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Abstract—This study presents a comprehensive numerical analysis of electro-magneto-hydrodynamic (EMHD) blood flow 

through arterial segments with a focus on potential implications for cardiovascular therapeutics. The investigation encompasses 

the impact of various parameters, including electrokinetic width, particle concentration, chemical reaction, and heat source, on 

blood velocity, nanoparticle velocity, and concentration profiles. The findings reveal the potential for enhanced targeting and 

delivery of therapeutic nanoparticles through the manipulation of magnetic fields, indicating promising prospects for targeted 

drug delivery in cardiovascular disease treatments. Additionally, the complex interplay between chemical reactions and blood 

flow dynamics underscores the need for a refined understanding of these interactions for potential therapeutic interventions. The 

study also highlights the significance of considering heat transfer dynamics in EMHD blood flow, offering insights into potential 

implications for cardiovascular health and disease management. Overall, the numerical analysis provides valuable insights into 

the rheological behaviour of blood and its potential applications in cardiovascular therapeutics, emphasizing the need for further 

research in this critical area of study. 
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1. Introduction 
 

In recent decades, the study of bio-fluid dynamics, 

particularly the rheological behavior of blood, has garnered 

significant attention from researchers. The recognition of 

blood as a non-Newtonian fluid, characterized by complex 

dynamic processes influencing shear-thinning, viscoelasticity, 

and thixotropy, has profound implications for understanding 

its crucial role in maintaining life. Blood flow is essential for 

transporting oxygen, nutrients, and removing metabolic waste 

from cells, making it a critical factor in overall physiological 

health [1,2,3,4,5,6,7]. Cardiovascular ailments like 

Atherosclerosis, Aneurysms, and Stenosis contribute 

significantly to both fatalities and health issues worldwide. A 

comprehensive comprehension of blood circulation via 

simulation is indispensable for making well-informed choices 

in managing such cardiovascular disorders. Blood is a 

mixture of blood cells within plasma, where plasma accounts 

for 55% of the blood's liquid portion, mainly consisting of 

water (making up 92% by volume). 

 

The plasma also contains dissipated proteins, glucose, 

mineral ions, hormones, and various blood cells, including 

red blood cells, white blood cells, and platelets. Red blood 

cells, in particular, contribute to the creation of a magnetic 

field on the walls of arteries due to their negative charge 

carriers, further emphasizing the complexity of blood flow 

dynamics [6,7,8,9]. To accurately model and simulate the 

rheological response of blood under different physiological 

conditions, researchers emphasize the need for an accurate 

constitutive mathematical model. This model is crucial for 

meaningful hemodynamic simulations that can aid in the 

understanding and treatment of cardiovascular diseases [10]. 

 

Despite the considerable amount of research conducted on 

blood as a non-Newtonian fluid and the crucial need for 

precise modelling in hemodynamic simulations, there remains 

a gap in understanding how fractional calculus can be 

appropriately utilized to capture the intricate dynamics of 

blood flow. Fractional calculus has garnered attention across 

a spectrum of scientific, engineering, biological, and medical 

contexts. [11,12]. However, its specific application to 

describe the rheological behavior of non-Newtonian fluids, 

especially blood, remains an area that requires further 

exploration. The existing literature highlights the Jeffrey 

model as a noteworthy framework among non-Newtonian 

fluids, incorporating convective derivatives to address 
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phenomena like relaxation and retardation time 

[13,14,15,16,17,18,19,20]. Nevertheless, there has been an 

insufficient examination of how fractional calculus, 

particularly in combination with the Jeffrey model, can be 

utilized. This study seeks to address this deficiency by 

examining how fractional calculus, specifically fractional 

derivatives, can improve the precision of the Jeffrey model in 

simulating blood flow. The research endeavours to advance 

our comprehension of blood's rheological properties, offering 

valuable perspectives that can enhance decision-making in 

cardiovascular disease management. 

 

2. Related Work 
 

The study by [21] has laid a foundation for investigating the 

dynamics of blood flow through arterial segments. Their 

work primarily focused on the interactions between heat 

transfer, thermal radiation, and chemical reactions, providing 

valuable insights into the physiological processes involved. 

However, as identified by the current research, there is a 

recognized need for a refined mathematical model that 

incorporates fractional derivatives to achieve a more 

comprehensive understanding. Several studies have delved 

into aspects of blood flow modelling, each contributing 

unique perspectives to the complex interplay of factors 

influencing arterial dynamics.[22] explored the role of heat 

transfer in arterial blood flow, shedding light on the thermal 

aspects of this intricate system. Furthermore, the work of [23] 

addressed the impact of chemical reactions on blood 

composition, emphasizing the biochemical dimension of 

arterial flow. 

 

However, to date, there remains a gap in the literature 

regarding a unified model that seamlessly integrates heat 

transfer, thermal radiation, and chemical reactions, 

considering the fractional derivatives associated with arterial 

behavior. The proposed research aims to bridge this gap by 

refining and extending the groundwork laid by [21]. In doing 

so, it aims to contribute to a more detailed and comprehensive 

comprehension of the integrated factors impacting blood flow 

within arterial segments. While existing studies have made 

valuable contributions to the understanding of various aspects 

of blood flow dynamics, the current research strives to 

advance this knowledge by proposing a modified 

mathematical model that addresses the identified limitations 

in the work of [21] and integrates fractional derivatives for a 

more accurate representation of arterial behavior. 

 

3. Methodology 
 

Fundamentally, when analysing fluid dynamics, one takes 

into account the core equations regulating the uncompressible 

flow of fluid within segmented arteries, especially concerning 

drug delivery for cancer therapy. These equations encompass 

the momentum equation, the nanoparticle equation, the 

energy equation, and the concentration equation.  
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Here  is the fluid density, 
t


is the material time 

derivative, pf uu  is the relative velocity and sK is the 

stoke constant, r is the radius of the artery, c is the applied 

uniform  magnetic field pN is the number of magnetic 

nanoparticle per unit volume, T is the temperature, C is the 

Concentration,  is the dynamic viscosity of the fluid, and 

zE is the external electric force Imposed at the arterial 

segment wall. M is the mass of single particle pf uu  is the 

relative velocity and sK is the stoke constant.
 
From Equation 

(1) and (3), we define the pressure gradient and heat radiation 

respectively as follows: 
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The corresponding initial and boundary conditions are; 
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Equation (7) is known as the Boltzmann equation with the 

boundary conditions and the net charge density given as;  
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Here e is the dielectric constant, 
nkenz g ,,, ,000 and 

n  

are the ion valence, concentration of ions, the electronic 

charge, the Boltzmann constant the local absolute temperature 

of the fluid, the density number of cations and anions, 

respectively. 

Using Debye–Huckelparameter  

 

0

0

2

0

2

02 2

Tck

rncz
k

g


  

and linearized the Boltzmann equation (8), we get a potential 

equation as 

 

 
The Caputo-Fabrizio derivative with fractional order 𝛼𝜖(0,1) 
is define as: 
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The dimensionless parameters that are under consideration in 

the context of dimensionless initial and boundary conditions 

are: 
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On substituting equation (11) into equations (1)-(9) and 

simplifying with the aid of definition (10), we obtain: 
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The Reynolds number, the Hartmann Number, the Darcy 

parameter, the particle concentration parameter, the thermal 

Grashof number, the mass Grashof number, the particle 

mass parameter the Prandlt number, the Peclet number, the 

thermal radiation parameter, Sc the Schmidt number, the 

Soret number, and  the chemical reaction parameter 

respectively. Now by applying Laplace transforms on 

equation (12)-(15), we have 
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From equation (18), we have 
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Substituting equation (21) into (17), we have  
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From equation (19) and (20) we have the following  
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Now applying finite Henkel transform on equations (20) - 

(24), and simplifying, we obtain:  
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By substituting equation (26) and equation (27) into equation 

(25), we have; 
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Now by applying the invers Henkel transform to equations 

(26)- (28) 
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The inverse Laplace form of equations (29) to (31) was taken 

with the aid of Gerby-Stefan’s Algorithm and the results were 

simulated graphically with the aid of MATCARD software as 

shown in the next section. 

 

4. Results and Discussion 

 
In this section, we showcased and deliberated upon the 

numerical outcomes and simulations depicted graphically for 

the electro-magneto-hydrodynamic blood flow through 

arterial segments influenced by a magnetic field.  

 
The Velocity of Blood 

In this section, we discuss the impact of various blood flow 

parameters on blood velocity. Figure 1 illustrates that a higher 

value of electrokinetic width results in increased 

electromagnetic strength, suggesting a resistive effect on 

blood velocity. Additionally, Figure 1 demonstrates that 

widening the electrokinetic widths significantly decreases 

blood flow velocity, with higher velocity observed at the 

center compared to the arterial wall vicinity. Examining 

Figure 2, we observe the influence of the particle 

concentration parameter on blood flow velocity, indicating no 

significant effect on velocity. Likewise, Figure 3 reveals that 

a higher value of the chemical reaction parameter enhances 

blood velocity, with lower velocity at the arterial wall 

compared to the center. Furthermore, Figure 4 illustrates that 

a higher value of the metabolic heat source has a resistive 

impact on blood velocity, resulting in reduced velocity from 

the center to the arterial wall as the heat source parameter 

increases. 
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Figure 1: Blood velocity for various values of Kinetic width (K) 

 

 
Figure 2: Blood velocity for various values of Particle concentration 

parameter (Rc) 
 

 
Figure 3: Blood velocity for various values of chemical reaction parameter 

(Kc) 

 
Figure 4: Blood velocity for various values of heat source parameter (Qm) 

The Nanoparticles Velocity  

The manipulation of targeted magnetic nanoparticles is easily 

achieved by applying a magnetic field, which enhances 

particle capture at sites affected by cardiovascular diseases. 

Magnetic drug targeting appears to be more effective for 

lower values of K. The presence of kinetic widths introduces 

an additional magnetic field form that acts externally on the 

body, significantly affecting both blood velocity and 

nanoparticle velocity. Consequently, this results in an 

increased magnetic force on the particles, leading to reduced 

particle motion, as shown in Figure 5. With increasing kinetic 

widths, the decrease in blood velocity is more pronounced in 

the arterial wall than at the center due to the interaction 

between blood flow and magnetic particles. This interaction, 

known as the Lorentz force, tends to diminish the motion of 

magnetic nanoparticles. Therefore, the magnetic field plays a 

crucial role in regulating both blood velocity and the 

efficiency of nanoparticle capture for targeted drug delivery 

in specific locations during cardiovascular disease treatments. 

The findings suggest that an increase in kinetic widths (K) 

enables nanoparticles to align more effectively with the 

magnetic field toward the diseased site, as depicted in Figure 

6. Additionally, Figure 6 shows that the particle concentration 

parameter of nanoparticle velocity has no discernible effect 

on the flow. 

 

 
Figure 5: Nano-Particles velocity for various values of Kinetic width (K) 

 

 
Figure 6: Nano-Particles velocity for various values of Particle 

concentration parameter 
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The Concentration Profile 

In this section, we visually depict the numerical outcomes of 

the concentration profile in electro-magneto-hydrodynamic 

(EMHD) blood. Figures 8 and 9 demonstrate that the impact 

of kinetics widths and particle concentration parameter on the 

concentration profile is indistinguishable, with no discernible 

separation between the bars. Figure 10 distinctly illustrates 

that an elevation in the chemical reaction parameter correlates 

with an increased concentration profile. The figure indicates 

that as the chemical reaction values rise, the concentration 

gradually increases. However, this effect diminishes as it 

progresses from the center of the artery towards the arterial 

wall, with the concentration reaching a notably high level at 

the arterial wall. 

  

 
Figure 8; Concentration for various values of kinetic width (K) 

 

 
Figure 9; Concentration for various values of Particle concentration 

parameter (Rc) 

 

 
Figure 10: Concentration for various values of chemical reaction parameter 

(Kc) 

The Temperature Profile  

In this section, we visually depict and discuss the numerical 

results concerning the heat dynamics in electro-magneto-

hydrodynamic (EMHD) blood flow. Figure 11 is employed to 

illustrate how changes in kinetic widths influence the 

temperature profile of EMHD blood flow, showing that 

higher values of kinetic widths lead to lower temperatures. 

Figure 12 indicates that alterations in the particle 

concentration parameter do not visibly impact the 

temperature of the blood flow. Moreover, Figure 13 clearly 

shows that an increase in the heat source leads to a rise in the 

temperature distribution of the blood. 

 

 

Figure 11: Temperature field for various values of kinetic width (K) 
 

 
Figure 12; Temperature for various values of Particle concentration 

parameter (Rc) 

 

 
Figure 13; Temperature for various values of heat source (Qm) 
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5. Conclusion 

 
The study primarily focuses on presenting and discussing 

numerical results and simulations related to the electro-

magneto-hydrodynamic blood flow through arterial segments 

with a magnetic field. it discusses the impact of various blood 

flow parameters on blood velocity, such as electrokinetic 

width, particle concentration parameter, chemical reaction 

parameter, and metabolic heat source. The study also 

emphasizes the need for a refined mathematical model that 

incorporates fractional derivatives to achieve a more 

comprehensive understanding of blood flow dynamics. The 

general findings from the study revealed that: 

 

1. The manipulation of targeted magnetic nanoparticles 

through the use of a magnetic field has the potential to 

enhance particle capture at diseased sites during 

cardiovascular disease treatments, indicating the promise 

of magnetic drug targeting for improved therapeutic 

outcomes.  

2.  The influence of kinetics widths introduces an additional 

magnetic field form that acts externally on the body, 

significantly impacting both blood velocity and 

nanoparticle velocity, highlighting the crucial role of 

magnetic fields in controlling both blood velocity and the 

capturing efficiency of nanoparticles for targeted drug 

delivery in specific locations during cardiovascular 

disease treatments.  

3. An increase in kinetic widths (K) enables nanoparticles to 

more effectively align with the magnetic field toward the 

diseased position, suggesting the potential for improved 

targeting and delivery of therapeutic nanoparticles in 

specific areas of the cardiovascular system.  

4. The impact of chemical reaction parameters on blood 

velocity and concentration profiles indicates the complex 

interplay between chemical reactions and blood flow 

dynamics, emphasizing the need for a comprehensive 

understanding of these interactions for potential 

therapeutic interventions. The findings suggest that 

variations in the heat source parameter have a discernible 

effect on the temperature distribution of the blood, 

highlighting the importance of considering heat transfer 

dynamics in the context of electro-magneto-hydrodynamic 

blood flow for potential implications in cardiovascular 

health and disease management. 
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