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Abstract— A graph G is anti-magic if there is a labelling of G is a one-to-one mapping taking the edges onto 1, 2, ...., |E| such 

that the sum of the labels assigned to edges incident to distinct vertices are different. A conjecture of Hartsfield and Ringel 

states that every connected graph different from K_2 is anti-magic. Our main result validates this conjecture for Boolean graph 

of path P_(n) (n≥4). 
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I.  INTRODUCTION  

Suppose   is a graph and let  be the set of edges 

of  incident to , for each vertex  of . We shall write  

for .  Let   be a bijective mapping. 

The vertex-sum  at  is defined as 

 . For any two distinct vertices  of 

,   gives an anti-magic labeling of . A 

graph G is called anti-magic if  has an anti-magic labeling. 

The problem of anti-magic labeling of graphs was introduced 

by Hartsfield and Ringel [4]. They conjectured that all graphs 

with no single edge component are anti-magic. Graph 

Labeling has many applications in coding theory, -ray 

crystallography, radar, astronomy, circuit design, 

communication network addressing, and data base 

management. 

 

II. CONJECTURE 1 

[4] Every connected graph different from   is anti-magic. 

This conjecture is still open. Interestingly, the graph   can 

be regarded as a tree on two vertices.  Thus, if we restrict 

ourselves to trees, the above conjecture holds. Hartsfield and 

Ringel proved that paths, cycles and complete graph , 

(n ) are anti-magic. Recently, Alon et al. [1] have proved 

that the conjecture is true for some classes of dense graphs. 

They have shown that all dense graphs with   vertices 

and minimum degree  are anti-magic. They also 

proved that if G is a graph with  vertices and the 

maximum degree   , then  is anti-magic and 

all complete bipartite graphs except   are anti-magic. Anti-

magic labeling of the Cartesian product of graphs was 

studied in [7]; if  is a regular anti-magic graph then for any 

graph , the Cartesian product  is anti-magic. It was 

proved in [4] that 2-regular graphs are anti-magic and proved 

in [6] that 3-regular graphs are anti-magic. As a 

consequence, if  is 2-regular or 3-regular then for any graph 

,   is anti-magic. In this paper, we extend anti-magic 

labeling to Boolean Graph of path.  

III.  DEFINITION 

Boolean graph  is a graph with vertex set  

and two vertices in  are adjacent if and only if they 

correspond to two adjacent vertices of   or to a vertex and 

non - incident edge of . 

 

IV.  THEOREM 

The Boolean graph of path BG(P_n ), (n≥4)  is anti-magic  

Proof: Let  be the path with vertices , …, . By 

the definition of Boolean graph  the vertex set is 

given by 

 
and the edge set is given by 

 
We discuss Boolean graph of path in two cases. 

Case (a): n  1 (mod 2) 

Label the vertices of  using the function  

as follows: 

f(vi vi+1) = i ;   i = 1, 2, …, n. 

f(uj uj+1) = 2n-j; j = 1, 2, …, n–1. 

http://www.isroset.org/
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f(vi uj) = (n–1) (i+1) + j  if  i < j, where 1  i  n + 1  & 2  j 

 n. 

f(vi uj) = (n–1) (i –1)+ n + j    if  i > j,  where j = 1, 2, …, n  &  

j < i  n+1 

The induced function  such that 
 

We consider the case when labels of vertices are distinct. 

Subcase (i): when  and . 

f* (vi)  = f(vi vi+1) +  

2

( )
n

i j

j
i j

f v u



  

  = f(vi vi+1) +  
2

[( 1)( 1) ]
n

j

n i j


    

f* (v1)  = f(v1 v2) +  
2

[( 1)(1 1) ]
n

j

n j


    

 = 1 + 
2

[(2 2) ]
n

j

n j


   

 = 1 + (n–1) (2n–2) + 
( 1)

1
2

n n  
 

 
 

 = 1 + (n–1) (2n–2) + 

2 2

2

n n 
 

 = 
1

2
[2 + 4n

2
 – 4n – 4n +4 + n

2
 + n–2] 

f* (v1) = 
1

2
 [5n

2
 – 7n + 4] 

 

Sub case (ii):   When i = 2, 3, …, n 

f* (vi) = f(vi-1 vi) + f(vi vi+1) + 

1
1,

( )
n

i j

j
j i i

f v u

 

  

 = i+ i–1 + 

2

1 1

( ) ( )
i n

i j i j

j j i
i j i j

f v u f v u


  
 

   

 = 2i –1 + 
2

1 1

[( 1)( 1) ] [( 1)( 1) ]
i n

j j i

n i n j n i j


  

          

 = 2i–1 + (i–2) [(n–1) (i–1) + n] + 
( 2)( 1)

2

i i 
 + 

(n–i) [(n–1) (i+1)] + 
( 1) ( 1)

2 2

n n i i  
 

 
 

 = 2i–1 + (i–2) [ni – n – i + 1 + n] + 

2 3 2

2

i i 
 + 

(n–i) (ni+n–i–1) + 

2 2

2

n n i i  
 

 = 2i – 1 + ni
2
 – i

2
 + i – 2ni + 2i – 2 +  

2 3 2

2

i i 
+ 

n
2
i + n

2
 – ni – n – ni

2
 – ni + i

2
 + i   +

2 2

2

n n i i  
 

 = 
1

2
 [8i – 4 – 8ni + 2n

2
i + 3n

2
 – n] 

f* (vi)    =  
1

2
[(2n

2
 – 8n + 8)i + (3n

2
–n – 4)] 

Subcase (iii): When  and  

f * (vi)  = f (vi-1 vi) + 

1

1

( )
n

i j

j
i j

f v u





  

= f (vi-1 vi) + 

1

1

[( 1)( 1) ]
n

j

n i n j




     

f* (vn+1) = f (vn vn+1) + 

1

1

[( 1) ( 1 1) ]
n

j

n n n j




      

 = n + 

1

1

[( 1). ]
n

j

n n n j




    

 = n + 

1
2

1

[ ]
n

j

n n n j




    

 = n + 

1
2

1

[ ]
n

j

n j




  

 = n + (n–1) . n
2
 +  

( 1).

2

n n
 

 =  
1

2
 [2n + 2n

3
 – 2n

2
 + n

2
 – n] 

f* (vn+1) = 
1

2
 [2n

3
 – n

2
 + n]  

Consider the case when labels of edges are distinct. 

Subcase (iv):   When  and  

f* (uj) = f(uj uj+1) + 

1

2

( )
n

i j

i j
i j

f v u


 


  

 = 2n–j + 

1

2

[( 1)( 1) ]
n

i j

n i n j


 

     
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f* (u1)   = (2n–1) + 

1

3

[( 1) 1 1]
n

i

n i n n




      

 = (2n–1) + 

1

3

[( 1) 2]
n

i

n i




   

 = (2n–1) + (n–1)2 + (n–1) 

( 1)( 2) 2.3

2 2

n n  
 

 
 

 = 2n–1 + 2n–2 + 

2( 1)( 3 2)
3( 1)

2

n n n
n

  
   

 = 
1

2
 [8n–6 + n

3
 + 3n

2
 + 2n – n

2
 – 3n – 2 – 6n + 6] 

f* (u1)   =  
1

2
[n

3
 + 2n

2
 + n – 2] 

Subcase (v): When  

f* (uj)    = f (uj-1uj) + f(uj uj+1) + 

1

1
, 1

( )
n

i j

i
i j j

f v u



 

  

 = (2n – j + 1) + (2n – j) + 
1 1

1 2

( ) ( )
j n

i j i j

i i j
i j i j

f v u f v u
 

  
 

   

 = 4n – 2j + 1 + 
1 1

1 2

[( 1)( 1) ] [( 1)( 1) ]
j n

i i j

n i j n i n j
 

  

          

 = 4n – 2j + 1 + 
1 1

1 2

[( 1) ( 1) ] [( 1) ( 1) ]
j n

i i j

n i n j n i n n j
 

  

          

 

 = 4n – 2j + 1 + 
( 1)( 1)

2

n j j 
 + (j–1) (n–1+j)   

+  

            
( 1)( 2) ( 1)( 2)

2 2

n n j j    
 

 
 + (n–j) (1+j) 

  f* (uj)   = 
1

2
 [n

3
 +2n

2
 + 5n + 4 – 6j] 

Sub case (vi): When  and  

f* (uj)    = f (uj-1uj) +  

1

1

( )
j

i j

i
i j

f v u





  

 = 2n – j+1 + 

1

1

[( 1)( 1) ]
j

i

n i j




    

f* (un)   = 2n – n + 1 +  

1

1

[( 1)( 1) ]
n

i

n i n




    

 = n+1 + 

1

1

[( 1) 1 ]
n

i

n i n n




     

 = n+1 + 

1

1

[( 1) 2 1]
n

i

n i n




    

 = n+1 + 
( 1)( 1).

2

n n n 
 (n–1) (2n–1) 

 = 
1

2
 [2n + 2 + n

3
 – 2n

2
 + n + 4n

2
 – 2n – 4n + 2] 

 = 
1

2
 [n

3
 + 2n

2
 – 3n + 4] 

   is anti-magic. 

 

Case (b): n  0 (mod 2) 

Label the vertices of   using the function 

f : E  N as follows: 

f(vi vi+1) = 2 (n–i) + 1; i = 1, 2, …, n 

f(uj uj+1) = 2 (n–j) ; j = 1, 2, …, n-1 

f (viuj) = (n–1) (i+1)+j for i< j 

            = (n–1) (i–1) + n + j for i> j 

The induced function  such that 
 

Consider the case when the labels of vertices are distinct. 

 

Subcase (vii):   When  and  

f* (vi)    = f (vi vi+1) + 

2

( )
n

i j

j
i j

f v u



  

 = 2(n–i)+1 + 
2

[( 1)( 1) ]
n

j

n i j


    

f*(v1)     = 2(n–1) + 1 + 
2

[( 1)2 ]
n

j

n j


   

 = 2n – 1 + (n–1) (2n–2) +  
( 1)

2

n n 
–1 

f* (v1)   = 
1

2
 [5n

2
 – 3n] 

 

Subcase (Viii): When  

f* (vi)    = f(vi-1 vi) + f (vi vi+1) + 

1
1,

( )
n

i j

j
j i i

f v u

 

  
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              = 2 [n– (i–1)] + 1 + 2 (n–i)+1 +  

2

1

( )
i

i j

j
i j

f v u





 + 

1

( )
n

i j

j i
i j

f v u
 


  

 = 4n – 4i+4 + 
2

1 1

[( 1)( 1) ] [( 1)( 1) ]
i n

j j i

n i n j n i j


  

          

 = 4n – 4i + 4 + 
2

1 1

[( 1) 1 ] [( 1) 1 ]
i n

j j i

n i n n j n i n j


  

            

 = 4n – 4i + 4 + (i – 2) [(n–1)i + 1] + 
( 2)( 1)

2

i i 
 

+ (n–i) (ni – i + n–1) +  
( 1) ( 1)

2 2

n n i i  
 

 
 

 = 
1

2
 [2n

2
i – 8ni – 4i + 3n

2
 + 7n + 6] 

f*(vi)      = 
1

2
 [(2n

2
 – 8n – 4)i + (3n

2
 + 7n + 6)] 

Subcase (iX): when  and  

f* (vi)    = f (vi-1 vi) + 

1

1

( )
n

i j

j
i j

f v u





  

 = 2 [n – (i–1)] + 1 + 

1

1

[( 1)( 1) ]
n

j

n i n j




     

f* (vn+1) = 2 [n–(n+1–1)] + 1 + 
1

1

[( 1)( 1 1) ]
n

j

n n n j




      

 = 1 + 

1

1

[( 1) ]
n

j

n n n j




    

 = 1 + 

1
2

1

[ ]
n

j

n j




  

 = 1 + (n–1) n
2
 + 

( 1).

2

n n
 

f* (vn+1) =  
1

2
 [2n

3
 – n

2
 – n + 2] 

 

We consider the case when the labels of edges are distinct. 

Subcase (x):  when  and  

f*(uj)     = f (uj uj+1) + 

1

2
1

( )
n

i j

i j
j

f v u


 


  

              = 2(n – j) + 

1

2

[( 1)( 1) ]
n

i j

n i n j


 

     

f* (u1)   = 2 (n – 1) + 

1

3

[( 1)( 1) 1]
n

i

n i n




     

 = 2(n – 1) + 

1

3

[( 1) 1 1]
n

i

n i n n




      

 = 2 (n – 1) + (n – 1)
( 1)( 2) 2.3

2 2

n n  
 

 
 + (n – 

1)2 

 = 
1

2
[n

3
 + 2n

2
 + n – 4] 

 

Subcase (xi): when  

f* (uj)    = f (uj-1uj) + f(uj uj+1) + 

1

1
, 1

( )
n

i j

i
i j j

f v u



 

  

 = 2(n–j) + 2 + 2(n–j) + 
1 1

1 2

( ) ( )
j n

i j i j

i i j
i j i j

f v u f v u
 

  
 

   

 = 4n – 4j + 2 + 
1 1

1 2

[( 1)( 1) ] [( 1)( 1) ]
j n

i i j

n i j n i n j
 

  

          

 = 4n – 4j + 2 + 
1 1

1 2

[( 1) 1 ] [( 1) ( 1) ]
j n

i i j

n i n j n i n n j
 

  

            

  

= 4n  – 4j + 2 + (n–1) 
( 1)

( 1)( 1 )
2

j j
j n j


    

  

     

( 1)( 2) ( 1)( 2)
( 1)

2 2

n n j j
n

    
  

 
+(n – j) (1 + j) 

f* (uj) = 
1

2
 [n

3
 + 2n

2
 + 5n + 6 – 10j] 

 

Subcase (xii): when  and   

f*(uj)  = f (uj-1uj) + 

1

1
1

( )
j

i j

i
j

f v u





  
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            = 2 (n–j) + 2 + 

1

1

[( 1)( 1) ]
j

i

n i j




    

f*(un)   = 2(n–n) + 2 + 

1

1

[( 1) 1 ]
n

i

n i n n




     

 = 2 + (n–1) 
( 1)

( 1)(2 1)
2

n n
n n


    

f* (un)   = 
1

2
 [n

3
 + 2n

2
 – 5n + 6] 

Hence in all the above cases the labeling of all the vertices 

and the edges of the Boolean graph of path is anti-magic. 

  is anti-magic. 

 

V. CONCLUSION 

Finally we conclude that the anti-magic labeling to Boolean 

Graph of path is anti-magic. 
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