Fixed point Theorems of Multivalued Mappings in Cone Metric Spaces via Cone C-Class function

R. Krishnakumar 1, K. Dinesh 2*, Arslan Hojat Ansari 3

1 PG & Research Department of Mathematics, Urumu Dhanalakshmi College, Tiruchirappalli-19, Tamilnadu, India
2 PG & Research Department of Mathematics, Urumu Dhanalakshmi College, Tiruchirappalli-19, Tamilnadu, India
3 Department of Mathematics, Karaj Branch, Islamic Azad University, Karaj, Iran.

*Corresponding Author: dinesh.skksv93@gmail.com, Tel.: +91 7418865975

Available online at: www.isroset.org
Accepted 18/Aug/2018, Online 30/Aug/2018

Abstract — Let P be a subset of a Banach space E and P is normal and regular cone on E, we prove the existence of the fixed point for multi valued maps and φ-ψ-contractive mappings in cone metric spaces via cone C class functions.

Keywords — Cone metric space, Multivalued mappings, Fixed point, Cone C class function

I. INTRODUCTION

In recent years, several authors (see [1-5]) have studied the strong convergence to a fixed point with contractive constant in cone metric spaces. Seong Hoon Cho and Misen Kim [5] have proved certain fixed point theorems by using Multivalued mapping in the setting of contractive constant in metric spaces. Note on $\varphi - \psi$ -contractive type mappings and related fixed point are proved by Arslan Hojat Ansari [8]. Fixed point theorems of Multivalued mappings in Cone metric spaces proved by Dr.M. Marudai and Dr.R. Krishnakumar [1].

II. PRELIMINARIES

Definition 1.1: Let E be a Banach space and a subset, P of E is said to be a cone if it satisfies the following conditions
(i) $P \neq \emptyset$ and P is closed;
(ii) $ax + by \in P \forall x, y \in P$ and a, b are non-negative real numbers
(iii) $P \cap (-P) = \emptyset$

Given a cone $P \subseteq E$, we define a partial ordering \leq with respect to the cone P by $x \leq y$ if and only if $y - x \in P$. If $y - x \in interior \ of \ P$, then it is denoted by $x \ll y$. The cone P is said to be Normal if a number $K > 0$ such that for all $x, y \in E$, $0 \leq x \leq y$ implies $\|x\| \leq K\|y\|$. The cone P is called regular if every increasing sequence which is bounded above is convergent and every decreasing sequence which is bounded below convergent.

Definition 1.2: Let X be a non-empty set, and suppose the mapping $d: X \times X \rightarrow E$ is said to be a cone metric space if it satisfies
(i) $0 \leq d(x, y) \forall x, y \in X$ and $d(x, y) = 0$ if and only if $x = y$
(ii) $d(x, y) = d(y, x)$ for all $x, y \in X$
(iii) $d(x, y) = d(x, z) + d(z, y)$ for all $x, y, z \in X$

Example 1.3: Let $E = R^2, P = \{(x, y) \in E; x, y \geq 0\}, X = R$ and $d: X \times X \rightarrow E$ defined by
$d(x, y) = (|x - y|, \alpha |x - y|)$

Where $\alpha \geq 0$ is a constant. Then (X, d) is a cone metric space.

Definition 1.4: Let (X, d) be cone metric space, $x \in X$ and $\{x_n\}$ a sequence in X. Then
(i) $\{x_n\}$ converges to x whenever for every $c \in E$ with $0 \ll c$ there is a natural number N such that $d(x_n, x) \ll c$ for all $n \geq N$
Definition 1.5: Let \((X,d)\) is said to be a complete cone metric space, if every Cauchy sequence is convergent in \(X\).

Definition 1.6: Let \((X,d)\) be a metric space. We denote \(CB(X)\) the family of nonempty closed bounded subset of \(X\). Let \(H(\cdot,\cdot)\) be the Hausdorff distance on \(CB(X)\). That is, for \(A,B \in CB(X)\)
\[
H(A,B) = \max\{\sup_{a \in A} d(a,B), \sup_{b \in B} d(A,b)\}
\]
Where \(d(a,B) = \inf_{b \in B} d(a,b)\) is the distance from the point \(a\) to the subset \(B\). An element \(x \in X\) is said to be a fixed point of a multi-valued mapping \(T:X \rightarrow 2^X\) if \(x \in T(x)\)

Definition 1.7: A function \(\psi: P \rightarrow P\) is called an altering distance function if the following properties are satisfied:
(i) \(\psi\) is non-decreasing and continuous
(ii) \(\psi(t) = 0\) if and only if \(t = 0\)

Definition 1.8: An ultra altering distance function is a continuous, non decreasing mapping \(\varphi:P \rightarrow P\) such that \(\varphi(t) > 0\), \(t > 0\) and \(\varphi(0) \geq 0\)

We denote this set with \(\Phi_u\)

Definition 1.9: A mapping \(f:P^2 \rightarrow P\) is called cone \(C\) -class function if it is continuous and satisfies following axioms:
1) \(F(s,t) < s\)
2) \(F(s,t) = s\) implies that either \(s = 0\) or \(t = 0\); for all \(s,t \in P\)

We denote cone \(C\) -class functions as \(\mathcal{C}\)

Example 2.9: The following functions \(F:P^2 \rightarrow P\) are elements of \(\mathcal{C}\), for all \(s,t \in [0,\infty)\):
(i) \(F(s,t) = s - t\)
(ii) \(F(s,t) = ks\), where \(0 < k \leq 1\).
(iii) \(F(s,t) = s\beta(s), \) where \(\beta: [0,\infty) \rightarrow [0,1]\).
(iv) \(F(s,t) = \Psi(s), \) where \(\Psi:P \rightarrow P, \Psi(0) = 0, \Psi(s) > 0\) for all \(s \in P\) with \(s \neq 0\) and \(\Psi(s) \leq s\) for all \(s \in P\).
(v) \(F(s,t) = s - \varphi(s), \) where \(\varphi: [0,\infty) \rightarrow [0,\infty]\) is a continuous function such that \(\varphi(t) = 0 \Leftrightarrow t = 0\).
(vi) \(F(s,t) = s - h(s,t), \) where \(h: [0,\infty) \times [0,\infty) \rightarrow [0,\infty]\) is a continuous function such that \(h(s,t) = 0 \Leftrightarrow t = 0\) for all \(s,t > 0\).
(vii) \(F(s,t) = \varphi(s), F(s,t) = s \Rightarrow s = 0, \) here \(\varphi: [0,\infty) \rightarrow [0,\infty]\) is an upper semi continuous function such that \(\varphi(0) = 0\) and \(\varphi(t) < t\) for \(t > 0\).

Lemma 1.10: Let \(\psi\) and \(\varphi\) are altering distance and ultra altering distance functions respectively, \(F \in \mathcal{C}\) and \(\{s_n\}\) a decreasing sequence in \(P\) such that
\[
\psi(s_{n+1}) \leq F(\psi(s_n), \varphi(s_n))
\]
For all \(n \geq 1\). Then \(\lim_{n \to \infty} s_n = 0\)

III. MAIN RESULTS

Theorem 2.1: Let \((X,d)\) be a complete cone metric space and the mapping \(T:X \rightarrow CB(X)\) be multivalued map satisfying for each \(x,y \in X\)
\[
\psi(H(Tx,Ty)) \leq F(\psi(a[d(x,Tx) + d(y,Ty)] + b[d(x,Ty) + d(Tx,y)])
\]
\[
\phi(a[d(x,Tx) + d(y,Ty)] + b[d(x,Ty) + d(Tx,y)])\text{ for all }x,y \in X \text{ and } a + b < \frac{1}{2}, a,b \in \left[0,\frac{1}{2}\right].
\]
\(\psi\) and \(\varphi\) are altering distance and ultra altering distance functions respectively. \(F \in \mathcal{C}\) such that \(\psi(t+s) \leq \psi(t) + \psi(s)\). Then \(T\)
has a fixed point in \(X\)

Proof: for every \(x_0 \in X\) and \(n \geq 1, x_1 \in Tx_0 \text{ and } x_{n+1} \in Tx_n\)
\[
\psi(d(x_{n+1},x_n)) \leq \psi(H(Tx_n,Tx_{n-1})) \leq F(\psi(a[d(x_n,Tx_n) + d(x_{n-1},Tx_{n-1})] + b[d(x_n,Tx_{n-1}) + d(Tx_n,x_{n-1})]),
\]

© 2018, IJSRMSS All Rights Reserved 273
\[\phi(a[d(x_n, x_{n+1}) + d(x_{n+1}, x_m)] + b[d(x_n, T_{x_{n+1}}) + d(T_{x_{n+1}}, x_m)]) \]
\[\leq F(\phi(a[d(x_n, x_{n+1}) + d(x_{n+1}, x_m)] + b[d(x_n, x_{n+1}) + b[d(x_n, x_{n+1}) + d(x_{n+1}, x_m)]) \]
\[\leq F(\psi(a[d(x_n, x_{n+1}) + d(x_{n+1}, x_m)] + b[d(x_n, x_{n+1}) + d(x_{n+1}, x_m)]) \]
\[\leq F(\psi(a[d(x_n, x_{n+1}) + d(x_{n+1}, x_m)] + b[d(x_n, x_{n+1}) + d(x_{n+1}, x_m)]) \]
\[\leq F(\psi((a + b)[d(x_n, x_{n+1}) + d(x_{n+1}, x_m)]) \]
\[\leq \psi((a + b)[d(x_n, x_{n+1}) + d(x_{n+1}, x_m)]) \]
\[d(x_{n+1}, x_m) \leq L(d(x_n, x_{n+1}) + d(x_{n+1}, x_m)) \]

For \(n \geq 0 \) to \(n \geq m \), we have
\[d(x_n, x_m) \leq d(x_n, x_{n+1}) + d(x_{n+1}, x_m) \leq [L^{n+1} + L^{n+1} + \ldots + L^m]d(x_1, x_0) \]
\[\leq \frac{L^m}{1-L}d(x_1, x_0) \]

Let \(0 < c \) be given, choose a natural number \(N_1 \) such that \(\frac{L^m}{1-L}d(x_1, x_0) < c \) for all \(m \geq N_1 \). This implies \(d(x_n, x_m) \leq c \). For \(n \geq m \), \(\{x_n\} \) is a Cauchy sequence in \((X, d)\) is a complete cone metric space, there exists \(p \in X \) such that \(x_n \rightarrow p \). Choose a natural number \(N_2 \) such that \(d(x_n, p) < \frac{L^m}{1-L}d(x_1, x_m) \leq N_2 \). Hence for \(n \geq N_2 \) we have \(d(x_n, p) < \frac{c(1-L)}{3} \) where \(k = a + b \)
\[\psi(d(Tp, p)) \leq \psi(H(Tx_n, Tp) + d(Tx_n, p)) \]
\[\leq F(\psi(a[d(x_n, Tx_n) + d(p, Tp)] + b[d(x_n, Tp) + d(Tx_n, p)] + d(x_{n+1}, p)) \]
\[\leq F(\psi(a[d(x_n, x_{n+1}) + d(p, Tp)] + b[d(x_n, Tp) + d(x_{n+1}, p)] + d(x_{n+1}, p)) \]
\[\leq F(\psi(a[d(x_n, x_{n+1}) + d(p, Tp)] + b(d(x_n, Tp) + d(x_{n+1}, p)) + d(x_{n+1}, p)) \]
\[\leq F(\psi(a[d(x_n, x_{n+1}) + d(p, Tp)] + b(d(x_n, Tp) + d(x_{n+1}, p)) + d(x_{n+1}, p)) \]
\[\leq F(\psi(a[d(x_n, x_{n+1}) + d(p, Tp)] + b(d(x_n, Tp) + d(x_{n+1}, p)) + d(x_{n+1}, p)) \]
\[\leq (1 - k)d(Tp, p) \leq kd(Tx_n, Tp) + kd(Tx_n, p) + d(x_{n+1}, p) \]
\[\leq \frac{L^m}{1-L}d(Tx_n, Tp) + d(x_{n+1}, p) \]
\[d(Tp, p) \leq \left(\frac{L^m}{1-L}d(Tx_n, Tp) + d(x_{n+1}, p) \right) \]
For all \(x, y \in X\) and \(r \in [0, 1]\). \(\psi\) and \(\varphi\) are altering distance and ultra altering distance functions respectively, \(F \in C\) such that
\[
\psi(t + s) \leq \psi(t) + \psi(s).
\]
Then \(T\) has a fixed point in \(X\).

Proof: for every \(x_0 \in X\) and \(n \geq 1\), \(x_1 \in Tx_0\) and \(x_{n+1} \in Tx_n\)
\[
\psi(d(x_{n+1}, x_n)) \leq \psi(H(Tx_n, Tx_{n-1})
\]
\[
\leq F(\psi(r \max\{d(x_n, x_{n-1}), d(x_n, Tx_n), d(x_{n-1}, Tx_{n-1})\}), \varphi(r \max\{d(x_n, x_{n-1}), d(x_n, Tx_n), d(x_{n-1}, Tx_{n-1})\}))
\]
\[
\leq F(\psi(r \max\{d(x_n, x_{n-1}), d(x_n, x_{n+1}), d(x_{n-1}, x_{n+1})\}), \varphi(r \max\{d(x_n, x_{n-1}), d(x_n, x_{n+1}), d(x_{n-1}, x_{n+1})\}))
\]
\[
\leq F(\psi(rd(x_n, x_{n-1})), \varphi(rd(x_n, x_{n-1})))
\]
\[
\leq r^n d(x_1, x_0)
\]

For \(n > m\) we have
\[
d(x_n, x_m) \leq d(x_n, x_{n-1}) + d(x_{n-1}, x_{n-2}) + \ldots + d(x_{m+1}, x_m)
\]
\[
\leq [r^{n-1} + r^{n-2} + \ldots + r^m]d(x_1, x_0)
\]
\[
\leq \frac{r^m}{1-r}d(x_1, x_0)
\]
Let \(0 < c\) be given, choose a natural number \(N_1\) such that
\[
\frac{r^m}{1-r}d(x_1, x_0) < c\quad \text{for all } m \geq N_1\]

\(c\) implies \(d(x_n, x_m) < c\) for all \(m \geq N_1\) this implies \(d(x_n, x_m) < c\). For \(n > m\), \(\{x_n\}\) is a Cauchy sequence in \((X, d)\) is complete cone metric space, there exists \(p \in X\) such that \(x_n \to p\). Choose a natural number \(N_2\) such that
\[
d(x_n, p) < \frac{c}{3}\quad \text{for all } n \geq N_2.
\]
Hence for \(n \geq N_2\) we have \(d(x_n, p) < \frac{c}{3}\)
\[
\psi(d(Tp, P)) \leq \psi(H(Tx_n, Tx_0) + d(Tx_n, p))
\]
\[
\leq F(\psi(r \max\{d(x_n, p), d(x_n, Tx_n), d(p, Tx_n)\}), \varphi(r \max\{d(x_n, p), d(x_n, Tx_n), d(p, Tx_n)\}))
\]
\[
\leq F(\psi(r \max\{d(x_n, x_{n+1}), d(p, x_{n+1})\}), \varphi(r \max\{d(x_n, x_{n+1}), d(p, x_{n+1})\}))
\]
\[
\leq F(\psi(rd(x_n, x_{n+1})), \varphi(rd(x_n, x_{n+1})))
\]
\[
\leq r^n d(x_1, x_0)
\]

For all \(n \geq N_2\), \(d(Tp, P) \leq \frac{c}{m}\) for all \(m \geq 1\), we get
\[
c - d(Tp, P) \in P \quad \text{and } m \to \infty \quad \text{we get } \frac{c}{m} \to 0
\]

and \(P\) is closed \(-d(Tp, P) \in P\)
\[
\therefore d(Tp, P) = 0 \quad \text{and so } p \in Tp.
\]

Corollary 2.2: Let \((X, d)\) be a complete cone metric space and the mapping \(T : X \to CB(X)\) be multivalued map satisfy the condition
\[
H(Tx, Ty) \leq k d(x, y)
\]
For all \(x, y \in X\) and \(k \in [0, 1]\). \(\psi\) and \(\varphi\) are altering distance and ultra altering distance functions respectively, \(F \in C\) such that
\[
\psi(t + s) \leq \psi(t) + \psi(s).
\]
Then \(T\) has a fixed point in \(X\).

Proof: The proof of the corollary immediately follows by taking \(d(x, y)\) as maximum value in previous theorem.

Note 2.3: We prove the above theorems in the setting of \(P\) is a normal cone with normal constant \(K\)

Theorem 2.4: Let \((X, d)\) be a complete cone metric space and \(P\) a normal cone with normal constant \(K\). Suppose the mapping \(T : X \to CB(X)\) be multivalued map satisfy the condition
\[
\psi(H(Tx, Ty)) \leq F(\psi(r \max\{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(Tx, y)\}), \varphi(r \max\{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(Tx, y)\}))
\]
For all \(x, y \in X\) and \(r \in [0, 1]\). \(\psi\) and \(\varphi\) are altering distance and ultra altering distance functions respectively, \(F \in C\) such that
\[
\psi(t + s) \leq \psi(t) + \psi(s).
\]
Then \(T\) has a fixed point in \(X\).

Proof: for every \(x_0 \in X\) and \(n \geq 1\), \(x_1 \in Tx_0\) and \(x_{n+1} \in Tx_n\)
\[
\psi(d(x_{n+1}, x_n)) \leq \psi(H(Tx_n, Tx_{n-1})
\]
\[
\leq F(\psi(r \max\{d(x_n, x_{n-1}), d(x_n, Tx_n), d(x_{n-1}, Tx_{n-1})\}), \varphi(r \max\{d(x_n, x_{n-1}), d(x_n, Tx_n), d(x_{n-1}, Tx_{n-1})\}))
\]
\[
\leq F(\psi(r \max\{d(x_n, x_{n-1}), d(x_n, x_{n+1}), d(x_{n-1}, x_{n+1})\}), \varphi(r \max\{d(x_n, x_{n-1}), d(x_n, x_{n+1}), d(x_{n-1}, x_{n+1})\}))
\]
\[
\leq F(\psi(rd(x_n, x_{n-1})), \varphi(rd(x_n, x_{n-1})))
\]
\[
\leq r^n d(x_1, x_0)
\]
\[\leq \psi(r \max\{d(x_n, x_{n-1}), d(x_{n+1}, x_{n-1})\})\]

Case (i) If \(d(x_{n+1}, x_0) \leq rd(x_n, x_{n-1})\) then we get, \(d(x_{n+1}, x_n) \leq r^n d(x_1, x_0)\) for \(n > m\)

\[d(x_n, x_m) \leq \psi(r^{n-1} + r^{n-2} + \cdots + r^m) d(x_1, x_0)\]

\[\leq \frac{r^m}{(1-r)} d(x_1, x_0)\]

We get \(\|d(x_n, x_m)\| \leq \frac{r^m}{(1-r)} d(x_1, x_0)\). \(d(x_n, x_m) \to 0\) as \(n, m \to \infty\). Hence \(\{x_n\}\) is a Cauchy sequence. By the completeness of \(X\), there is \(p \in X\) such that \(x_n \to p\) as \(n \to \infty\)

\[\psi(d(Tp, P)) \leq \psi(H(Tx_n, P) + d(Tx_n, p))\]

\[F(\psi(r \max\{d(x_n, x_0), d(x_n, Tx_n), d(p,Tp), d(x_n, Tx_n), d(Tx_n, P)\} + d(x_{n+1}, p)),\]

\[\varphi(r \max\{d(x_n, x_0), d(x_n, Tx_n), d(p,Tp), d(x_n, Tx_n), d(Tx_n, P)\} + d(x_{n+1}, p))\]

\[\leq F(\psi(r \max\{d(x_n, x_{n+1}), d(p,Tp), d(x_n, Tx_n), d(x_{n+1}, p)\} + d(x_{n+1}, p)),\]

\[\varphi(r \max\{d(x_n, x_{n+1}), d(p,Tp), d(x_n, Tx_n), d(x_{n+1}, p)\} + d(x_{n+1}, p))\]

\[\leq F(\psi(rd(p, Tp)), \varphi(rd(p, Tp)))\]

\[d(Tp, P) = 0\). Hence \(P \in Tp\)

Case (ii) \(d(x_{n+1}, x_n) \leq rd(x_n+1, x_{n-1})\) then we get

\[d(x_{n+1}, x_n) \leq rd(x_n, x_{n-1}) + d(x_{n-1}, x_n)\]

\[\leq \frac{r}{1-r} [d(x_n, x_{n-1})]\]

\[h[d(x_n, x_{n-1})]\quad \text{where} \quad h = \frac{r}{1-r} < 1\]

For \(n > m\)

\[d(x_n, x_m) \leq d(x_n, x_{n-1}) + d(x_{n-1}, x_n)\]

\[\leq \frac{h^m}{(1-h)} d(x_1, x_0)\]

We get \(\|d(x_n, x_m)\| \leq \frac{h^m}{(1-h)} d(x_1, x_0)\). \(d(x_n, x_m) \to 0\) as \(n, m \to \infty\). Hence \(\{x_n\}\) is a Cauchy sequence. By the completeness of \(X\), there is \(p \in X\) such that \(x_n \to p\) as \(n \to \infty\)

\[\psi(d(Tp, P)) \leq \psi(H(Tx_n, P) + d(Tx_n, p))\]

\[F(\psi(r \max\{d(x_n, x_0), d(x_n, Tx_n), d(p,Tp), d(x_n, Tx_n), d(Tx_n, P)\} + d(x_{n+1}, p)),\]

\[\varphi(r \max\{d(x_n, x_0), d(x_n, Tx_n), d(p,Tp), d(x_n, Tx_n), d(Tx_n, P)\} + d(x_{n+1}, p))\]

\[\leq F(\psi(r \max\{d(x_n, x_{n+1}), d(p,Tp), d(x_n, Tx_n), d(x_{n+1}, p)\} + d(x_{n+1}, p)),\]

\[\varphi(r \max\{d(x_n, x_{n+1}), d(p,Tp), d(x_n, Tx_n), d(x_{n+1}, p)\} + d(x_{n+1}, p))\]

\[\leq F(\psi(rd(p, Tp)), \varphi(rd(p, Tp)))\]

\[d(Tp, P) = 0\). Hence \(P \in Tp\)

\[\psi(d(p, q)) = \psi(H(Tp, Tq))\]

\[\leq F(\psi(r \max\{d(x, y), d(p, Tp), d(q, Tq), d(p, Tp), d(Tq, Tp)\} + d(x, y)),\]

\[\varphi(r \max\{d(x, y), d(p, Tp), d(q, Tq), d(p, Tp), d(Tq, Tp)\} + d(x, y))\]

\[\leq F(\psi(rd(p, q)), \varphi(rd(p, q)))\]

\[\leq F(\psi(r \max\{d(p, q), d(p, q), d(p, q), d(p, q)\}),\]

\[\varphi(r \max\{d(p, q), d(p, q), d(p, q), d(p, q)\})\]

\[\leq F(\psi(rd(p, q)), \varphi(rd(p, q)))\]

This is contradiction and hence \(T\) has a unique fixed point in \(X\)

Corollary 2.3: Let \((X, d)\) be a complete cone metric space and \(P\) a normal cone with normal constant \(K\). Suppose the mapping \(T: X \to CB(X)\) be multivalued map satisfy the condition

\[\psi(H(Tx, Ty)) \leq F(\psi(r \max\{d(x, y), d(x, Tx), d(y, Ty)\}), \varphi(r \max\{d(x, y), d(x, Tx), d(y, Ty)\}))\]

For all \(x, y \in X\) and \(r \in [0, 1]\). \(\psi\) and \(\varphi\) are altering distance and ultra altering distance functions respectively. \(F \in C\) such that \(\psi(t + s) \leq \psi(t) + \psi(s)\). Then \(T\) has a fixed point in \(X\)

Proof: The proof of the corollary immediately follows since

\[\max\{d(x, y), d(x, Tx), d(y, Ty)\} \leq \max\{d(x, y), d(x, Tx), d(y, Ty), d(Tx, y)\}\]

REFERENCES

AUTHORS PROFILE
Dr. R. Krishnakumar is the Associate Professor and Head of the PG & Research Department of Mathematics, Urumu Dhanalakshmi College. He has above 22 years experience in teaching. His field of research is Fixed point theory.

K. Dinesh is pursuing his Ph.D in PG & Research Department of Mathematics, Urumu Dhanalakshmi College, Trichy. His field of research is Fixed point theory.

Arslan Hojat Ansari is the assistant professor, Karaj Branch, Islamic Azad University, Karaj, Iran.