Some Fixed Point Theorems in $\varphi - \psi$ weak contraction on Fuzzy Metric Space

R. Krishnakumar¹, K. Dinesh ²*, D. Dhamodharan³

¹ Department of Mathematics, Urumu Dhanalakshmi College, Tiruchirappalli-19, Tamilnadu, India
² Department of Mathematics, Urumu Dhanalakshmi College, Tiruchirappalli-19, Tamilnadu, India
³ Department of Mathematics, Jamal Mohamed College (Autonomous), Tiruchirappalli-20, India

*Corresponding Author: dinesh.sksv93@gmail.com, Tel.: +91 7418865975
Available online at: www.isroset.org

Abstract—In this paper, we discuss some results on fixed point theorems in $\varphi - \psi$ weak contraction on fuzzy metric spaces, which are study of generalisation of some existing results are also given in the form of corollary.

Keywords—fuzzy metric space, continuous t-norm, $\varphi - \psi$ weak contraction

I. INTRODUCTION

$$\varphi(M(Tx, Ty, t)) \geq k(t) \cdot \varphi(M(x, y, t)), \forall x, y \in X, t > 0,(1.1)$$

obtained fixed point result for self-mapping of T. Recently, many authors using altering distance function and give their contribution in various metric spaces [3, 4].

In this paper, we proved some fixed point theorems in $\varphi - \psi$ weak contraction on fuzzy metric spaces, which are our study of generalisation of some existing results.

Definition 1.1 A fuzzy set \tilde{A} is defined by $\tilde{A} = (x, \mu_A(x))$; $x \in A, \mu_A(x) \in [0,1]$. In the pair $(x, \mu_A(x))$, the first element x belongs to the classical set A, the second element $\mu_A(x)$ belongs to the interval $[0,1]$, is called the membership function.

Definition 1.2 A binary operation $*$: $[0,1] \times [0,1] \rightarrow [0,1]$ is a continuous t-norm if it satisfies the following conditions:
1. * is associative and commutative,
2. * is continuous,
3. $a * 1 = a$ for all $a \in [0,1]$.
4. $a * b \leq c * d$ whenever $a \leq c$ and $b \leq d$ for all $a, b, c, d \in [0,1]$

Example 1.3
1. Lukasievicz t-norm: $a * b = \max(a + b - 1,0)$
2. Product t-norm: $a * b = a \cdot b$
3. Minimum t-norm: $a * b = \min(a, b)$

Definition 1.4 A fuzzy metric space is an ordered triple $(X, M, *)$ such that X is a nonempty set, $*$ is a continuous t-norm and M is a fuzzy set on $X \times X \times (0, \infty) \rightarrow [0,1]$ satisfies the following conditions: $\forall x, y, z \in X$ and $s, t > 0$
1. $M(x, y, 0) = 0, t > 0$
2. $M(x, y, t) = 1$ if and only if $x = y, t > 0$
3. $M(x, y, t) = M(y, x, t)$

© 2018, IJSRMSS All Rights Reserved
4. \(M(x, z, t + s) \geq M(x, y, t) \ast M(y, z, s) \)
5. \(M(x, y, \cdot) : [0, \infty) \to [0,1] \) is left-continuous.

Then \(M \) is called a fuzzy metric on \(X \).

Definition 1.5 A fuzzy metric space is an ordered triple such that \(X \) is a non-empty set, \(\ast \) is a continuous \(t \)-norm and \(M \) is a fuzzy set on \(X \times X \times (0, \infty) \to [0,1] \) satisfies the following conditions:

1. \(M(x, y, t) > 0 \), \(t > 0 \)
2. \(M(x, y, t) = 1 \) if and only if \(x = y \) and \(t > 0 \)
3. \(M(x, y, t) = M(y, x, t) \)
4. \(M(x, z, t + s) \ast M(y, z, s) \leq M(x, z, t + s) \)
5. \(M(x, y, \cdot) : (0, \infty) \to [0,1] \) is continuous.

Then \(M \) is called a fuzzy metric on \(X \).

Definition 1.6 Let \((X, M, \ast) \) be a fuzzy metric space, for \(t > 0 \) the open ball \(B(x, r, t) \) with a centre \(x \in X \) and a radius \(0 < r < 1 \) is defined by

\[
B(x, r, t) = y \in X : M(x, y, t) > 1 - r.
\]

A subset \(A \subset X \) is called open if for each \(x \in A \), there exist \(t > 0 \) and \(0 < r < 1 \) such that \(B(x, r, t) \subset A \). Let \(\tau \) denote the family of all open subsets of \(X \). Then \(\tau \) is topology on \(X \), called the topology induced by the fuzzy metric \(M \).

Definition 1.7 Let \((X, M, \ast) \) be a fuzzy metric space

1. A sequence \(x_n \) in \(X \) is said to be convergent to a point \(x \) in \((X, M, \ast) \) if \(\lim_{t \to \infty} M(x, y, t) = 1 \) for all \(t > 0 \).
2. sequence \(x_n \) in \(X \) is called a Cauchy sequence in \((X, M, \ast) \), if for each \(0 < \varepsilon < 1 \) and \(t > 0 \), there exists \(n_0 \in N \) such that \(M(x_n, x_m, t) > 1 - \varepsilon \) for each \(n, m \geq n_0 \).
3. A fuzzy metric space in which every Cauchy sequence is convergent is said to be complete.
4. A fuzzy metric space in which every sequence has a convergent subsequence is said to be compact.

Lemma 1.8 Let \((X, M, \ast) \) be a fuzzy metric space. For all \(u, v \in X, M(u, v, \cdot) \) is non-decreasing function.

Proof. If \(M(u, v, t) > M(u, v, s) \) for some \(0 < t < s \).

Then \(M(u, v, t) \ast M(v, s - t) \leq M(u, v, s) < M(u, v, t) \).

Thus \(M(u, v, t) < M(u, v, t) < M(u, v, t) \),

(since \(M(v, v, s - t) = 1 \))

which is a contradiction.

Definition 1.9 A function \(\varphi : [0,1] \to [0,1] \) is called a control function or an altering distance function if it satisfies the following properties:

(CF1). \(\varphi \) is strictly decreasing and continuous;

(CF2). \(\varphi(\lambda) \geq 0 \), \(\forall \lambda \neq 1 \) if \(\varphi(\lambda) = 0 \) if and only if \(\lambda = 1 \). It is obvious that \(\lim_{\lambda \to 1^-} \varphi(\lambda) = \varphi(1) = 0 \).

where \(\varphi \) in class of function \(\Phi \).

II. MAIN RESULTS

Theorem 2.1 Let \((X, M, \ast) \) be a complete strong fuzzy metric space with continuous \(t \)-norm \(\ast \) and let \(T \) is a self-mapping in \(X \) such that

\[
\varphi(M(Tu, Tv, t)) \leq \varphi(M(u, Tu, t)) + M(v, Tv, t) + M(Tu, v, t)
\]

\[
+ M(u, v, t) + M(v, v, t) + \max(M(u, Tu, t), M(v, Tv, t)) - \psi(M(u, Tu, t) + M(v, Tv, t) + M(Tu, v, t) +
\]

\[
M(u, Tu, t) + M(u, v, t) + \max(M(u, Tu, t), M(v, Tv, t)),
\]

where \(\varphi \) and \(\psi \) are altering distance function and ultra altering distance function respectively, \(\varphi(t + s) \leq \varphi(t) + \varphi(s) \) for all \(t, s \in S \). Then \(T \) has a unique fixed point in \(X \).

Proof. Let \(u \) be any arbitrary point in \(X \) and define a sequence \(u_n \in X \) such that \(u_{n+1} = Tu_n \).

Assume that \(u_{n+1} = Tu_n = u_n \) for some \(n \in \mathbb{N} \), then \(u_n \) is a fixed point of \(T \).
Suppose \(u_{n+1} \neq u_n \), put \(u = u_{n-1} \) and \(v = u_n \) in equation (2.1) we get

\[
\varphi(M(Tu_{n-1}, Tu_{n}, t)) \leq \varphi(M(u_{n-1}, Tu_{n-1}, t) + M(u_n, Tu_n, t) + M(Tu_{n-1}, Tu_n, t)(M(u_{n-1}, Tu_{n-1}, t)
\]
\[
+\max(M(u_{n-1}, Tu_{n-1}, t), M(u_n, Tu_n, t)))
\]
\[
-\varphi(M(u_{n-1}, Tu_{n-1}, t) + M(u_n, Tu_n, t))
\]
\[
+M(Tu_{n-1}, Tu_n, t)M(u_{n-1}, Tu_{n-1}, t) + M(u_n, Tu_n, t)
\]
\[
+\max(M(u_{n-1}, Tu_{n-1}, t), M(u_n, Tu_n, t))
\]
\[
(2.2)
\]

\[
\leq \varphi(M(u_{n-1}, u_n, t)) + (M(u_{n-1}, u_n, t)) + (M(u_n, u_n, t)) + (M(u_{n-1}, u_n, t)) + (M(u_n, u_n, t))
\]
\[
+\max(M(u_{n-1}, u_n, t), M(u_n, u_n, t)) - \varphi(M(u_{n-1}, u_n, t)) + (M(u_n, u_n, t)) + (M(u_n, u_n, t))
\]
\[
+(M(u_{n-1}, u_n, t)) + (M(u_n, u_n, t)) + \max(M(u_{n-1}, u_n, t), M(u_n, u_n, t))
\]
\[
(2.3)
\]

Using above inequalities in (2.3) we get,

\[
\varphi(M(u_{n-1}, u_{n+1}, t)) \geq \varphi((M(u_{n-1}, u_n, t)) + (M(u_n, u_{n+1}, t)))
\]
\[
(2.4)
\]

If \(\max(M(u_{n-1}, u_n, t), M(u_n, u_{n+1}, t)) = M(u_{n-1}, u_n, t) \).

Then the above inequality (2.4) becomes

Continuing this process, we get,

\[
\varphi(M(u_n, u_{n+1}, t)) \leq \varphi(M(u_{n-1}, u_{n+1}, t)) \leq \varphi(M(u_{n-1}, u_n, t)) < \varphi(M(u_n, u_{n+1}, t))
\]
\[
(2.7)
\]

Similarly,

\[
\text{If } \max(M(u_{n-1}, u_n, t), M(u_n, u_{n+1}, t)) = M(u_n, u_{n+1}, t)
\]

Then the inequality (2.5) becomes

\[
\varphi(M(u_n, u_{n+1}, t)) \leq \varphi(M(u_{n-1}, u_n, t)) \leq \varphi(M(u_n, u_{n+1}, t))
\]
\[
(2.8)
\]

Hence \(\varphi(M(u_n, u_{n+1}, t)) \leq \varphi(M(u_{n-1}, u_n, t)) < \varphi(M(u_{n-1}, u_n, t)) \).

This gives \(M(u_n, u_{n+1}, t) > M(u_{n-1}, u_n, t) \).
Since the sequence \(M(u_n, u_{n+1}, t) \) is non decreasing
Taking limit \(n \to \infty \), we get

\[
\lim_{n \to \infty} M(u_n, u_{n+1}, t) = q(r), \text{ for } q: (0, \infty) \to [0,1] \tag{2.10}
\]

Suppose that \(q(r) \neq 1 \) for some \(r > 0 \) as \(n \to \infty \),
Now (2.7) becomes,

\[
\varphi(q(r)) \leq q(q(r)) < \varphi(q(r)) \tag{2.11}
\]

which is a contradiction.
Hence

\[
\lim_{n \to \infty} M(u_n, u_{n+1}, t) = 1, t > 0
\]

Next we prove that the sequence \(u_n \) is a Cauchy’s sequence.
Assume that \(u_n \) is not a Cauchy’s sequence then for any \(0 < \varepsilon < 1, t > 0 \) then there exists sequence \(u_{n_k} \) and \(u_{m_k} \) where \(n_k, m_k \geq n \) and \(n_k, m_k \in \mathbb{N} \) such that

\[
M(u_{n_k}, u_{m_k}, t) \leq 1 - \varepsilon \tag{2.12}
\]

Let \(n_k \) be least integer exceeding \(m_k \) satisfying the above property

\[
M(u_{n_k-1}, u_{m_k}, t) > 1 - \varepsilon, \quad n_k, m_k \in \mathbb{N} \quad \text{ and } \quad t > 0 \tag{2.13}
\]

Put \(u = u_{n_k-1} \) and \(v = u_{m_k-1} \)

\[
\varphi(M(Tu_{n_k-1}, Tu_{m_k-1}, t)) \leq \varphi((M(u_{n_k-1}, Tu_{n_k-1}, t)) + (M(u_{m_k-1}, Tu_{m_k-1}, t)) + (M(Tu_{n_k-1}, u_{m_k-1}, t))(M(u_{n_k-1}, Tu_{m_k-1}, t)) + (M(u_{n_k-1}, u_{m_k-1}, t)) + \max(M(u_{n_k-1}, Tu_{n_k-1}, t), M(u_{m_k-1}, Tu_{m_k-1}, t))) \tag{2.14}
\]

\[
-\psi((M(u_{n_k-1}, u_{n_k-1}, t))(M(u_{m_k-1}, u_{m_k-1}, t)) + (M(u_{n_k-1}, u_{m_k-1}, t))(M(u_{m_k-1}, u_{n_k-1}, t)) + (M(u_{n_k-1}, u_{n_k}, t)) + \max(M(u_{n_k-1}, Tu_{n_k-1}, t), M(u_{m_k-1}, Tu_{m_k-1}, t)))
\]

\[
\varphi(M(u_{n_k-1}, u_{m_k-1}, t)) \leq \varphi((M(u_{n_k-1}, u_{n_k-1}, t)) + (M(u_{m_k-1}, u_{m_k-1}, t)) + (M(u_{n_k-1}, u_{m_k-1}, t)) + \max(M(u_{n_k-1}, u_{n_k}, t), M(u_{m_k-1}, u_{m_k}, t)))
\]

\[
-\psi((M(u_{n_k-1}, u_{n_k}, t)) + (M(u_{m_k-1}, u_{m_k}, t))) + (M(u_{n_k}, u_{m_k}, t))(M(u_{n_k-1}, u_{m_k-1}, t)) + (M(u_{n_k}, u_{m_k}, t))(M(u_{n_k-1}, u_{m_k}, t)) + \max(M(u_{n_k-1}, u_{n_k}, t), M(u_{m_k-1}, u_{m_k}, t)))
\]

If \(\max(M(u_{n_k-1}, u_{n_k}, t), M(u_{m_k-1}, u_{m_k}, t)) = M(u_{n_k-1}, u_{n_k}, t) \)
\[
\varphi(M(u_{nk}, u_{mk}, t)) \leq \varphi((M(u_{nk-1}, u_{nk}, t)) + (M(u_{mk-1}, u_{mk}, t))
+ (M(u_{nk-1}, u_{nk}, t))(M(u_{nk-1}, u_{mk}, t)) +
+ (M(u_{nk-1}, u_{mk-1}, t)) + (M(u_{nk-1}, u_{nk}, t)))
- \psi((M(u_{nk-1}, u_{nk}, t)) + (M(u_{mk-1}, u_{mk}, t))
(M(u_{nk}, u_{mk-1}, t))(M(u_{nk-1}, u_{mk}, t))
+ (M(u_{nk-1}, u_{nk-1}, t)) + (M(u_{nk-1}, u_{nk}, t)))
\leq \varphi((M(u_{nk-1}, u_{nk}, t)) + (M(u_{mk-1}, u_{mk}, t))
+ (M(u_{nk-1}, u_{nk}, t))(M(u_{nk-1}, u_{mk}, t))
+ (M(u_{nk-1}, u_{mk-1}, t)) + (M(u_{nk-1}, u_{nk}, t)))
(2.15)
\]

Also (2.13) and (CF1) we get

\[
\varphi(M(u_{nk-1}, u_{mk-1}, t)) \leq \varphi(M(u_{nk-1}, u_{nk}, t)) + \varphi(M(u_{nk-1}, u_{mk-1}, t))
\leq \varphi(M(u_{nk-1}, u_{nk}, t)) + \varphi(M(u_{nk-1}, u_{mk}, t)) +
\varphi(M(u_{nk, u_{mk-1}, t})) \varphi(M(u_{nk-1, u_{mk}}))
+ \varphi(M(u_{nk-1, u_{mk}, t})) + \varphi(M(u_{nk-1, u_{nk}}))
+ \varphi(M(u_{nk, u_{mk-1}, t})) + \varphi(M(u_{nk-1, u_{nk}}))
\leq \varphi(M(u_{nk-1, u_{mk}})) \leq \varphi(1 - \varepsilon).
(2.16)
\]

Applying the previous inequalities we get

\[
\varphi(M(u_{nk-1, u_{mk}}, t)) \leq \varphi(M(u_{nk-1}, u_{nk}, t)) + \varphi(M(u_{nk-1}, u_{mk}, t)) +
\varphi(M(u_{nk, u_{mk-1}, t})) \varphi(M(u_{nk-1, u_{mk}}))
+ \varphi(M(u_{nk-1, u_{mk}, t})) + \varphi(M(u_{nk-1, u_{nk}}))
+ \varphi(M(u_{nk, u_{mk-1}, t})) + \varphi(M(u_{nk-1, u_{nk}}))
\leq \varphi(M(u_{nk-1, u_{mk}})) \leq \varphi(1 - \varepsilon).
(2.17)
\]

Substituting (2.16), (2.17), and (2.18) in (2.15) we have

\[
\varphi(M(u_{nk}, u_{mk}, t)) \leq \varphi(M(u_{nk-1}, u_{nk}, t)) + \varphi(M(u_{mk-1}, u_{mk}, t))
+ (M(u_{nk-1}, u_{nk}, t))(M(u_{nk-1}, u_{mk}, t)) + (M(u_{nk-1}, u_{mk-1}, t)) + (M(u_{nk-1}, u_{nk}, t)))
- \psi(M(u_{nk-1, u_{nk}, t}) + (M(u_{mk-1}, u_{mk}, t))
(M(u_{nk}, u_{mk-1}, t))(M(u_{nk-1}, u_{mk}, t))
+ (M(u_{nk-1}, u_{nk-1}, t)) + (M(u_{nk-1}, u_{nk}, t)))
\leq \varphi((M(u_{nk-1}, u_{nk}, t)) + (M(u_{mk-1}, u_{mk}, t))
+ (M(u_{nk-1}, u_{nk}, t))(M(u_{nk-1}, u_{mk}, t))
+ (M(u_{nk-1}, u_{mk-1}, t)) + (M(u_{nk-1}, u_{nk}, t)))
(2.19)
\]

Using (2.12) we obtain,

\[
\varphi(M(u_{nk}, u_{mk}, t)) \leq \varphi(1 - \varepsilon)
(2.20)
\]

\[
\varphi(1 - \varepsilon) \leq \varphi(M(u_{nk-1}, u_{nk}, t))
+ (M(u_{mk-1}, u_{mk-1}, t)) \varphi(1 - \varepsilon)
(2.21)
\]

Taking \(k \to \infty \) in above inequality we obtain

\[
\varphi(1 - \varepsilon) \leq \varphi(1 - \varepsilon)
(2.22)
\]
Which is a contradiction, \(\varepsilon > 0 \)
Hence \(u_n \) is a Cauchy’s sequence.
Since \(X \) is complete and there exist \(z \in X \) such that \(\lim_{n \to \infty} u_n = z \)
That is \(M(u_n, z, t) = 1 \) as \(n \to \infty \)
Put \(u = u_{n-1} \) and \(v = z \) in equation (2.1) we get
\[
\varphi(M(u_n, Tz, t)) \leq \varphi(M(u_{n-1}, u, t) + (M(z, Tz, t)) + (M(u_{n-1}, Tz, t)) + \max(M(u_{n-1}, u, t), M(z, Tz, t)))
\]
(2.23)

Taking \(n \to \infty \) in (2.23)
\[
\varphi(M(z, Tz, t)) \leq 0, \quad t > 0
\]
(2.24)

Therefore, \(M(z, Tz, t) = 1 \), and \(z = Tz \).
To prove Uniqueness,
Suppose that \(w \) is another fixed point of \(T \), that is \(Tw = w \) where \(q \neq z \)
\[
\varphi(M(z, w, t)) \leq 0, \quad t > 0
\]
(2.25)

Hence \(z = w \) is the unique fixed point of \(T \).

Corollary 2.2 Let \((X, M, \ast)\) be a complete strong fuzzy metric space with continuous \(t \)-norm \(\ast \) and let \(T \) is a self-mapping in \(X \).
If there exists a control function \(\varphi \) and \(\theta(t) \), such that
\[
\varphi(M(Tu, Tv, t)) \leq \varphi(M(u, Tu, t)) + (M(v, Tv, t)) + (M(Tu, v, t)) + (M(u, v, t)) \]
\[
-\psi(M(u, Tu, t)) + (M(v, Tv, t)) + (M(Tu, v, t)) + (M(u, v, t))
\]
(2.26)

Then \(T \) has a unique fixed point in \(X \).

Proof. The proof of the above theorem (2.1) considering the fuzzy contraction on the fuzzy metric space \((X, M, \ast)\),
\[
\varphi(M(Tu, Tv, t)) \leq \varphi(M(u, Tu, t)) + (M(v, Tv, t)) + (M(Tu, v, t)) + (M(u, v, t)) \]
\[
-\psi(M(u, Tu, t)) + (M(v, Tv, t)) + (M(Tu, v, t)) + (M(u, v, t)).
\]

III. Reference

AUTHORS PROFILE

Dr. R. Krishnakumar is the Associate Professor and Head of the PG & Research Department of Mathematics, Urumu Dhanalakshmi College. He has above 22 years experience in teaching. His field of research is Fixed point theory.

K. Dinesh is pursuing his Ph.D in PG & Research Department of Mathematics, Urumu Dhanalakshmi College, Trichy. His field of research is Fixed point theory.

D. Dhamodharan is the assistant professor, Department of mathematics, Jamal Mohamad college, Trichy