfly 

graph being induced, the vertices of degree less than three 

can form code pairs. 
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The result follows.  

By contrapositive of Theorem 3.7, the following result, 

which characterizes the graphs attaining the upper bound, 

immediately follows. 

Corollary 10. For a graph G,    ( )      if and only if 

G contains none of        or butterfly-graph as induced 

subgraph. 

Consider a graph G with δ(G) = 1. The vertex adjacent to a 

pendant vertex in G is called a support vertex. 

Proposition 11. In a graph G, suppose there are q support 

vertices, then    ( )     . 

The result follows from a simple fact that every pendant 

vertex can devout dominate (or be devout dominated by) its 

support vertex. 

Theorem 12. For an       regular graph G with   
     ( )     . 

Proof. Given G is n−2 regular which implies every vertex is 

not adjacent to one vertex in G. Consider a vertex x not 

adjacent to a vertex y. Another vertex, say z, will be adjacent 

to x and y but not adjacent to a vertex p. But again, p must be 

adjacent to x and y. Thus, xzyp is a cycle   . By Lemma 3.2, 

   ( )     . 

Conversely, in the given regular graph G, if a vertex x devout 

dominates a vertex y, then all the other       vertices in 

N(x) must also become codewords. Thus, with x counted, 

there are       codewords and we have    ( )     . 

Hence the proof.  

Corollary 13. Let G be an     regular graph with    
    , then    ( )     . 

Theorem 14. For an     regular graph G with at least 

five vertices,        ( )     , and the bounds are 

sharp. 

Proof. Given G is regular and hence, every vertex is not 

adjacent to exactly two vertices. Consider a vertex x, and, let 

y be one of the two vertices that x is not adjacent to. Out of 

the n − 3 vertices that y is adjacent to, maximum one of them 

can be not adjacent to x. Consider a vertex z adjacent to both 

x and y but not adjacent to a vertex q. Now, q is not adjacent 

to two vertices one of them being z. Hence q should be 

adjacent to either x or y (or both). If q happens to be adjacent 

to x as well as y, then the vertices x, y, z and q together 

induce the subgraph    else, they induce   . The upper bound 

follows from Lemma 3.2. 

From Corollary 3.11, the lower bound follows. The sharpness 

of both the bounds is established by the graphs in the Figure 

6. 

 

     Figure 6. n − 3 regular graphs with MILD 

numbers n − 2 and n − 3. 

B. The Lower Bound 

We now characterize the graphs which attain the lower 

bound. 

    

Definition. Consider a graph G, perform chaining scheme 

on it. Without loss of generality, whenever any vertex labeled 

1 of a chain c1 is adjacent with only, say, the vertex/ vertices 

numbered 2 in another chain c2, we intend to give a same 

color to the 1 vertices of c1 and the 2 vertices of c2 (black or 

white/shaded or unshaded). We represent this by writing as 

follows: 

  1(c1) = 2(c2) 

 

Theorem 15. For any graph G,    ( )      if and only if 

the graph has a chaining scheme such that: 

(1) the links form a perfect matching. 

(2) the chaining produces r chains none of them inducing 

       

(3) for any two adjacent chains ci and cj (1 ≤ i ≤ r , 1 ≤ j 

≤ r, i ≠ j) only one of the following is true: 

          (i) 1(ci)= 2(cj) and 1(cj) = 2(ci).  

          (ii) 1(ci) = 1(cj) and 2(cj) = 2(ci). 

(4)  for any three adjacent chains ci, cj and ck (i ≠ j ≠ k, 

1 ≤ k ≤ r), „ = ‟ is transitive. 

 

Proof. Necessity: Given that the links form a perfect 

matching, also the chaining and MILD-numbering are done. 

So every vertex is part of a link which contains two vertices 

of different numbers viz. 1 and 2. Since none of the chains 

induce      (   ) , the adjacent vertices of any two 

adjacent links in any chain have a same number. 

Consider a chain ci, let its vertices labeled 1 be colored black 

and the ones labeled 2 be colored white. 
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In (3) if (i) is true, then all vertices labeled 2 in cj must be 

colored black and those labeled 1 must be colored white. Else, 

the 1 vertices of cj must be colored black and the 2 vertices 

must be colored white. Thus, two adjacent vertices of any two 

adjacent chains ci and cj will have same color. 

Consider another chain ck adjacent to both ci and cj satisfying 

(3) with both ci and cj. Then the issue that may arise is 

(without loss of generality): suppose 1(ci) = 2(cj), 2(cj) = 

2(ck) and 1(ci) = 1(ck), then there is a conflict where both 1 

vertex and 2 vertex of ck will have to be assigned same color. 

Since „=‟ is transitive, such a situation is averted. Thus, a 

vertex u of a chain, say ci, and the vertices of other two 

chains that u is adjacent-to can be assigned a same color. 

Due to transitivity, a similar argument can be made for the 

cases with more than three adjacent chains. Thus, an arbitrary 

vertex u of an arbitrary chain ci is adjacent to only one vertex 

(in its link) of different color than itself and all other vertices 

(be it in the chain ci or any number of other chains adjacent to 

ci) adjacent to u will be of same color as u. 

By the discussion until here, it can be seen that when the 

vertices of all the chains are colored, we end up with a black 

vertex and a white vertex in each of the     links such that 

each vertex will be adjacent to only one vertex of the opposite 

color. What that means is by considering black vertices as 

codewords and the white ones as non-codewords, every 

codeword devout dominates a non-codeword. The result 

follows. 

Further it can be observed that in the beginning, for the chain 

that we considered, if the 1 vertices are colored white and the 

2 vertices are colored black, then we get a completely 

different set of codewords (which are same in the number 

anyway). 

Sufficiency: Suppose    ( )     . That means there are as 

many codewords as non-codewords, or in other words, every 

codeword devout dominates a non-codeword (i.e, every 

codeword is adjacent to only one non-codeword). Let every 

codeword and its secure non-codeword be grouped together to 

form a link. Since every vertex is thus part of one or the other 

link, there is a perfect matching. 

Let the codewords be numbered 1 and the non-codewords 2. 

Let every link be considered as a chain. Then each vertex will 

be adjacent to a vertex of same number outside its link and 

thus, outside its chain, (2) and (3)(ii) are satisfied and, the 

transitivity follows too. Hence the sufficiency.  
 

IV. CONCLUSION AND FUTURE SCOPE    

Multiple Intruder Locating Dominating (MILD) set in graphs 

is introduced, by which, multiple intruders in a network can 

be located. The bounds for MILD number of a graph are 

established and with the help of a method called chaining 

scheme, the graphs which attain those bounds are 

characterized. In future, we intend to develop algorithms to 

find MILD numbers of different classes of graphs. 
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