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Abstract— Frailty models are used in the survival analysis to account for the unobserved heterogeneity in individual risks to 

disease and death. To analyze the bivariate data on related survival times (e.g. matched pairs experiments, twin or family data), 

the shared frailty models were suggested. Shared frailty models are used despite their limitations. To overcome their 

disadvantages correlated frailty models may be used. In this paper, we propose correlated gamma frailty model with logistic 

exponential distribution as baseline distribution to analyze real-life bivariate survival dataset of McGilchrist and Aisbett [9] 

related to kidney infection. The Bayesian approach of Markov Chain Monte Carlo was employed to estimate the parameters 

involved in the models and modles comparison was done by using Bayesian comparison techniques such as Akaike 

information criteria (AIC), Bayesian information criteria (BIC), Deviance information criteria (DIC) and Bayes factor. 

Simulation study also carried out to compare the true values of parameters and estimated values of the parameters. A better 

model suggested for the data. 
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I.  INTRODUCTION  

A correlated frailty model is the expansion of shared frailty 

model. In a shared frailty model, it is expected that the 

individuals within a group share common frailty since they 

are related to each other.  For illustration, the same family 

members share the same hereditary variables or living within 

the same area share common natural variables. However, it 

does have some few demerits. Firstly, it powers that within 

the cluster the unobserved variables are to be the same, 

which may not be applicable in some real-life experiment. 

Secondly, within a cluster the survival times are dependent, 

which is based on marginal distributions of survival times. 

However, confounding is observed between dependence 

parameter and population heterogeneity when covariates are 

shown in a proportional hazards model with gamma-

distributed [1]. Which infers that from marginal distributions 

the joint distribution can be identified [4]. Thirdly, within the 

cluster, one-dimensional frailty can only bring out a positive 

association. But, negative association too observed between 

survival times within the cluster. For illustration, in heart 

transplantation study, generally, the longer the patient must 

wait for an available heart, the shorter the patient is likely to 

survive after the transplantation. Subsequently, a negative 

association appeared between the waiting time and survival 

time of the patient. 

 

To avoid these limitations, correlated frailty models are 

being outlined for the examination of multivariate failure 

time data, in which related random factors are utilized to 

clarify the frailty impact for each cluster. Unlike shared 

frailty models, correlated frailty models give not only 

variance parameters of the frailties, extra parameter to 

account for the relationship between the survival times. The 

correlated frailty models permit us to add additional 

correlation parameters, which can address the questions 

about associations between event times. When the 

association between the event times is extraordinarily 

intrigued, the correlated frailty model is more appropriate, 

for illustration, genetic studies of event times in families. The 

conditional survival function for the correlated frailties U1 

and U2 in the bivariate case (here without observed 

covariates) looks like 

1 01 1 2 02 2( ) ( )

1 2 1 2 1 1 1 2 2 2( , | , ) ( | ) ( | )
U H t U H t

S t t U U S t U S t U e e
 

 

           (1) 
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The distribution of the random vector (U1,U2) necessarily to 

be specified and determines the association structure of the 

event times in the model. 

 

In the shared frailty model same frailties are assumed, but for 

correlated frailty two individuals in a pair, frailties are not 

necessarily the same. We assume that the frailties are acting 

multiplicatively on the baseline hazard function (proportional 

hazards model) and that the observations in a pair are 

conditionally independent, given the frailties. Hence, the 

hazard of the individual j (j = 1, 2) has the form 
'

( | , ) ( ) jX

j j j ojh t X U U h t e


   (2) 

where t denotes age or time, Xi is a vector of observed 

covariates, β is a vector of regression parameters describing 

the effect of the covariates Xj, h0j(t) are baseline hazard 

functions, and Uj are frailties. Bivariate correlated frailty 

models are characterized by the joint distribution of a two-

dimensional vector of frailties (U1, U2). If the two frailties 

are independent, the resulting lifetimes are independent, and 

no clustering is present in the model. The shared frailty 

model can be obtained as a special case of the correlated 

frailty model when both the frailties are equal [14]. 

 

In order to derive a marginal likelihood function, the 

assumption of conditional independence of lifespans, given 

the frailty, is used. Let djk be a censoring indicator for 

individual j(j = 1,2) in pair k(k = 1,…, n). Indicator djk is 1 if 

the individual has experienced the event of interest, and 0 

otherwise. According to (2), the conditional survival function 

of the j
th

 individual in the k
th

 pair is 
( )

( | , ) jk oj k jkU H t X

jk jkS t X U e e


  (3) 

with H0j(t) denoting the cumulative baseline hazard function. 

The contribution of individual j(j = 1, 2) in pair k(k= 1,…, n) 

to the conditional likelihood is given by 
( )

[ ( ) ] jk jk oj jk k jkk
d U H t XXjk

jk ojU h t e e e
 

 (4) 

where tjk stands for an observation time of individual j from 

pair k. Assuming the conditional independence of lifespans, 

given the frailty, and integrating out the frailty, we obtain the 

marginal likelihood function 

1 1 1 01 1 1

2

2 2 2 02 2 2

( )

1 1 1

1

( )

2 2 2 1 2 1 2

[ ( ) ]

[ ( ) ] ( , )
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n
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X d u H t X
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u h t e e e

u h t e e e f u u du du

 

 








 (5) 

where f(.,.) is the probability density function of the 

corresponding frailty distribution. All these formulas can be 

easily extended to the multivariate case, but need a 

specification of the correlation structure between individuals 

in a cluster in terms of the multivariate density function, 

which complicates analysis. Divya et al. [13] also explained 

the algorithm to take decision about the data where there is 

no known right path for the specific problem. 

The remaining sections are categorized as follows-illustration 

of correlated frailty model is in section 2. Baseline 

distribution and proposed models described in sections 3 and 

4. Sections 5 and 6 for estimation strategies and simulation 

study.  Sections 7 and 8 for application to real life data and 

discussion of the results. 

 

II. CORRELATED GAMMA FRAILTY MODEL 

 

The correlated gamma-frailty model [10,15] is developed for 

the analysis of multivariate failure time data, in which two 

associated random variables are used to characterize the 

frailty effect for each cluster. For example, one random 

variable is assigned to twin 1 and another to twin 2 so that 

they are no longer constrained to having common frailty as in 

the shared frailty model. 

 

To be more specific, let p0, p1 be some real positive 

variables. Set v = p0 + p1 and let Y0,Y1,Y2 be independent 

gamma-distributed random variables with Y0 ~ G(p0, v), Y1 ~ 

G (p1, v), Y2 ~ G (p1, v). Consequently, 

U1 = Y 0 + Y 1 ~ G (p0 + p1,v)~ G (v,v) 

U2 = Y 0 + Y 2 ~ G (p0 + p1,v)~ G(v,v) 

are the frailties of individual 1 and 2 in a pair. The bivariate 

survival function in term of cumulative hazard function of 

this model is given by 
1 2

2 1
2 2

1 2 1 2

1 1

2 2 2 2

1 2 1 01 1 2 02 2 1 01 1 2 02 2( , ) (1 ( ) ( )) (1 ( )) (1 ( ))S t t H t H t H t H t

 
 

 

      

   


     

                 (6)
 

which results in the following representation of the gamma 

correlated frailty model 
1 2

2 1

2 2
1 2 1 2

1 1

1 1 2 2
1 2
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( ( ) ( ) 1)
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 


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 



 

     (7) 

where S(t) denotes the marginal univariate survival function, 

assumed to be equal for both partners in a twin pair and 0 ≤ρ 

≤ min
1 2

2 1

,
 

 

 
 
 

 holds. Furthermore, it holds that ρ = 

corr(U1,U2) and σ
2
 = V(Uj), (j = 1, 2). For simplicity, we 

drop the dependence of the survival functions from observed 

covariates. 

 

The bivariate distribution in the presence of covariates, when 

the frailty variable is degenerate is given by 
 01 1 02 2( ( ) ( ) )

1 2( , ) j H t H t
S t t e

 


  (8)
 

where 
k jkX

k e


  . According to different assumptions on 

the baseline distributions we get different correlated gamma 

frailty models. 
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III. BASELINE DISTRIBUTION 

 

Logistic Exponential distribution 

Generally, in a parametric model it is assumed that baseline 

hazard r0(t) is a parametric function. Here, the logistic 

exponential distribution is considered as baseline distribution 

proposed by Lan and Leemis [8] Logistic exponential 

distribution is useful in the characterization of the lifetime 

data analysis and having the hazard function for time t as 

 
1

1
( ) ; 0, , 0

1 ( 1)

t t

t

e e
r t t

e


 

 


 




   

 
 (9) 

The corresponding cumulative hazard function and survival 

functions are respectively, 

  ( ) ln 1 1tR t e


      (10) 

1
( )

1 ( 1)t
S t

e 


 
    (11) 

The failure rate is constant if α and λ values are one. If λ 

value is 1, then the failure rate is increasing for α > 1 and 

decreasing for α < 1. If α value is one, the failure rate 

increasing for λ < 0 and decreasing for λ > 0. The failure rate 

is also constant for λ = 0 and α = 1. 

 

IV. PROPOSED MODELS 

 

The unconditional survival function is obtained by replacing 

the cumulative hazard functions of logistic exponential 

distribution in equations (6) and (7). Then, 
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(12)
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      (13)
 

 

The equation (12) is correlated gamma frailty model based 

on logistic exponential distribution and equation (13) is 

without frailty model based on the same baseline distribution 

and called as model-I and model-II. 

 

V. BAYESIAN ESTIMATION OF PARAMETERS AND 

MODEL COMPARISONS 

 

Suppose there are n individuals under study, whose first and 

second observed failure times are represented by (t1k, t2k). Let 

d1k and d2k be the observed censoring times for the k
th

 

individual (k= 1, 2,..., n) for first and second recurrence times 

respectively. We also assume the independence between 

censoring scheme and life times of individuals.  

 

The contribution of bivariate life time random variable of the 

k
th

 individual in likelihood function is given by,  
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And the likelihood function is, 

      

31 2 4
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   
      (14) 

 where θ, ψ and β are respectively the frailty 

parameter, the vector of baseline parameters and the vector 

of regression coefficients. For without frailty model 

likelihood function is  

  

31 2 4

1 1 2 2 1 2 3 1 2 4 1 2

1 1 1 1

( , ) ( , ) ( , ) ( , ) ( , )
nn n n
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      (15) 

 Where n1, n2, n3 and n4 are random number of 

observations of failure times (t1,t2) observed to lie in the 

ranges t1k < d1k, t2k < d2k; t1k < d1k, t2k > d2k; t1k > d1k, t2k < d2k 

and t1k > d1k, t2k > d2k respectively. The contributions of k
th

 

individual in the likelihood function as 
2
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
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     (16) 

Maximum likelihood method plays an important role in 

computing the estimators of models. Unfortunately 

computing the maximum likelihood estimators (MLEs) 

involves solving a eight-dimensional optimization problem 
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for Model-I and five-dimensional optimization problem for 

Model-II. As the method of maximum likelihood fails to 

estimate the parameters due to the convergence problem in 

the iterative procedure, so we use the Bayesian approach. 

The traditional maximum likelihood approach to estimation 

is commonly used in survival analysis, but it can encounter 

difficulties with frailty models. Moreover, standard 

maximum likelihood-based inference methods may not be 

suitable for small sample sizes or situations in which there is 

heavy censoring (see [7]). Thus, in our problem a Bayesian 

approach, which does not suffer from these difficulties, is a 

natural one, even though it is relatively computationally 

intensive.  

 

Bayesian approach is now popularly used to estimate the 

parameters in the models because the computation of the 

Bayesian analysis becomes feasible due to advances in 

computing technology. Several authors have discussed 

Bayesian approach for the estimation of parameters of the 

frailty models. Some of them are, Ibrahim et al. [5] and 

references therein, Santos and Achcar [11]. Santos and 

Achcar [11] considered parametric models with Weibull and 

generalized gamma distribution as baseline distributions and 

gamma, log-normal as frailty distributions. Ibrahim et al. [5] 

and references therein considered Weibull model and 

piecewise exponential model with gamma frailty.  

 The joint posterior density function of parameters 

for given failure times is obtained as,  

 π(α1, λ1, α2, λ2, σ1,σ2,ρ, β) ∝ L(α1, λ1, α2, λ2, σ1,σ2,ρ, 

β)× 
5

1 1 2 1 3 2 4 2 5 1 6 2 7

1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )i i
i

g g g g g g g p       


   

where gi(.) (i = 1, 2,…, 7) indicates the prior density function 

with known hyperparameters of corresponding arguments for 

baseline parameters and frailty variance; pi(.) is prior density 

function for regression coefficient βi; β represents a vector of 

regression coefficients except βj, j = 1, 2,…, q and likelihood 

function L(.) is given by equation (14) or (15). Here we 

assume that all the parameters are independently distributed.  

 

To estimate the parameters of the models, we used 

Metropolis-Hastings algorithm and Gibbs sampler. We 

monitored the convergence of a Markov chain to a stationary 

distribution by Geweke test [3] and Gelman-Rubin Statistics 

[2]. Trace plots, coupling from the past plots and sample 

autocorrelation plots are used to check the behavior of the 

chain, to decide burn-in period and autocorrelation lag 

respectively. The algorithm consists in successively 

obtaining a sample from the conditional distribution of each 

of the parameter given all other parameters of the model. 

These distributions are known as full conditional 

distributions. In our case, full conditional distributions are 

not easy to integrate out. So full conditional distributions are 

obtained by considering that they are proportional to the joint 

distribution of the parameters of the model.   

 

In order to compare the proposed models, we have used 

several Bayesian model selection criteria such as Bayesian 

Information Criteria (BIC), Akaike Information Criteria 

(AIC) and Deviance Information Criteria (DIC). Also, we 

have used the Bayes factor Buv for comparison of the model 

Mu against Mv. To compute the Bayes factor we have used 

MCMC approach given in Kass and Raftery [6]. 

 

VI. SIMULATION STUDY 

 

To evaluate the performance of the Bayesian estimation 

procedure we carried out a simulation study. For the 

simulation purpose, we have considered only one covariate 

X= X1 which we assume to follow the normal distribution. 

The frailty variable U is assumed to have gamma 

distribution. Lifetimes (T1k,T2k) for k
th

 pair are conditionally 

independent for given frailty Uj = uj. We assume that Tjk (k = 

1,2,…,n , j = 1, 2) follows the logistic exponential baseline 

distribution. As the Bayesian methods are time consuming, 

we generate only fifty pairs of lifetimes using inverse 

transform technique. A widely used prior for frailty 

parameter θ is the gamma distribution G(0.0001, 0.0001). In 

addition, we assume that the regression coefficients are 

normal with mean zero and large variance say 1000. Similar 

types of prior distributions are used in Ibrahim et al. [5], 

Sahu et al. [12] and Santos and Achcar  [11]. So in our study, 

we also use the same non-informative prior for frailty 

parameter θ and regression coefficient β1. Since we do not 

have any prior information about baseline parameters, λ1, α1, 

λ2, and α2 prior distributions are assumed to be flat. We 

consider two different non-informative prior distributions for 

baseline parameters, one is G(a1, a2) and another is U (b1, b2). 

All the hyper-parameters φ,
2 , a1, a2, b1 and b2 are known. 

Here G(a, b) is gamma distribution with shape parameter a 

and scale parameter b and U (b1, b2) represents uniform 

distribution over the interval (b1, b2). We assume the value of 

the hyper-parameters as a1 = 1, a2 = 0.0001, b1 = 0 and b2 = 

100.  

 

We run two parallel chains for model one using two sets of 

prior distributions with the different starting points using 

Metropolis-Hastings algorithm and Gibbs sampler based on 

normal transition kernels. We iterate both the chains for 

100000 times. There is no effect of a prior distribution on 

posterior summaries because estimates of parameters are 

nearly same. Also for both the chains the results were 

somewhat similar. Due to lack of space trace plot, coupling 

from the past plot, autocorrelation plot and running mean 

plot are not provided. Table 1 present estimates, credible 

intervals, Gelman-Rubin convergence statistic and Geweke 

test for all the parameters of the Model I based on simulation 

study for the parameters.  
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Table 1: Simulation study for model-I 

 

From Table 1 it is observe that estimated values are close to 

real value, standard error is quite small. Gelman-Rubin 

convergence statistic values are nearly equal to one and also 

Geweke test values are quite small and corresponding p-

values are large enough to say the chain attains stationary 

distribution.  

 

VII. APPLICATION TO REAL LIFE DATA 

 

We illustrate the two proposed models by applying to 

infectious disease data related to kidney infection kidney 

infection due insertion of catheter [9]. It consists of the first 

and recurrence time of infection at point of insertion of 

catheter by using a portable dialysis machine in 38 kidney 

patients and five risk variables age, sex (0=male and 

1=female) and disease type GN, AN and PKD where GN, 

AN and PKD are short forms of Glomerulo Nephritis, Acute 

Nephritis and Polycystic Kidney Disease.  

 

To check goodness of fit of kidney data set, we consider 

Kolmogrove-Smirnov (K-S) test for frailty distributions. 

Table 2 gives the p values of goodness of fit test for model I. 

Thus from p values of K-S test we can say that there is no 

statistical evidence to reject the hypothesis that data are from 

logistic exponential distribution. Figure 1 show the 

parametric plot vs non parametric plot. 

 
Figure 1: Survival function plots for (K-M survival and 

parametric survival). 

 

Table 2: p-values of K-S Statistics for goodness of fit test 

for Kidney Infection data set recurrence time 

Distribution 
   Recurrence time 

 first              second 

Correlated Gamma 0.85751           0.96225 

 

As in case of simulation, here also we assume same set of 

prior distributions. We run two parallel chains for both 

models using two sets of prior distributions with the 

different starting points using Metropolis-Hastings 

algorithm and Gibbs sampler based on normal transition 

kernels. We iterate both the chains for 100000 times. As seen 

in simulation study here also we got nearly same estimates of 

parameters for both the set of prior, so estimates are not 

dependent on the different prior distributions. Also both the 

chains shows somewhat similar results, so we present here 

the analysis for only one chain with G(a1,a2) as prior for 

baseline parameters, for the model. Gelman-Rubin 

convergence statistic values are nearly equal to one and 

Geweke test statistic values are quite small and 

corresponding p-values are large enough to say the chains 

attain stationary distribution. The posterior mean and 

standard error with 95% credible intervals, Gelman-Rubin 

statistics values and Geweke test values with p values for 

Model I and II are presented in Table 3 and 4.  

 

The trace plot, coupling from the past plot, autocorrelation 

plot and running mean plot are show in figures (2(a)-2(d)). 

The trace plot for all the parameters shows zigzag pattern 

which indicates that parameters move and mix more freely. 

Thus, it seems that the Markov chain has reached the 

stationary state. Burn in period is decided by using coupling 

from the past plot. However, a sequence of draws after burn-

in period may have the autocorrelation. Because of the 

autocorrelation, consecutive draws may not be random, but 

values at widely separated time points are approximately 

independent. So, a pseudo random sample from the posterior 

distribution can be found by taking values from a single run 

of the Markov chain at widely spaced time points 

(autocorrelation lag) after burn-in period. The autocorrelation 

of the parameters become almost negligible after the certain 

lag. ACF plot after thinning show that observations are 

independent. We can also use running mean plots to check 

how well our chains are mixing. A running mean plot is a 

plot of the iterations against the mean of the draws up to each 

iteration. In fact running mean plots display a time series of 

the running mean for each parameter in each chain. These 

plots should be converging to a value. Running mean plot for 

each parameter is converging to the posterior mean of the 

parameter, thus, represents a good mixing of chain. Thus, our 

diagnostic plots suggest that the MCMC chains are mixing 

very well.  

 

Parameter 

(value) 

Estimate SE LCL UCL Geweke 

values 

P 

values 

GR 

values 

burn in period = 5900; autocorrelation lag = 290 

α1 (0.017) 

α2 (0.009) 

λ1 (1.085) 

λ2 (1.233) 

σ1 (0.265) 

σ2(0.561) 

ρ(0.489) 

β (0.002) 

0.0171 

0.0089 

1.0845 

1.2321 

0.2672 

0.5622 

0.4900 

0.0019 

0.0027 

0.0005 

0.0503 

0.0536 

0.0517 

0.0528 

0.0530 

0.0004 

0.0119 

0.0080 

0.9849 

1.1440  

0.1707 

0.4671 

0.3954 

0.0011 

0.0231 

0.0099 

1.1623 

1.3329 

0.3524 

0.6494 

0.5808 

0.0029 

7.4e-05 

-0.0065 

-0.0125 

-0.0022 

0.0105 

0.0028 

-0.0053 

0.0120 

0.5000 

0.4973 

0.4950 

0.4990 

0.5042 

0.5011 

0.4978 

0.5048 

1.0001 

1.0024 

1.0004 

0.9999 

1.0002 

1.0016 

1.0033 

1.0032 
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 Figures 2: (a)Trace plot (b)Coupling from the past plot 

(c)ACF plot and (d)Running mean plot 

 

Table 3: Posterior summary for Kidney Infection data set 

for Model I 
Param

eter 
Estimate SE LCL UCL 

Geweke 

values 

P 

values 

GR 

values 

burn in period = 5800; autocorrelation lag = 340 

α1 

λ1 

α2 

λ2 

σ1 

σ2 

ρ 

β1 

β2 

β3 

β4 

β5 

0.0217 

1.0494 

0.0209 

1.2449 

0.2513 

0.5635 

0.4908 

0.0020 

-1.4838 

0.0039 

0.4079 

0.0019 

0.0027 

0.0576 

0.0042 

0.0524 

0.0528 

0.0515 

0.0495 

0.0005 

0.2441 

0.0005 

0.0519 

0.0004 

0.0161 

0.9538 

0.0137 

1.1477 

0.1571 

0.4629 

0.3975 

0.0010 

-1.918 

0.0030 

0.3111 

0.0011 

0.0270 

1.1430 

0.0290 

1.3360 

0.3427 

0.6463 

0.5795 

0.0029 

-1.010 

0.0048 

0.4946 

0.0029 

0.0083 

-0.0083 

0.0110 

0.0105 

-0.0047 

0.0020 

-0.0046 

-0.0007 

-0.0075 

0.0091 

0.0008 

-0.0034 

0.5033 

0.4966 

0.5043 

0.5042 

0.4981 

0.5007 

0.4981 

0.4996 

0.4996 

0.5036 

0.5003 

0.4986 

1.0009 

1.0008 

1.0021 

1.0000 

0.9999 

1.0004 

1.0064 

1.0079 

1.0007 

1.0013 

1.0022 

1.0003 

 

Table 4: Posterior summary for Kidney Infection data set 

for Model II 
Parameter 

 
Estimate SE LCL UCL 

Geweke 

values 

P 

values 

GR 

values 

burn in period = 5600; autocorrelation lag = 345 

α1 

λ1 

α2 

λ2 

β1 

β2 

β3 

β4 

β5 

0.0222 

2.0798 

0.0144 

2.1153 

0.0018 

-1.971 

0.0040 

0.4587 

0.0020 

0.0023 

0.0459 

0.0021 

0.0467 

0.0004 

0.1937 

0.0004 

0.0499 

0.0004 

0.0176 

2.0218 

0.0106 

2.0440 

0.0010 

-2.403 

0.0031 

0.3653 

0.0010 

0.0269 

2.1905 

0.0190 

2.2176 

0.0027 

-1.652 

0.0049 

0.5443 

0.0029 

0.0060 

-0.0004 

0.0015 

0.0021 

-0.0102 

-0.0004 

0.0041 

0.0027 

-0.0009 

0.5024 

0.4998 

0.5006 

0.5008 

0.4958 

0.4958 

0.5016 

0.5010 

0.4996 

0.9999 

1.0002 

1.0000 

1.0016 

1.0000 

1.0001 

1.0054 

1.0000 

1.0030 

 

AIC, BIC and DIC values for two models are given in Table 

5. Bayes factor for Model I and Model II are given in Table 

6.  

Table 5: AIC, BIC and DIC values for all the models 

fitted to kidney infection data set. 
Model 

No. 

AIC BIC DIC Log-

likelihood 

Model I 

Model II 

685.8200 

728.8585 

705.4710 

743.5968 

666.3892 

715.7782 

-330.9100 

-355.4293 

 

Table 6: Bayes factor values and decision for test of 

significance for frailty under Model I fitted to Kidney 

Infection Data Set 
numerator model 

against 

denominator 

model 

2loge(Buv) range 

Evidence against 

model in 

denominator 

MI against MII 50.34167 ≥ 10 Very Strong 

Positive 

 

The comparison between two models is done using AIC, BIC 

and DIC values given in Table 5. The smallest AIC, BIC and 

DIC value is smaller in Model I than Model II, but the values 

are nearly equal. To take the decision about model I and 

model II, we use Bayes factor. The Bayesian test based on 

the Bayes factors for Model I against Model II is 50.34167 

which support Model I for kidney infection data set 

compared to their corresponding model without frailty (σ1= 

σ2 = 0, ρ = 0) and frailty is significant in Model I. Some 

patients are expected to be varying prone to infection 

compared to others with same covariate value. This is not 

surprising, as seen in the data set there is a male patient with 

infection time 8 and 16, and there is also male patient with 

infection time 152 and 562.  

  

VIII. CONCLUSION 

 

In this paper we discuss results for correlated Gamma frailty 

model with logistic exponential baseline distribution. Main 

aim of our study is to check which distribution (with 

correlated gamma frailty or without frailty) fits better. We 

perform simulation study and also analyze kidney infection 

data by using R. For maximum likelihood estimate, 

likelihood equations do not convergent and method of 

maximum likelihood fails to estimate the parameters so we 

used Bayesian approach. The entire estimation procedure 

using Bayesian approach took large amount of computational 

time but the time was more or less the same for the two 

models.   

 

Different prior gives the same estimates of the parameters. 

Convergence rate of Gibbs sampling algorithm does not 

depend on these choices of prior distributions in our models 

for kidney infection data. The estimate of σ’s (Model-I σ1 = 

0.2513 and σ2=0.5635) from model show that there is a 

strong evidence of high degree of heterogeneity in the 

population of patients.  

 

Bayes factor is used to test the frailty parameter σ1=σ2 = 0 

and it observed that frailty is present and model with frailty 

fit better than without frailty model. The covariates sex, GN, 

AN and PKD are the covariates which are significant for all 

models. Negative value of regression coefficient (β2) of 

covariate sex indicates that the female patients have a 

slightly lower the risk of infection.  
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The comparison between two models is done using AIC, BIC 

and DIC values. The smallest AIC value is Model I 

(correlated gamma frailty model with logistic exponential 

baseline distribution). The same result holds for BIC and 

DIC value. But these differences are not much significant. To 

take the decision about Model I and Model II, we use the 

Bayes factor. We observe that, the Model I is better than 

Model II. In this case we can conclude that correlated frailty 

model is better than without frailty model. Also we observe 

that gamma frailty is better than without frailty based on the 

same baseline distribution. By referring all the above 

analysis now we are in a position to say that, we have 

suggested a new correlated gamma frailty model with logistic 

exponential distribution as baseline distribution which is 

better than without frailty model for modeling of kidney 

infection data.  
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