

Hamiltonian Cycle and Hamiltonian Path Decomposition of Fan Graphs

L.T. Cherin Monish Femila^{1*}, S.Asha²

¹(Reg.No.12604), Dept. of Mathematics, Nesamony Memorial Christian College, Marthandam-629165, Tamil Nadu, INDIA ²Dept. of Mathematics, Nesamony Memorial Christian College, Marthandam-629165, Tamil Nadu, INDIA Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627012, Tamil Nadu, INDIA.

Corresponding Author: cherinmonishfemila@gmail.com, Tel.: 9345070438

Available online at: www.isroset.org

Received: 14/Apr/2019, Accepted: 26/Apr/2019, Online: 30/Apr/2019

Abstract - A path in a graph G that contains every vertex of G is called Hamiltonian path. A cycle in a graph G that contains every vertex of G is called a Hamiltonian cycle of G. A Hamiltonian graph is a graph that contains a Hamiltonian cycle. A graph is uniquely Hamiltonian if it contains exactly one Hamiltonian cycle. A decomposition of a graph G into Hamiltonian cycles will be called Hamiltonian decomposition of G. In this paper, we investigate Hamiltonian path decomposition of fan graph. Using this concept, we also investigate Hamiltonian decomposition of double fan graph.

Key words: Hamiltonian cycle, Hamiltonian graph, uniquely Hamiltonian, Hamiltonian decomposition, fan graph.

I. INTRODUCTION

Graph theory is proved to be tremendously useful in modeling the essential features of systems with finite components. Graphical models are used to represent telephone network, railway network, communication problems, traffic network etc. A graph is a convenient way of representing information involving relationship between objects. The objects are represented by vertices and the relations by edges. The concept of decomposition of graphs in Hamiltonian cycles, Hamiltonian path decomposition of regular graphs was introduced by Klas Markstrom[1]. Decomposition of complete graphs into Hamilton cycles was discussed in [2] and J.C. Bermond [3] deals about Hamiltonian Decompositions of Graphs, Directed Graphs and Hypergraphs.

A path in a graph G that contains every vertex of G is called **Hamiltonian path**. A cycle in a graph G that contains every vertex of G is called a **Hamiltonian cycle** of G. A **Hamiltonian graph** is a graph that contains a Hamiltonian cycle. A graph is **uniquely Hamiltonian** if it contains exactly one Hamiltonian cycle. A decomposition of a graph G into Hamiltonian cycles will be called **Hamiltonian decomposition** of G.

Fan graph, denoted by f_n , is the graph obtained from the path with *n* vertices P_n , where $V(P_n) = \{v_1, v_2, ..., v_n\}$ and $E(P_n) = \{v_i v_{i+1}: 1 \le i \le n - 1\}$ by adding a new vertex *z* joining each $v_i, 1 \le i \le n$ with *z*.

Double fan graph, denoted by df_n , is the graph obtained from the fan f_n by adding a new vertex z_1 joining each v_i , $1 \le i \le n$ with z_1 .

Section I contains the introduction of Hamiltonian decomposition of graphs and related topics, Section II contains Hamiltonian cycle decomposition of fan graphs, Section III contains Hamiltonian path decomposition of fan graphs, Section IV contains Hamiltonian decomposition of double fan graphs, Section V concludes research work.

II. HAMILTONIAN CYCLE DECOMPOSITION OF FAN GRAPH f_n

Theorem: 2.1

The fan graph f_n , $n \ge 3$ is uniquely Hamiltonian and the rest of the edges form a star $K_{1,n-2}$.

© 2019, IJSRMSS All Rights Reserved

Proof:

Let f_n , $n \ge 3$ be the fan graph with vertex set $V: \{v_1, v_2, ..., v_n, z\}$. By definition, we have a path P_n with vertex set $V(P_n) = \{v_1, v_2, ..., v_n\}$. By joining the end vertices of path P_n to the new vertex z, we get a spanning cycle. This is the only spanning cycle, for, the internal vertices of path P_n joining the new vertex z forms a star $K_{1,n-2}$. Therefore, the fan graph f_n , $n \ge 3$ is uniquely Hamiltonian.

Example: 2.2

III. HAMILTONIAN PATH DECOMPOSITION OF FAN GRAPH f_{n+2}

Theorem: 3.1

The fan graph f_{n+2} can be decomposed into 4n + 2 Hamiltonian paths.

Proof:

Let f_{n+2} be the fan graph with vertex set $V: \{z, v_1, v_2, \dots, v_{n+1}, v_{n+2}\}$.

Consider the vertex z. We construct a path P_{n+2} : $v_1v_2 \dots v_{n+1}v_{n+2}$ excluding the vertex z. Connect the vertex z to the vertex z to the vertex z to the vertex v_1 of P_{n+2} , we get a spanning path $Q_1: zv_1v_2 \dots v_{n+1}v_{n+2}$. Also, connect the vertex z to the vertex v_{n+2} of P_{n+2} , we get a spanning path $Q_2: v_1v_2 \dots v_{n+1}v_{n+2}z$. Therefore, considering the vertex z, we get two spanning paths.

Consider the vertex v_1 . We construct n + 2 paths excluding the vertex v_1 .

 $\begin{array}{c} R_1: zv_2v_3v_4 \dots v_nv_{n+1}v_{n+2} \\ R_2: v_2zv_3v_4 \dots v_nv_{n+1}v_{n+2} \\ R_3: v_2v_3zv_4 \dots v_nv_{n+1}v_{n+2} \\ \ddots & \ddots \\ \end{array}$

 $R_{n}: v_{2}v_{3}v_{4} \dots v_{n}zv_{n+1}v_{n+2}$ $R_{n+1}: v_{2}v_{3}v_{4} \dots v_{n}v_{n+1}zv_{n+2}$ $R_{n+2}: v_{2}v_{3}v_{4} \dots v_{n}v_{n+1}v_{n+2}z$

n+2. $v_2v_3v_4$... $v_nv_{n+1}v_{n+2}$

Connect the vertex v_1 to the starting vertex of each paths R_i , $1 \le i \le n+2$, we get n+2 spanning paths. But the spanning path R'_{n+2} : $v_1v_2v_3v_4 \dots v_nv_{n+1}v_{n+2}z$ is same as Q_2 : $v_1v_2 \dots v_{n+1}v_{n+2}z$. So we get n+1 spanning paths. Also, we construct n paths excluding the vertex v_1 .

 $S_{1}: zv_{n+2}v_{n+1}v_{n} \dots v_{5}v_{4}v_{3}v_{2}$ $S_{2}: v_{2}zv_{n+2}v_{n+1}v_{n} \dots v_{5}v_{4}v_{3}$ $S_{3}: v_{2}v_{3}zv_{n+2}v_{n+1}v_{n} \dots v_{5}v_{4}$ \vdots \vdots $S_{n-2}: v_{2}v_{3}v_{4} \dots v_{n-2}zv_{n+2}v_{n+1}v_{n}v_{n-1}$

 $S_{n-1}: v_2 v_3 v_4 \dots v_{n-1} z v_{n+2} v_{n+1} v_n$

 $S_n: v_2 v_3 v_4 \dots v_{n-1} v_n z v_{n+2} v_{n+1}$

Connect the vertex v_1 to the starting vertex of each paths S_i , $1 \le i \le n$, we get *n* spanning paths. Therefore, considering the vertex v_1 we get 2n + 1 spanning paths.

Proceeding like this we get a sequence of Hamiltonian paths 2, 2n + 1, 2, 2, ..., 2, 1. The number of Hamiltonian paths in $f_{n+2} = (2 + 2n + 1) + (2 + 2 + \dots + 2)(n - 1)times + 1$

IV. HAMILTONIAN DECOMPOSITION OF DOUBLE FAN GRAPH df_{n+2}

Theorem: 4.1

The double fan graph df_{n+2} can be decomposed into 4n Hamiltonian cycles.

Proof:

Let df_{n+2} be the double fan graph with vertex set $V: \{z, v_1, v_2, \dots, v_{n+1}, v_{n+2}, z_1\}$ where $\{z, v_1, v_2, \dots, v_{n+1}, v_{n+2}\}$ be the vertex set of fan graph f_{n+2} and z_1 be the new vertex.

In fan graph f_{n+2} , consider the vertices of fan f_{n+2} with the condition that z is not the end vertices of the path and also connecting all vertices of fan f_{n+2} , we get 4n Hamiltonian paths.

In double fan graph df_{n+2} , consider the vertex v_1 , we construct n+1 paths starting with the vertex v_1 .

 $\begin{array}{l} Q_{1}:v_{1}zv_{2}v_{3}v_{4} \ldots v_{n}v_{n+1}v_{n+2} \\ Q_{2}:v_{1}v_{2}zv_{3}v_{4} \ldots v_{n}v_{n+1}v_{n+2} \\ Q_{3}:v_{1}v_{2}v_{3}zv_{4} \ldots v_{n}v_{n+1}v_{n+2} \\ Q_{3}:v_{1}v_{2}v_{3}zv_{4} \ldots v_{n}v_{n+1}v_{n+2} \\ Q_{n}:v_{1}v_{2}v_{3}v_{4} \ldots v_{n}zv_{n+1}v_{n+2} \\ Q_{n+1}:v_{1}v_{2}v_{3}v_{4} \ldots v_{n}v_{n+1}zv_{n+2} \\ Connect the new vertex z_{1} to the end vertices of each paths <math>Q_{i}, 1 \leq i \leq n+1$, we get n+1 spanning cycles. Also, we construct n paths starting with the vertex v_{1} . $R_{1}:v_{1}zv_{n+2}v_{n+1}v_{n} \ldots v_{5}v_{4}v_{3} \\ R_{2}:v_{1}v_{2}zv_{n+2}v_{n+1}v_{n} \ldots v_{5}v_{4}v_{3} \\ R_{3}:v_{1}v_{2}v_{3}zv_{n+2}v_{n+1}v_{n} \ldots v_{5}v_{4}v_{3} \\ R_{3}:v_{1}v_{2}v_{3}zv_{n+2}v_{n+1}v_{n} \ldots v_{5}v_{4} \\ \cdots \\ R_{n-2}:v_{1}v_{2}v_{3}v_{4} \ldots v_{n-1}zv_{n+2}v_{n+1}v_{n} \\ R_{n}:v_{1}v_{2}v_{3}v_{4} \ldots v_{n-1}v_{n}zv_{n+2}v_{n+1}v_{n} \\ R_{n}:v_{1}v_{2}v_{3}v_{4} \ldots v_{n-1}v_{n}zv_{n+2}v_{n+1} \end{array}$

© 2019, IJSRMSS All Rights Reserved

Connect the new vertex z_1 to the end vertices of each paths R_i , $1 \le i \le n$, we get n spanning cycles. Therefore, considering the vertex v_1 , we get 2n + 1 spanning cycles.

Consider the vertex v_2 , we have two cases.

Case: (i) n = 1

Consider the vertex v_2 . We construct two paths starting with the vertex v_2 , $S_1: v_2v_1zv_3$ and $S_2: v_2v_3zv_1$ when n = 1. Connect the new vertex z_1 to the end vertices of each paths S_i , $1 \le i \le 2$, we get two spanning cycles. But the spanning cycle $S'_2: z_1v_2v_3zv_1z_1$ is same as $R'_1: z_1v_1zv_3v_2z_1$ when n = 1. So we get one spanning cycle. Case: (ii) $n \ge 2$

Consider the vertex v_2 . We construct three paths starting with the vertex v_2 .

 $T_1 : v_2 v_1 z v_3 v_4 \dots v_{n+1} v_{n+2}$ $T_2: v_2v_1zv_{n+2}v_{n+1}\dots v_4v_3$

 $T_3: v_2v_3v_4 \dots v_{n+1}v_{n+2}zv_1$

Connect the new vertex z_1 to the end vertices of each paths T_i , $1 \le i \le 3$, we get three spanning cycles. But the spanning cycle $T_3': z_1v_2v_3v_4\dots v_{n+1}v_{n+2}zv_1z_1$ same is as

· 1

 $R'_1: z_1v_1zv_{n+2}v_{n+1}v_n \dots v_5v_4v_3v_2z_1$ when $n \ge 2$. So we get two spanning cycles.

Therefore, considering the vertex v_2 , we get $\begin{cases} 1 \text{ spanning cycle if } n = 1 \\ 2 \end{cases}$

$$(2 \text{ spanning cycles if } n \ge 2)$$

Proceeding like this we get a sequence of Hamiltonian cycles 2n + 1, 2, 2, ..., 2, 1. The number of Hamiltonian cycles in $df_{n+2} = (2n+1) + (2+2+\dots+2)(n-1)times + 1$

$$= 2n + 1 + 2(n - 1) + = 2n + 2 + 2n - 2 = 4n.$$

Example: 4.2

8 Hamiltonian cycles

V. CONCLUSION

We investigate Hamiltonian Cycle Decomposition of Fan Graphs and Hamiltonian Path Decomposition of Fan Graphs using the concept of Hamiltonian Decomposition. Also, we investigate Hamiltonian Decomposition of Double Fan Graphs using the concept of Hamiltonian Path Decomposition of Fan Graphs.

REFERENCES

- [1] Klas Markstrom, "Even cycle decomposition of 4-regular graphs and line graphs".
- [2] Murugesan N., Vanadhi T., "Hamiltonian decomposition of complete graphs and complete digraphs", Global Journal of theoretical and applied Mathematics Sciences, Vol 1, No 1, (2011), ISSN 2248-9916.
- [3] Bermond J.C., "Hamiltonian Decompositions of Graphs, Directed Graphs and Hypergraphs", Advances in Graph Theory, Annals of Discrete Mathematics 3 (1978) 21-28.
- [4] Ali Ahmad, Ruxandra Marinescu-Ghemeci, "Radio Labeling of Some Ladder-Related Graphs", MATH. REPORTS 19 (69), 1 (2017), 107-119.
- [5] Bondy J.A., Murty U.S.R., "Graph Theory with Applications", 1976, Elsevier, New York.
- [6] Bosak J., "Decompositions of Graphs", 1990, Kluwer Academic Press, Dordrecht.
- [7] Cherin Monish Femila L.T., Asha S., "Hamiltonian Decomposition of Special Class of Ladder Graphs", International Journal of Scientific Research in Mathematical and Statistical Sciences, Volume-5, Issue-5, pp.114-120, October (2018), E-ISSN: 2348-4519.
- [8] Cherin Monish Femila L.T., Asha S., "Hamiltonian Decomposition of Wheel Related Graphs", International Journal of Scientific Research and Review, ISSN NO: 2279-543X.

AUTHORS PROFILE

Mrs. L.T. Cherin Monish Femila pursued M.Sc and M.Phil from Manonmaniam Sundaranar University, Tirunelveli in 2014 & 2015. Her area of research is Graph Theory. Her main research work focuses on Decomposition of graphs.

Dr. S. Asha pursued M.Sc., M.Phil. and Ph.D from Manonmaniam Sundaranar University, Tirunelveli in 2004, 2006 & 2012. She is currently working as Assistant Professor in Department of Mathematics from Ne samony Memorial Christian College, Marthandam since 2006. Her area of research is Graph Theory. Her main research work focuses on Decomposition of graphs. She has 13 years of teaching experience and 4 scholars doing Ph.D under her guidance.