On Contra Delta Generalized Pre-Continuous Functions

J.B. Toranagatti

Department of Mathematics, Karnataka University’s Karnataka College, Dharwad, India

*Corresponding Author: jagadeesht200@gmail.com, Tel.: +919986624200

Available online at: www.isroset.org

Accepted 27/Jun/2018, Online 30/Aug/2018

Abstract- In this paper, the notion of contra \(\delta gp \)-continuous functions is introduced by utilizing \(\delta gp \)-closed sets in topological spaces. Some of their fundamental properties are studied and the relationships of contra \(\delta gp \)-continuous functions with other related functions are discussed.

Keywords- \(\delta gp \)-open set, contra continuous function, contra pre-continuous function, \(\delta gp \)-continuous function.

I. INTRODUCTION

In 1996, Dontchev [8] initiated the study of contra continuous functions. Subsequently, Jafari and Noiri [15, 16] exhibited contra \(\alpha \)-continuous and contra pre-continuous functions in topological spaces. In this paper, a new class of generalized contra continuous functions by using \(\delta gp \)-closed sets, called contra \(\delta gp \)-continuous functions is introduced and study some of their basic properties. Relationships between contra \(\delta gp \)-continuous functions and other related functions are investigated.

II. PRELIMINARIES

Definition 2.1 A subset A of a topological space X is called pre-closed [19] (resp, b-closed [1], regular closed [26], semi-closed [18] and \(\alpha \)-closed [21]) if \(cl(int(A)) \subseteq A \) (resp,\(cl(int(A)) \cap int(cl(A)) \subseteq A \), \(A = cl(int(A)), int(cl(A)) \subseteq A \) and \(int(cl(int(A))) \subseteq X \).

Definition 2.2 A subset A of a topological space X is called \(\delta \)-closed [28] if \(A = cl_{\delta}(A) \) where \(cl_{\delta}(A) = \{ x \in X; int(cl(U)) \cap A = \emptyset, U \in \tau \text{ and } x \in U \} \)

Definition 2.3 A subset A of a topological space X is called (i) \(\delta gp \)-closed [5] (resp, \(gp \)-closed [17]) if \(pcl(A) \subseteq U \) whenever \(A \subseteq U \) and \(U \) is \(\delta \)-open (resp, regular open and open) in X.

The complements of the above mentioned closed sets are their respective open sets.

Definition 2.4 A function \(f : X \rightarrow Y \) from a topological space X into a topological space Y is called (i) contra continuous [8] (resp, contra pre-continuous[15], contra \(\alpha \)-continuous[16], contra \(gp \)-continuous[7] and contra \(gp \)-continuous) if \(f^{-1}(G) \) is closed (resp, pre-closed, \(\alpha \)-closed, \(gp \)-closed and \(gp \)-closed) in X for every open set G of Y.

(ii) perfectly-continuous [23] if \(f^{-1}(G) \) is clopen in X for every open set G of Y.

(iii) pre-closed [10] if for every closed subset A of X, \(f(A) \) is pre-closed in Y.

(iv) \(\delta gp \)-continuous [27] (resp, completely-continuous [2] and super continuous [20]) if \(f^{-1}(G) \) is \(\delta gp \)-open (resp, regular-open and \(\delta \)-open) in X for every open set G of Y.

Definition 2.5 A space X is called (a) extremely disconnected [12] if the closure of every open subset of X is open.

(b) strongly irresolvable [11] if every open subspace of X is irresolvable.

(c) semi-regular [6] if every open set is \(\delta \)-open in X.

(d) Urysohn [29] if for each pair of distinct points x and y of X, there exist open sets U and V containing x and y respectively such that \(cl(U) \cap cl(V) = \emptyset \).

(e) regular [29] if U is open in X and x \(\in \) U, then there is an open set V containing x such that \(cl(V) \subseteq U \).

© 2017, IJCSE All Rights Reserved
3. Contra δgp-Continuous Functions.

Definition 3.1 A function $f:X\to Y$ is called contra delta generalized pre-continuous (briefly, contra δgp-continuous) if the inverse image of every open set of Y is δgp-closed in X.

Theorem 3.2 A function $f:X\to Y$ is contra δgp-continuous if and only if $f^{-1}(U)$ is δgp-open in X for every closed set U of Y.

Remark 3.3 From Definitions 2.4 and 3.1, we have the following diagram of implications for a function $f:X\to Y$

\[
\begin{array}{c}
\text{Perfectly continuity} \\
\downarrow \\
\text{contra pre-continuity} \iff \text{contra continuity} \\
\downarrow \\
\text{contra gp-continuity} \rightarrow \text{contra δgp-continuity} \\
\downarrow \\
\text{contra gpr-continuity}
\end{array}
\]

None of the implications in above diagram is reversible.

Example 3.4 Consider $X=\{a,b,c,d\}$ with the topologies $T = \{X,\emptyset,\{a\},\{b\},\{a\},\{a,b,c\}\}$ and $\sigma = \{X,\emptyset,\{a\},\{b\},\{a,b\},\{a,c\},\{a,b,c\}\}$. Define $f:(X,\tau)\to(X,\sigma)$ by $f(a)=f(b)=a$, $f(c)=b$ and $f(d)=c$. Then f is contra gpr-continuous but not contra δgp-continuous, since $\{a\}$ is open in Y but $f^{-1}(\{a\})=\{a,b\}$ is not δgp-closed in X.

Remark 3.5 (a) Contra δgp-continuity and δgp-continuity are independent each other.
(b) Contra δgp-continuity and contra δ-continuity are independent each other.

Example 3.6 In Example 3.4, f is δgp-continuous but not contra δgp-continuous.

Example 3.7 Consider X, τ and σ as in Example 3.4. Define $h:(X,\tau)\to(X,\sigma)$ by $h(a)=d$, $h(b)=c$, $h(c)=a$ and $h(d)=b$. Then h is contra δgp-continuous but not δgp-continuous, since $\{a,b\}$ is open in Y but $h^{-1}(\{a,b\})=\{c,d\}$ is not δgp-open in X.

Definition 3.8 A space X is called locally δgp-indiscrete if every δgp-open set is δgp-closed in X.

Theorem 3.9 If $f:X\to Y$ is a contra δgp-continuous and X is locally δgp-indiscrete space, then f is δgp-continuous.

Proof: Let V be a closed set in Y. Since f is contra δgp-continuous and X is locally δgp-indiscrete space, then $f^{-1}(V)$ is δgp-closed in X. Hence f is δgp-continuous.

Definition 3.10 [22] A space X is called locally indiscrete if every open set is closed in X.

Theorem 3.11 If $f:X\to Y$ is a δgp-continuous and Y is locally indiscrete space, then f is contra δgp-continuous.

Proof: Let G be any open set of Y. Since Y is locally indiscrete space and f is δgp-continuous, then $f^{-1}(G)$ is δgp-closed in X. Hence f is contra δgp-continuous.

Theorem 3.12 [27] (a) In extremely disconnected space X, every $g\delta s$-closed set is δgp-closed.
(b) In strongly irresolvable space X, every δgp-closed set is $g\delta s$-closed.

As a consequence of Theorem 3.12, we have the following Theorem 3.13 and Theorem 3.14.

Theorem 3.13 If $f:X\to Y$ is a contra $g\delta s$-continuous and X is extremely disconnected space, then f is contra δgp-continuous.

Theorem 3.14 If $f:X\to Y$ is a contra δgp-continuous and X is strongly irresolvable space, then f is contra $g\delta s$-continuous.

Theorem 3.15 If $f:X\to Y$ is contra δgp-continuous and X is $T_{\delta gp}$-space, then f is contra continuous.

Proof: Suppose X is $T_{\delta gp}$-space and f is contra δgp-continuous. Let G be an open set in Y by hypothesis. $f^{-1}(G)$ is δgp-closed in X and hence $f^{-1}(G)$ is closed in X. Therefore f is contra continuous.

Theorem 3.16 If $f:X\to Y$ is contra δgp-continuous and X is $\delta gpT_{1/2}$-space, then f is contra pre-continuous.

Proof: Suppose X is $\delta gpT_{1/2}$-space and f is contra δgp-continuous. Let G be an open set in Y by hypothesis. $f^{-1}(G)$ is δgp-closed in X and hence $f^{-1}(G)$ is pre-closed in X. Therefore f is contra pre-continuous.

Theorem 3.17 If $f:X\to Y$ is contra δgp-continuous and X is semi regular, then f is contra gp-continuous.

Proof: Follows from the fact that every open set is δ-open in semi-regular space.

Lemma 3.18 [27] For a subset A of a space X, the following are equivalent:
(a) A is clopen;
(b) A is open and pre-closed;
(c) A is open and gp-closed;
(d) A is δ-open and δgp-closed;
(e) A is regular-open and gp-closed.

Lemma 3.19 For a subset A of a space X, the following are equivalent:
(a) A is clopen.
(b) A is regular-open and pre-closed.
(c) A is δ-open and pre-closed.

Following Theorem is immediate from Lemma 3.18 and Lemma 3.19:

Theorem 3.20 The following statements are equivalent for a function $f:X \rightarrow Y$:
(a) f is perfectly continuous.
(b) f is continuous and contra δ-pre-continuous.
(c) f is continuous and contra gp-continuous.
(d) f is δ-continuous and contra δgp-continuous.
(e) f is δ-continuous and contra δ-pre-continuous.
(f) f is δ-continuous and contra δgp-continuous.

Theorem 3.21 If $f:X \rightarrow Y$ is contra δgp-continuous, then the following equivalent statements hold:
(i) For each $x \in X$ and each closed set B of Y containing $f(x)$, there exists an δgp-open set A in X containing x such that $f(A) \subset B$.
(ii) For each $x \in X$ and each open set G of Y not containing $f(x)$, there exists a δ-open set H in X not containing x such that $f^{-1}(G) \subset H$.

Proof: Let B be a closed set in Y such that $f^{-1}(B) \subset B$, then $x \in f^{-1}(B)$. By hypothesis, $f^{-1}(B)$ is δ-open set in X containing x. Let $A = f^{-1}(F)$, then $f(A) = f(f^{-1}(B)) \subset B$.

Theorem 3.22 [5] Let $A \subset X$. Then $x \in \delta gp cl(A)$ if and only if $U \cap A = \emptyset$, for every δgp-open set U containing x.

Recall that for a subset A of a space (X,τ), the set $\bigcap \{U \in \tau \mid A \subseteq U \}$ is called the kernel of A and is denoted by $ker(A)$.

Lemma 3.23 [14] The following properties hold for subsets A and B of a space X:
(i) $x \in ker(A)$ if and only if $A \cap F = \emptyset$ for any closed set F of X containing x.
(ii) $A \subset ker(A)$ and $A = ker(A)$ if A is open in X.
(iii) If $A \subset B$, then $ker(A) \subset ker(B)$.

Definition 3.24 A space X is said to be δgp-additive if $\delta GPC(X)$ is closed under arbitrary intersections.

Theorem 3.25 Let X be δgp-additive, then the following are equivalent for a function $f:X \rightarrow Y$.
(i) f is contra δgp-continuous.
(ii) For each $x \in X$ and each closed set D of Y containing $f(x)$, there exists an δgp-open set C in X containing x such that $f(C) \subset D$.
(iii) $f(\delta gp cl(C)) \subset ker(f(C))$ for every subset C of X.
(iv) $\delta gp cl(f^{-1}(D)) \subset f^{-1}(ker(D))$ for every subset D of Y.

Proof: (i) \rightarrow (ii) It follows from Theorem 3.21 (ii) \rightarrow (i). Let C be a closed set in Y containing $f(x)$, then $x \in f^{-1}(G)$. From (ii), there exists δgp-open set U_x in X containing x such that $f(U_x) \subset D$, $U_x \subset f^{-1}(G)$.

Thus $f^{-1}(G) = \cup \{U_x : x \in f^{-1}(G)\}$ is δgp-open in X.

(i) \rightarrow (iii) Let C be any subset of X. Suppose $y \notin ker(f(C))$, then by Lemma 3.23, there exists a closed set D in Y containing y such that $f(C) \cap D = \emptyset$. Hence we have, $C \cap f^{-1}(D) = \emptyset$ and $\delta gp cl(C) \cap f^{-1}(D) = \emptyset$, which implies $f(\delta gp cl(C)) \cap D = \emptyset$ and hence $y \notin f(\delta gp cl(C))$. Therefore $f(\delta gp cl(C)) \subset ker(f(C))$.

(iii) \rightarrow (iv) Let $D \subset Y$, then $f^{-1}(D) \subset X$. By (ii) and Lemma 3.23, $f(\delta gp cl(f^{-1}(D))) \subset ker(f(f^{-1}(D))) \subset ker(D)$. Thus $\delta gp cl(f^{-1}(D)) \subset f^{-1}(ker(D))$.

(iv) \rightarrow (i) Let U be any open subset of Y. Then by (iv) and Lemma 3.23, $\delta gp cl(f^{-1}(U)) \subset f^{-1}(ker(U)) = f^{-1}(U)$ and $\delta gp cl(f^{-1}(U)) = f^{-1}(U)$. Therefore $f^{-1}(U)$ is δgp-closed set in X.

Theorem 3.26 If a surjective function $f(X,\tau) \rightarrow (Y,\sigma)$ is contra δgp-continuous and preclosed with X as a $T_{\delta gp}$-space, then Y is locally indiscrete.

Proof: Let H be any open set in Y. Since f is contra δgp-continuous and X is $T_{\delta gp}$-space, then $f^{-1}(H)$ is closed in X. Since f is preclosed, then H is preclosed in Y. Thus we have $cl(H) = cl(int(H)) \subset H$ and hence H is closed in Y.

Theorem 3.27 If $f(X,\tau) \rightarrow (Y,\sigma)$ is contra δgp-continuous, X is δgp-additive and Y is regular, then f is δgp-continuous.

Proof: Let $x \in X$ and N be any open set of Y containing $f(x)$. As Y is regular, there exists an open set M in Y containing $f(x)$ such that $cl(M) \subset N$. If f is contra δgp-continuous, there exists an δgp-open set U in X containing x such that $f(U) \subset cl(M)$. Then $f(U) \subset cl(M) \subset N$. Hence by Theorem 3.25, f is δgp-continuous.

Recall that, for a function $f:X \rightarrow Y$, the subset $\{ (x,f(x)) : x \in X \} \subset X \times Y$ is called the graph of f and is denoted by $G(f)$.
Definition 3.28 The graph \(G(f)\) of a function \(f:(X,\tau)\rightarrow(Y,\sigma)\) is said to be contra \(\delta\text{-}gp\)-closed if for each \((x,y)\in(X\times Y)\) there exist \(\delta\text{-}gp\)-open set \(U\) and \(V\) containing \(x\) and \(y\) respectively such that \((U\times V)\cap G(f)=\varphi\).

Theorem 3.29 The graph \(G(f)\) of a function \(f:(X,\tau)\rightarrow(Y,\sigma)\) is contra \(\delta\text{-}gp\)-closed in \(X\times Y\) if and only for each \((x,y)\in(X\times Y)\) there exist \(\delta\text{-}gp\)-open set \(U\) and \(V\) containing \(x\) and \(y\) respectively such that \((U\times V)\cap G(f)=\varphi\).

Theorem 3.30 If \(f:(X,\tau)\rightarrow(Y,\sigma)\) is contra \(\delta\text{-}gp\)-continuous and \(Y\) is Urysohn, then \(G(f)\) is contra \(\delta\text{-}gp\)-closed in the product space \(X\times Y\).

Proof: Let \((x,y)\in(X\times Y)\) then \(y=f(x)\) and there exist open sets \(U\) and \(V\) such that \((x,y)\in(U\times V)\) and \((U\times V)\cap G(f)=\varphi\). Since \(f\) is contra \(\delta\text{-}gp\)-continuous, there exists \(\delta\text{-}gp\)-open set \(G\) such that \(x\notin G\) and \((U\times V)\cap G=\varphi\). Hence \(G(f)\) is contra \(\delta\text{-}gp\)-closed in \(X\times Y\).

Theorem 3.31 Let \(g:X\rightarrow X\times Y\) be the graph function of \(g:X\rightarrow Y\), then \(f(x)=(x,f(x))\) for each \(x\in X\). Then \(f\) is contra \(\delta\text{-}gp\)-continuous if \(g\) is contra \(\delta\text{-}gp\)-continuous.

Proof: Let \(V\) be any open set in \(Y\), then \(X\times V\) is an open set in \(X\times Y\). It follows that \(f^{-1}(U)=g^{-1}(X\times V)\) is \(\delta\text{-}gp\)-closed in \(X\) since \(g\) is contra \(\delta\text{-}gp\)-continuous. Hence \(f\) is contra \(\delta\text{-}gp\)-continuous.

Definition 3.32 [24] A space \(X\) is submaximal if every pre-open set is open in \(X\).

Theorem 3.33 If \(M\) and \(N\) are \(\delta\text{-}gp\)-closed sets in a submaximal space \(X\), then \(M\cup N\) is \(\delta\text{-}gp\)-closed in \(X\).

Proof: Let \(U\) be \(\delta\)-open set in \(X\) such that \(M\cup N\subseteq U\). Then \(pcl(M)\subseteq U\) and \(pcl(N)\subseteq U\). Hence \(M\cup N\) is \(\delta\text{-}gp\)-closed.

Corollary 3.34 If \(A\) and \(B\) are \(\delta\text{-}gp\)-open sets in submaximal space \(X\), then \(A\cap B\) is \(\delta\text{-}gp\)-open in \(X\).

Theorem 3.35 [5] If \(A\subseteq X\) is \(\delta\text{-}gp\)-closed, then \(A=gpcl(A)\).

Remark 3.36 Converse of above theorem is true if \(X\) is \(\delta\text{-}gp\)-additive.

Theorem 3.37 Assume that \(X\) is \(\delta\text{-}gp\)-additive. If \(f:X\rightarrow Y\) and \(g:X\rightarrow Y\) are contra \(\delta\text{-}gp\)-continuous, \(X\) is submaximal and \(Y\) is Urysohn. Then \(F=\{x\in X:x=g(x)\}\) is \(\delta\text{-}gp\)-closed in \(X\).

Proof: Let \(x\in F\), then \(f(x)=g(x)\). Therefore, there exist open sets \(U\) and \(V\) such that \(f(x)\in U\) and \(g(x)\in V\). Then \(U\cap V\neq\varphi\) and \(x\in X\). Since \(f\) and \(g\) are contra \(\delta\text{-}gp\)-continuous, \(f^{-1}(U)\) and \(g^{-1}(V)\) are \(\delta\text{-}gp\)-open sets in \(X\). Let \(M=f^{-1}(U)\) and \(N=g^{-1}(V)\). Hence \(f(x)\in M\cap N\). Then \(M\cap N\) are \(\delta\text{-}gp\)-open sets containing \(x\). Since \(O=M\cap N\), then \(O\) is \(\delta\text{-}gp\)-open set in \(X\). Hence \((O\cap N)\cap g(O)=f(M\cap N)\cap g(M\cap N)\subseteq f(M)\cap g(N)=\varphi\). Therefore \(F\) is \(\delta\text{-}gp\)-closed in \(X\).

Definition 3.38 A space \(X\) is called \(\delta\text{-}gp\)-connected if \(X\) is not the union of two disjoint nonempty \(\delta\text{-}gp\)-open sets.

Theorem 3.39 For a space \(X\) the following are equivalent: (a) \(X\) is \(\delta\text{-}gp\)-connected, (b) \(\delta\)-open and \(\delta\text{-}gp\)-open subset of \(X\). If \(X\) is \(\delta\text{-}gp\)-closed and \(\delta\text{-}gp\)-open in \(X\), then \(X=A\cup(X-A)\). Hence \(A=\varphi\) and \(X\) is \(\delta\text{-}gp\)-connected.

Proof: (a)\(\rightarrow\)(b): Suppose \(A\) is any proper \(\delta\text{-}gp\)-open and \(\delta\text{-}gp\)-closed subset of \(X\). Then \(A\cap (X-A)=\varphi\) which contradicts the fact that \(X\) is \(\delta\text{-}gp\)-connected.

(c) Assume that \(A\neq\varphi\) and \(X\) is \(\delta\text{-}gp\)-connected. Then \(X=A\cup(X-A)\). Hence \(A=\varphi\) and \(X\) is \(\delta\text{-}gp\)-connected.

(b)\(\rightarrow\)(c): Let \(f:X\rightarrow Y\) be a contra \(\delta\text{-}gp\)-continuous function where \(Y\) is a discrete space with at least two points. Then \(f^{-1}(\{y\})=\varphi\) and \(\delta\text{-}gp\)-open for each \(y\in Y\).

Theorem 3.40 If \(f:X\rightarrow Y\) is a contra \(\delta\text{-}gp\)-continuous function and \(X\) is \(\delta\text{-}gp\)-connected space, then \(Y\) is not a discrete space.

Proof: If \(\delta\text{-}gp\)-open and \(\delta\text{-}gp\)-closed subset of \(X\). Let \(f:X\rightarrow Y\) be a contra \(\delta\text{-}gp\)-continuous function defined by \(f(N)=\{y\}\) and \(f(X-N)=\{z\}\) for some distinct points in \(Y\). Hence \(f\) is constant if follows that \(N=X\).
contra δgp-continuous, then $f^{-1}(A)$ is proper nonempty δgp-open and δgp-closed subset of X which contradicts the fact that X is δgp-connected space. Hence Y is not discrete.

Theorem 3.41 If a surjective function $f:X\to Y$ is contra δgp-continuous and X is δgp-connected space, then Y is connected.

Proof: Suppose that Y is not a connected space. Then there exist disjoint open sets U and V in Y such that $Y=U\cup V$. Therefore U and V are closed sets in Y. Since f is contra δgp-continuous, $f^{-1}(U)$ and $f^{-1}(V)$ are δgp-open sets in X. Also f is surjective, $f^{-1}(U)$ and $f^{-1}(V)$ are non empty disjoint and $X=f^{-1}(U)\cup f^{-1}(V)$ which contradicts the fact that X is δgp-connected space. Hence Y is connected.

Theorem 3.42 Let X be a δgp-connected and Y be T_1-space. If $f:X\to Y$ is contra δgp-continuous, then f is constant.

Proof: By hypothesis Y is T_1-space, $K=\{ y \in Y \}$ is a disjoint δgp-open partition of X. If $|K|\geq 2$, then X is the union of two nonempty δgp-open sets. This is contradiction to the fact that X is δgp-connected. Therefore $|K|=1$ and hence f is constant.

Definition 3.43 A topological space X is said to be δgp-Hausdorff space if for any pair of distinct points x and y, there exist disjoint δgp-open sets G and H such that $x \in G$ and $y \in H$.

Theorem 3.44 If an injective function $f:X\to Y$ is contra δgp-continuous and Y is an Urysohn space. Then X is δgp-Hausdorff.

Proof: Let x and y be any two distinct points in X and f is injective, then $f(x)=f(y)$. Since Y is an Urysohn space, there exist open sets A and B in Y containing $f(x)$ and $f(y)$ respectively, such that $\text{cl}(A)\cap\text{cl}(B)=\emptyset$. Then $f(x) \in \text{cl}(A)$ and $f(y) \in \text{cl}(B)$. Since f is contra δgp-continuous, then by Theorem 3.8, there exist δgp-open sets C and D in X containing x and y, respectively, such that $f(C) \subseteq \text{cl}(A)$ and $f(D) \subseteq \text{cl}(B)$. We have $C \cap D \subseteq f^{-1}(\text{cl}(A)) \cap f^{-1}(\text{cl}(B)) = f^{-1}(\emptyset) = \emptyset$. Hence X is δgp-Hausdorff.

Definition 3.45 [25] A space X is called Ultra normal space, if each pair of disjoint closed sets can be separated by disjoint clopen sets.

Definition 3.46 A topological space X is said to be δgp-normal if each pair of disjoint closed sets can be separated by disjoint δgp-open sets.

Theorem 3.47 If $f:X\to Y$ be contra δgp-continuous closed injection and Y is ultra normal, then X is δgp-normal.

Proof: Let E and F be disjoint closed subsets of X. Since f is closed and injective $f(E)$ and $f(F)$ are disjoint closed sets in Y. Since Y is ultra normal there exist disjoint clopen sets U and V in Y such that $f(E)\subseteq U$ and $f(F)\subseteq V$. This implies $E \subseteq f^{-1}(U)$ and $F \subseteq f^{-1}(V)$. Since f is contra δgp-continuous injection, $f^{-1}(U)$ and $f^{-1}(V)$ are disjoint δgp-open sets in X. This shows X is δgp-normal.

Remark 3.48 The composition of two contra δgp-continuous functions need not be contra δgp-continuous as seen from the following examples.

Example 3.49 Let $X=Y=Z=\{ a,b,c \}$, $	au = \{ X,\emptyset,\{ a \},\{ b \},\{ a,b \} \}$, and $\tau = \{ Y,\emptyset,\{ a \} \}$ and $\eta = \{ Z,\emptyset,\{ b,c \} \}$ be topologies on X, Y, and Z respectively. Define a function $f:X\to Y$ as $f(a)=a$, $f(b)=b$ and $f(c)=c$ and a function $g:Y\to Z$ as $g(a)=b$, $g(b)=c$, and $g(c)=a$. Then f and g are contra δgp-continuous but $gf:X\to Z$ is not contra δgp-continuous, since there exists an open set $\{ b,c \}$ in Z such that $(gf)^{-1}(\{ b,c \})=\{ a,b \}$ is not δgp-closed in X.

Theorem 3.50 For any two functions $f:X\to Y$ and $g:Y\to Z$, the following hold:

(i) $g\ast f$ is contra δgp-continuous if f is contra δgp-continuous and g is contra continuous.

(ii) $g\ast f$ is contra δgp-continuous if f is δgp-continuous and g is contra continuous.

(iii) $g\ast f$ is contra δgp-continuous if f is δgp-irresolute and g is contra δgp-continuous.

Proof: (i) Let U be an open set in Z. Then $g^{-1}(V)$ is open in Y since g is continuous. Therefore $f^{-1}(g^{-1}(U))=(g\ast f)^{-1}(U)$ is δgp-closed in X because f is contra δgp-continuous. Hence $g\ast f$ is contra δgp-continuous. The proofs of (ii) and (iii) are analogous to (i) with the obvious changes.

Theorem 3.51 Let $f:X\to Y$ be contra δgp-continuous and $g:Y\to Z$ be δgp-continuous with Y is $T_{\delta}gp$-space, then $gf:X\to Z$ is contra δgp-continuous.

Proof: Let V be any open set in Z. Since g is δgp-continuous, $g^{-1}(V)$ is δgp-open in Y and since Y is $T_{\delta}gp$-space, $g^{-1}(V)$ open in Y. Since f is contra δgp-continuous, $f^{-1}(g^{-1}(V))=(gf)^{-1}(V)$ is δgp-closed set in X. Therefore gf is contra δgp-continuous.
Definition 3.52 A function \(f: X \to Y \) is called pre \(\delta g \)-closed if the image of every \(\delta g \)-closed set of \(X \) is \(\delta g \)-closed in \(Y \).

Theorem 3.53 Let \(f: X \to Y \) be pre \(\delta g \)-closed surjection and \(g: Y \to Z \) be a function such that \(g \circ f: X \to Z \) is contra \(\delta g \)-continuous, then \(g \) is contra \(\delta g \)-continuous.

Proof: Let \(U \) be any open set in \(Z \). Then \((g \circ f)^{-1}(U) = f^{-1}(g^{-1}(U)) \) is \(\delta g \)-closed in \(X \). Since \(f \) is a pre \(\delta g \)-closed surjection, \(f^{-1}(g^{-1}(U)) = g^{-1}(U) \) is \(\delta g \)-closed set in \(Y \). Therefore, \(g \) is contra \(\delta g \)-continuous.

REFERENCES

AUTHOR PROFILE

Mr. J.B. Toranagatti is working as Asst. Professor at Karnataka Collage, Dharwad, Karnataka, India. He is having overall teaching experience of 12 years. His research areas of interest are General Topology and Fuzzy Topology. He has published research papers in pre revived International Journals.