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Abstract -Parametric models are widely used in the modelling of survival data under various diseases. These parametric models 

were applied to the data of 350 patients of uterus cancer. The main objective of this paper is to compare the results of survival 

analysis of uterus cancer patients by using different parametric models like Exponential distribution, Weibull distribution, 

Gompertz distribution, Log - Normal distribution, Log - Logistic distribution and Generalized Gamma distribution by two 

approaches, the one by Deviance method and the other by Akaike Information Criterion (AIC) and Bayesian Information 

Criterion (BIC) values.  As a result except Exponential and Gompertz distribution all the other distributions gives 

approximately relative results by these two methods. The model selection of the data is carried out by using Statistical Software 

STATA 12. 
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I. INTRODUCTION 

Survival analysis is generally defined as a set of methods for analyzing data where the outcome variable is the time until 

the occurrence of an event of interest. The event can be death, occurrence of a disease, marriage, divorce, etc. The time to event 

or survival time can be measured in days, weeks, years, etc. For example, if the event of interest is heart attack, then the 

survival time can be the time in years until a person develops a heart attack. 

Survival analysis techniques used for dealing with censored data can be broadly classified into three techniques. 

 Parametric ( Exponential, Weibull, Gompertz, Log- Normal, Log –Logistic and Generalized Gamma etc), 

 Semi-parametric (Cox Proportional Hazard Method) and  

 Nonparametric (Kaplan - Meier method, Log-Rank test). 

 

Two survival regression methods, Cox regression and parametric models were compared and concluded that in 

univariate analysis the data strongly supported the Log - Normal regression among parametric models and it can be lead to 

more precise results as an alternative to Cox [1]. The parametric regression models were discussed and showed that Log - 

Normal model is better than other models [2]. The best parametric model was determined as Log - Logistic model when 

compared to exponential and Weibull model [3]. The AIC values are compared the survival analysis by using Weibull, 

Gamma, Gompertz, Log - Logistic and Log - Normal models and concluded that the Gompertz distribution model was more 

suitable for these survival data [4]. Four parametric survival models are discussed using AIC values and finally concluded that 

the Log - Normal survival model is the best model [5].  

 

II. DATA FOR STUDY AND DISTRIBUTION 

This computed data were taken from NCBI of the uterus cancer patients. This Uterus Cancer data consists of 350 

patients with 9 covariates, i.e., 18 variables. The event of interest is survival time. The covariates are given below, 1. Age 

(Years), 2. Menopausal status (1 = Yes and 2 = No), 3. Hormone Therapy (1 = Yes and 2 = No), 4. Tumor Size (mm), 

5.Number of Nodes involved (1 - 51), 6. Tumor Grade(1 - 3), 7. Number of Progesterone Receptors  

(1 – 2380), 8. Number of Estrogen Receptors (1 - 1144) and9. CA125 (38 -50 units / ml).Event is coded as 1 and censoring is 

coded as 0.  

http://www.isroset.org/
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A. Exponential Distribution 

The following are the probability density, survivorship and hazard functions of Exponential distribution with a 

random variable T is given by 
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The exponential distribution is widely used because of its simplicity and of theoretical (Bain 1964). A special case of 

Exponentiated Exponential Model was focused for spinal Tuberculosis data while compared to Exponential, Weibull and Log - 

Logistic models [6]. For modeling real lifetime data the exponential and Lindley distributions were tried to yield better fit for 

the data [7]. Three-parameter extension of Generalized Exponential Distribution were discussed and moment generating 

functions (MGF’s) are computed [8]. 

 

B. Weibull Distribution 

The following are the probability density, survivorship and hazard functions of Exponential distribution with arandom 

variable T is given by 
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The Weibull distribution is widely used in modeling weather forecasts in meteorology, and defining the distribution of 

wind speed in radar modeling. Weibull distribution is favored for performing survival data analysis in industrial 

engineering[9].In a study was conducted on the nationwide estimators were made for defining the parameters of the Weibull 

distributions [10].To evaluate possible prognostic factors and to assess the relationship between survival times were focused by 

Weibull parametric model [11]. 

C. Gompertz Distribution 

The following are the probability density, survivorship and hazard functions of Exponential distribution with a 

random variable T is given by 
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Gompertz model repeatedly used by medical researchers and biologists in modeling the mortality ratio data was formulated by 

Benjamin Gompertz in 1825. The Gompertz distribution is applied to describe the distribution of adult lifespans through 

demographers [12]. Estimate the life expectancy of childhood acute lymphoblastic leukemia by using Gompertz model and life 

expectancy tables [13].Generalized Gompertz distribution for modelling lifetime data [14]. 
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D. Log - Normal Distribution 

The following are the probability density, survivorship and hazard functions of Exponential distribution with a 

random variable T is given by 
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 The Log- Normal distribution theory was described by McAlister in 1897. In medicine field there are many examples 

for Log – Normal distribution.The studies on resolving the survival time in cancer, and to resolve the beginning age of 

Alzheimer’s disease  be the examples for the medical field studies [15]. To analyze the survival times by using the survival 

analysis methods like Kaplan – Meier curves, Cox proportional hazard model, Boag Log – normal and Log – Normal [16].The 

analysis of survival times,distinctivelyin modelling the effects of prognostic factors by Log – Normal distribution [17].  

E. Log - Logistic Distribution 

The following are the probability density, survivorship and hazard functions of Exponential distribution with a 

random variable T is given by 
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 The Log- Logistic distribution is best suitable in analyzing survival data conducted by Cox, Cox and Oakes, Bennet, 

O’Quinley and Sruthers[18]. A study highlighted that the Maximum Likelihood Estimation was the best suitable method in 

estimating the parameters using Log – Logistic distribution on grouped failure time data [19]. 

F. Generalized Gamma Distribution 

The generalized gamma distribution is a continuous probability distribution with three parameters. It is a 

generalization of the two-parameter gamma distribution. 

The following are the probability density, survivorship and hazard functions of Exponential distribution with a 

random variable T is given by 
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The proposed taxonomy of Hazard function using Generalized Gamma distributions is to study the survival data [20]. 

The applications of parametric survival models and scrutinized the parametric and semi parametric models in different 

proportional hazards (PH) and Accelerated Failure Time (AFT) assumptions [21]. A new Mixture Generalized Gamma (MGG) 

distribution is attained by mixing Generalized Gamma (GG) distribution and Length Biased Generalized Gamma (LGG) 

distribution [22]. 

G. Parametric error measurements 

To determine the best parametric model in Uterus cancer data, Akaike Information Criterion (AIC) and Bayesian 

information criterion (BIC) will be calculated. 

 

 Akaike Information Criterion 

Akaike Information Criterion (AIC) is a measure of selecting a model from a set of models. AIC estimates the quality 

of each model, relative to each of the other models. The AIC is given by 

   klikelihoodAIC 2log2   

Where k is the number of parameters in model. Thus, k = 1 for the exponential model, 

k= 2 for the Weibull, Gompertz, Log-Normal and log-Logistic models and k = 3 for the Generalized Gamma model. Smaller 

AIC indicate a better model fit. 

 
 Bayesian Information Criterion 

The Bayesian information criterion (BIC) or also known as Schwarz criterion (SBC, SBIC) is a criterion for model 

selection among a finite set of models. It is based on the likelihood function and hence, it is closely related to the Akaike 

Information Criterion (AIC). The BIC is given by: 

   nklikelihoodBIC loglog2   

Where n is the sample size and k is the number of covariates including an intercept. Same as AIC, BIC also has the 

value of k =1 is for the exponential model, k = 2 for the Weibull, Gompertz, Log-Normal and log-Logistic models and k = 3 for 

the Generalized Gamma model. Smaller BIC indicate a better model fit. The BIC generally penalizes free parameters more 

strongly than does the Akaike Information Criterion, though it depends on the size of n and relative magnitude of n and k. 

 
III. ANALYTICAL METHOD 

A. Likelihood Ratio Test 

A likelihood ratio test is a statistical test which is used to compare the goodness of fit of two statistical models. 

The test is based on the likelihood ratio, which expresses how many times more likely the data are under one model than the 

other. This likelihood ratio can be used to calculate a p-value to decide whether to reject the null model in favor of the 

alternative model. Both models are fitted to the data and their log-likelihoods are recorded. 
 

IV. MODEL RESULTS 

Table 4.1. Parametric Regression model Fitted to Uterus Cancer Data. 

 

Covariates 

Exponential Weibull Gompertz 

Haz. Ratio S. E  

 

Haz. Ratio  

 

S. E  

 

Haz. Ratio  

 

S. E  

 

Age 1.00150 0.02306 1.00593 0.02329 1.00519 0.02330 

Size 1.01536* 0.00661 1.01727* 0.00680 1.01696* 0.00675 

Grade 0.90708 0.41707 1.02646 0.48229 0.99926 0.46796 

Nodes 1.05759* 0.01964 1.06656* 0.02013 1.06468* 0.02014 

Prog_recp 0.99144* 0.00250 0.99063* 0.00257 0.99063* 0.00258 

Estrg_recp 1.00026 0.00119 1.00031 0.00120 1.00032 0.00120 

CA125 1.07676 0.09554 1.0606 0.09460 1.06537 0.09491 

Menopause 1.04464 0.39051 1.03182 0.38292 1.03382 0.38245 

Hormone 0.87841 0.24388 0.77022 0.21415 0.76825 0.21453 

Deviance 361.2679 338.94936 347.56082 
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Covariates Log - Normal  Log - Logistic Generalized Gamma 

Coef. S.E. Coef. S.E. Coef. S.E. 

Age -0.00142 0.01479 -0.00118 0.01372 -0.00139 0.01430 

Size -0.01085* 0.00478 -0.00984* 0.00421 -0.01081* 0.00450 

Grade 0.07763 0.27895 -0.01530 0.26882 0.03226 0.28143 

Nodes -0.04287* 0.01390 -0.04236* 0.01234 0.04173* 0.01308 

Prog_recp 0.00474* 0.00121 0.00504* 0.00140 0.00485* 0.00129 

Estrg_recp 0.00018 0.00066 -0.00003 0.00062 0.00009 0.00068 

CA125 -0.07238 0.05450 -0.04314 0.05303 -0.05841 0.05700 

Menopause -0.10153 0.23591 -0.08361 0.22371 -0.08314 0.23112 

Hormone 0.16533 0.17718 0.17300 0.16700 0.16377 0.17211 

Deviance 335.89582 335.81358 335.41242 

 

Table 4.2.Parametric Model Selection in Uterus Cancer Data. 

 

Distributions 
Measurements 

AIC BIC 

Exponential 363.26790 363.81197 

Weibull 342.94936 344.03750 

Gompertz 351.56082 352.64896 

Log-Normal 339.89582 340.98396 

Log-Logistic 339.81358 340.90172 

Generalized gamma 341.40522 343.04462 

 

V. RESULTS AND DISCUSSION 

Two methods were discussed for finding the best parametric model for uterus cancer patients data, First method is 

Deviance method and the other method is Akaike Information Criterion and Bayesian Information Criterion. The parametric 

models were fitted using Statistical software STATA 12 and the results are presented in Table 4.1. From the table we conclude 

that the three covariates namely Size, Nodes and Progesterone receptors are significantly associated with the survival time 

under all the model assumptions. The deviance of parametric models like Weibull, Log –Normal, Log - Logistic and 

Generalized gamma distribution are very close to each other when compared to Exponential and Gompertz distribution. Finally 

we conclude that the above mentioned four parametric models were gives the approximate results.  

Besides, the measurements of model selection are calculated by using Akaike Information Criterion and Bayesian 

Information Criterion. Smaller AIC and BIC indicates a better model fit. Among all parametric distribution given, the 

distributions like Weibull, Log - Normal, Log - Logistic and Generalized gamma distribution were given the smallest value in 

AIC and BIC that is very close to each other compared to Exponential and Gompertz distribution are presented in Table 

4.2.From the table, we conclude that the above mentioned four parametric models gives the approximate relative results. 

VI. CONCLUSION 

The aim of this study is to determine the best parametric model for Uterus cancer patient’s data by two different 

approaches. i.e., by deviance and by AIC and BIC values. We conclude that among all distributions given, Weibull 

distribution, Log - Normal distribution, Log - Logistic distribution and Generalized Gamma distribution were given the 

approximate results when compared to Exponential and Gompertz distribution. The model selection of Uterus cancer patient’s 

data were carried out by using Statistical Software STATA12. 
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