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Abstract— Our research introduces a new lifetime distribution family called Length-Biased Lifetime Distribution, which is 

based on length bias. To comprehend the nature of the suggested distribution, we take into account its many statistical aspects, 

such as its reliability, hazard function and other characteristics. Also, to estimate the parameters of the suggested distribution, we 

have utilized the ML technique. The Lorenz and Bonferroni curves, Shannon’s entropy, and Renyi entropy are also obtained. 

Using two real-life datasets, we evaluate the suggested distribution’s performance to that of competing distributions. 
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1. Introduction  

Weighted distributions were originally introduced by Fisher 

(1934) [1], who studied the potential effects of ascertainment 

procedures on the form of the distribution of observed data. 

These distributions are used in various studied pertaining to 

branching processes, reliability, ecology, and biomedicine. 

Rao (1965) [2] introduced more generalized approach for 

modeling the statistical data, which doesn’t solely relying on 

standard distributions. When the weighted function 

specifically accounts for the length of units, this weighted 

distribution simplifies to what we commonly refer to as the 

length-biased distribution. This concept was first coined by 

Cox (1969) [3] and Zelen (1974) [4]. "Size-biased" refers to a 

distribution in which the sampling process selects units with a 

probability proportional to a certain measure of their size. 
The complete description of weighted distributions can be 

found in many reliable sources. In the literature, there are 

numerous recently discovered distributions and their 

weighted counterparts, whose statistical behaviour has been 

thoroughly investigated for decades. Shaban and Boudrissa 

(2007) [5], Priyadarshani (2011) [6] have obtained the size-

biased of Weibull distribution and studied its properties in 

details. Das and Roy (2011) [7] presented the idea of length-

biased sampling and weighted distributions by highlighting 

some of the circumstances in which the underlying models 

maintain their form. They also developed the length-biased 

version of the weighted Weibull distribution and discussed 

the length-biased Weighted Generalized Rayleigh distribution 

and its properties. The statistical characteristics of the 

weighted exponential distribution and its length-biased 

variant were examined by Das and Kundu (2016) [8]. The 

weighted transmuted power distribution was derived by Dar 

et al. (2018) [9], who also presented its features and uses. The 

length-biased Sushila distribution with a range of statistical 

characteristics and its uses were covered by Rather and 

Subramanian (2018) [10]. For a concise review of the 

literature on size-biased and length-biased distributions, one 

may refer, Rather and Subramanian (2018) [11], Malik and 

Ahmad (2018) [12], Atikankul et al. (2020) [13], Chaito et al. 

(2022) [14], Al-Omari et al. (2023) [15] and Hassan & 

Muhammed (2024) [16]. 

 
A r.v. T, is said to have a length biased distribution if its pdf is 

defined as 

  𝑓𝑙(𝑡)  =
 𝑤(𝑡) 𝑓(𝑡)

𝜇
                            (1.1) 

 

where, 𝜇 = ∫ 𝑤(𝑡) 𝑓(𝑡)𝑑𝑡 , provided that 𝑤(𝑡) = 𝑡. 

The pdf and cdf of the life time distribution is 

 𝑓(𝑡)  =
 𝜉𝑡𝜔𝜉−1

𝜁𝜔𝜂Γ(𝜔)
𝑒𝑥𝑝 (

𝑡𝜉

𝜁𝜂) ;   𝑡, 𝜔, 𝜂, 𝜉, 𝜁 > 0      (1.2) 

 

where 𝜁  is the scale parameter and 𝜔, 𝜂, 𝜉  are shape 

parameters 

  𝐹(𝑡)  =
 𝛾(𝜔,   

𝑡𝜉

𝜁𝜂)

Γ(𝜔)
 ; 𝑡, 𝜔, 𝜂, 𝜉, 𝜁 > 0      (1.3) 
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where, 𝛤(𝜔) = ∫ 𝑡𝜔−1𝑒−𝑡𝑑𝑡
∞

𝑥
 and 𝛾(𝑦, 𝑥) = ∫ 𝑡𝑦−1𝑒−𝑡𝑑𝑡

𝑥

0
 

the complete and lower incomplete gamma functions, 

respectively. 

 

In the present study a new distribution proposed known as 

length-biased lifetime (LBLT) distribution. The paper 

organized as: Section 2 is the brief introduction of the 

distribution and its related characteristics. The text discusses 

the use of the maximum likelihood technique in Section 3 for 

the purpose of estimating the parameters of the model. 

Section 4 discusses Entropy, Bonferroni and Lorenz curves 

while Section 5 focuses on the practical uses of two actual 

data sets. Ultimately, the conclusion is clearly laid out in 

section 6. 

 

2. Proposed Length-biased Lifetime distribution 
 

This section deals with the formation of the Length-Biased 

Lifetime (LBL) distribution. In this suggested new 

distribution, we provide the pdf, cdf and analyse a number of 

characteristics. On using the equations (1.1) and (1.2), we 

obtained the following density of LBLT distribution 

𝑓𝑙(𝑡)  =
 𝜉𝑡𝜔𝜉 𝑒𝑥𝑝(−

𝑡𝜉

𝜁𝜂)

𝜁
𝜂(𝜔+

1
𝜉

)
Γ(𝜔+

1

𝜉
)

;   𝑡, 𝜔, 𝜂, 𝜉, 𝜁 > 0                    (2.1) 

The various density shapes of the proposed LBLT distribution 

are obtained by taking different values of 𝜔, 𝜂, 𝜉 and 𝜁 , are 

shown in Fig. (1). Also, it is clearly shows that the 

distribution is positively skewed. 

 

 
Figure 1: pdf plots for LBLT distribution 

 

It is interested to mention that the distributions listed below 

are specific cases of the LBLT distribution: 

• For  𝜔 = η = ξ = 1 it follows Length-biased one parameter 

Exponential distribution. 

• For η = ξ = 1 it follows Length-biased Gamma distribution. 

• For η = ξ it follows Length-biased generalized Gamma 

distribution. 

• For η = ξ = 1 and ω is positive integer it follows Length-

biased Erlang distribution. 

• For 𝜔  = 1, η = ξ it follows Length-biased Weibull 

distribution. 

• For 𝜔 = 1/2, η = ξ = 2 it follows Length-biased half Normal 

distribution. 

• For 𝜔  = η = 1, ξ = 2 it follows Length-biased Chi 

distribution. 

• For 𝜔 = 𝜔/2, η = 1, ξ = 2 it follows Length-biased Rayleigh 

distribution. 

• For 𝜔  = 3/2, η = 1, ξ = 2 it follows Length-biased 

Maxwell’s failure distribution. 

 

The cdf of Length-biased Lifetime (LBLT) distribution is 

given by 

𝐹𝑙(𝑡)  =
 𝛾(𝜔+

1

𝜉
,   

𝑡𝜉

𝜁𝜂)

Γ(𝜔+
1

𝜉
)

;  𝑡, 𝜔, 𝜂, 𝜉, 𝜁 > 0                       (2.2) 

 

2.1. Reliability Characteristics 

2.1.1. Reliability Function 

The Reliability function R(t) of Length-biased Lifetime 

(LBLT) distribution is given by 

𝑅(𝑡)  =
 Γ(𝜔+

1

𝜉
,   

𝑡𝜉

𝜁𝜂)

Γ(𝜔+
1

𝜉
)

 ;  𝑡, 𝜔, 𝜂, 𝜉, 𝜁 > 0                        (2.3) 

 

where, Γ(𝑦, 𝑥) = ∫ 𝑡𝑦−1𝑒−𝑡𝑑𝑡
∞

𝑥
. 

The different shapes of reliability are obtained by taking 

different values of parameters are shown in Fig. (2). 

 

 
Figure 2: reliability plots for LBLT distribution 

 

It is observed that from Fig. (2) and Table (1) for different 

values of different parameters the reliability decreases when 

the value of t increases. 
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Table 1: Reliability tables  

 

2.1.2. Hazard Function 

 

The hazard function is described as 

 

  h(t) =
f(t)

R(t)
 

  h(t) =

 ξtωξ exp(−
tξ

ζη)

ζ
η(ω+

1
ξ

)
Γ(ω+

1
ξ

)

 Γ(ω+
1
ξ

,   
tξ

ζη)

Γ(ω+
1
ξ

)

 

 

On simplifying, we get 

  h(t) =
ξtωξ exp(−

tξ

ζη)

ζ
η(ω+

1
ξ

)
 Γ(ω+

1

ξ
,   

tξ

ζη)

                     (2.4) 

 

Different shapes of hazard function are obtained by taking 

different values of parameters. From Fig. (3), it’s clearly 

shows that hazard rate is upside-down for the LBLT 

distribution. 

 

 

 

 

 

 
Figure 3: Hazard plots for LBLT distribution 

 

2.1.3. Reversed Hazard Function 

 

The reverse hazard rate is defined as 

   𝑅ℎ(𝑡) =
𝑓(𝑡)

𝐹(𝑡)
 

   𝑅ℎ(𝑡) =

 𝜉𝑡𝜔𝜉 𝑒𝑥𝑝(−
𝑡𝜉

𝜁𝜂)

𝜁
𝜂(𝜔+

1
𝜉

)
Γ(𝜔+

1
𝜉

)

 𝛾(𝜔+
1
𝜉

,   
𝑡𝜉

𝜁𝜂)

Γ(𝜔+
1
𝜉

)

 

On simplifying, we get 

   𝑅ℎ(𝑡) =
𝜉𝑡𝜔𝜉 𝑒𝑥𝑝(−

𝑡𝜉

𝜁𝜂)

𝜁
𝜂(𝜔+

1
𝜉

)
 𝛾(𝜔+

1

𝜉
,   

𝑡𝜉

𝜁𝜂)

      (2.5) 

 

2.2. Statistical Properties 

Theorem 2.1. For  𝑟 =  1, 2, ..., 𝑟𝑡ℎ moment of random 

variable T is given by 

   𝜇′𝑟 = 𝜁𝜂𝑟/𝜉
 Γ(𝜔+𝑟+1

𝜉
)

Γ(𝜔+1
𝜉

)
       (2.6) 

Proof.  On using the pdf of the r.v. T given at equation (2.1), 

we get  

   𝜇′𝑟 = ∫ 𝑡𝑟𝑓(𝑡)𝑑𝑡
∞

0
 

   𝜇′𝑟 = ∫ 𝑡𝑟
 𝜉𝑡𝜔𝜉 𝑒𝑥𝑝(−𝑡𝜉

𝜁𝜂)

𝜁
𝜂(𝜔+

1
𝜉

)
Γ(𝜔+1

𝜉
)

𝑑𝑡
∞

0
      (2.7) 

 theorem follows by using transformation 𝑦 =
𝑡𝜉

𝜁𝜂 , and basic 

concept of gamma function in equation (2.7). 

 

Lemma 2.1. If a r.v. T follows LBLT distribution then on 

substituting 𝑟 = 1, 2 in equation (2.6), we obtain the mean 

and variance, respectively. 

  𝑚𝑒𝑎𝑛 = 𝜇′1 = 𝜁𝜂/𝜉
 Γ(𝜔+2

𝜉
)

Γ(𝜔+1
𝜉

)
 

For fixed 𝜂 = 3, 𝜉 = 2, 𝜁 = 1.5 

t ω = 1 ω = 2 ω = 3 

1 0.89813 0.98834 0.99903 

2 0.49917 0.79588 0.93654 

3 0.14895 0.37657 0.61936 

4 0.02353 0.09133 0.21991 

5 0.00198 0.01118 0.03845 

For fixed ω = 3,   𝜉 = 2, ζ = 1.5 

t η = 1 η = 2 η = 3 

1 0.98753 0.99643 0.99903 

2  0.61936 0.82931 0.93654 

3 0.10056 0.33259 0.61936 

4 0.00331 0.04737 0.21991 

5 2.295E-05 0.00233 0.03845 

For fixed ω = 3, η = 2, ζ = 1.5 

t ξ = 1 ξ = 2 ξ = 3 

1 0.99483 0.99945 0.99995 

2 0.77978 0.95984 0.99483 

3 0.25266 0.72072 0.94472 

4 0.02512 0.33259 0.77978 

5 0.00076 0.08527 0.51088 

For fixed ω = 3, η = 2, ξ = 1 

t ζ = 1 ζ = 2 ζ = 3 

1 0.98101 0.99987 0.99999 

2 0.85712 0.99825 0.99992 

3 0.64723 0.99271 0.99961 

4 0.43347 0.98102 0.99886 

5 0.26503 0.96173 0.99744 
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      𝜇′2 = 𝜁2𝜂/𝜉
 Γ(𝜔+3

𝜉
)

Γ(𝜔+1
𝜉

)
 

And 

 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 

 𝜇2 =
𝜁2𝜂/𝜉

(Γ(𝜔+
1

𝜉
))

2 [Γ (𝜔 +
3

𝜉
) Γ (𝜔 +

1

𝜉
) − (Γ (𝜔 +

2

𝜉
))

2

] 

 

Lemma 2.2. If a r.v. T follows LBLT distribution then the 

C.V. is given by 

   

[Γ(𝜔+
3

𝜉
)Γ(𝜔+

1

𝜉
)−(Γ(𝜔+

2

𝜉
))

2

]

Γ(𝜔+
2

𝜉
)

       (2.8) 

Proof.  Coefficient of variation is given by, 

               𝐶. 𝑉. = √𝜇2

𝜇′1
 

                 

=

√
𝜁2𝜂/𝜉

(Γ(𝜔+
1
𝜉

))

2[Γ(𝜔+
3

𝜉
)Γ(𝜔+

1

𝜉
)−(Γ(𝜔+

2

𝜉
))

2

]

𝜁𝜂/𝜉
 Γ(𝜔+

2
𝜉

)

Γ(𝜔+
1
𝜉

)

 

 =
[Γ(𝜔+3

𝜉
)Γ(𝜔+1

𝜉
)−(Γ(𝜔+2

𝜉
))

2

]

Γ(𝜔+2
𝜉

)
 

 

Lemma 2.3. If a random variable T follows LBLT 

distribution then characteristic function (cf) and moment 

generating function (mgf) of T are respectively, given as 

 𝜙𝑥(𝑡) =  ∑
(𝑖𝑡)𝑟

𝑟!
𝜁𝜂𝑟/𝜉

 Γ(𝜔+
𝑟+1

𝜉
)

Γ(𝜔+
1

𝜉
)

∞
𝑟=0        (2.9) 

𝑀𝑥(𝑡) =  ∑
𝑡𝑟

𝑟!
𝜁𝜂𝑟/𝜉

 Γ(𝜔+
𝑟+1

𝜉
)

Γ(𝜔+
1

𝜉
)

∞
𝑟=0                    (2.10) 

On using equation (2.1) and Taylor’s series expansion the 

Lemma 2.3, follows. 

 

Theorem 2.2. If T ∼ LBLT(𝜔, 𝜂, 𝜉, 𝜁),  then the harmonic 

mean of T is given by 

  
1

𝐻
=

 Γ(𝜔)

𝜁𝜂Γ(𝜔+
1

𝜉
)
            (2.11) 

Proof. The harmonic mean (H) is described as 

 
1

𝐻
= 𝐸 (

1

𝑇
) 

 
1

𝐻
= ∫

1

𝑡
𝑓(𝑡)𝑑𝑡

∞

0
 

using equation (2.1), we get 

                      
1

𝐻
= ∫

1

𝑡

 𝜉𝑡𝜔𝜉 𝑒𝑥𝑝(−
𝑡𝜉

𝜁𝜂)

𝜁
𝜂(𝜔+

1
𝜉

)
Γ(𝜔+

1

𝜉
)

𝑑𝑡
∞

0
 

 

                    
1

𝐻
= ∫

 𝜉𝑡𝜔𝜉−1 𝑒𝑥𝑝(−
𝑡𝜉

𝜁𝜂)

𝜁
𝜂(𝜔+

1
𝜉

)
Γ(𝜔+

1

𝜉
)

𝑑𝑡
∞

0
        (2.12) 

theorem, follows on using the transformation 𝑦 =
𝑡𝜉

𝜁𝜂  in 

equation (2.12). 

 

Theorem 2.3. If T ∼ LBLT(𝜔, 𝜂, 𝜉, 𝜁), then the mode of T is 

given by 

 𝑡∗ = (𝜔𝜁𝜂)1/𝜉              (2.13) 

Proof. We get the mode by solving 
𝑑

𝑑𝑡
𝑓 (𝑡)  =  0 , by 

differentiate equation (2.1), we get 

   

       
𝑑

𝑑𝑡
𝑓(𝑡) =

 𝜉

𝜁
𝜂(𝜔+

1
𝜉

)
Γ(𝜔+

1

𝜉
)

𝑑

𝑑𝑡
𝑡𝜔𝜉−1 𝑒𝑥𝑝 (−

𝑡𝜉

𝜁𝜂) 

      

=
 𝜉2

𝜁
𝜂(𝜔+

1
𝜉

)
Γ(𝜔+

1

𝜉
)

[𝜔𝑡𝜔𝜉−1𝑒𝑥𝑝 (−
𝑡𝜉

𝜁𝜂) −
𝑡𝜔𝜉+𝜉−1

𝜁𝜂 𝑒𝑥𝑝 (−
𝑡𝜉

𝜁𝜂)] 

Equating following equation with zero, we get 

    𝜔𝑡𝜔𝜉−1𝑒𝑥𝑝 (−
𝑡𝜉

𝜁𝜂) =

𝑡𝜔𝜉+𝜉−1

𝜁𝜂 𝑒𝑥𝑝 (−
𝑡𝜉

𝜁𝜂) 

 

by solving following equation, we get 𝑡 = (𝜔𝜁𝜂)1/𝜉 . It is 

easy to verify that 
𝑑2

𝑑𝑡2 𝑓 (𝑡) < 0 , which resulting 𝑡∗ =

(𝜔𝜁𝜂)1/𝜉  as mode. 

 

2.3. Quantile Function 

 

Theorem 2.4. If T ∼ LBLT( 𝜔, 𝜂, 𝜉, 𝜁 ), then the quantile 

function of T defined by 

  𝑡 = (𝜁𝜂𝑄−1 (𝜔 +
1

𝜉
, 1 − 𝑈))

1/𝜉

     (2.14) 

Proof.  𝑈 = 𝐹(𝑡) 

   𝑈 =
 𝛾(𝜔+

1

𝜉
,   

𝑡𝜉

𝜁𝜂)

Γ(𝜔+
1

𝜉
)

 

Using basic concept of incomplete gamma function, we get 

          1 − 𝑈 =
Γ(𝜔+

1

𝜉
,   

𝑡𝜉

𝜁𝜂)

Γ(𝜔+
1

𝜉
)

 

        1 − 𝑈 = 𝑄 (𝜔 +
1

𝜉
,   

𝑡𝜉

𝜁𝜂) 

where, 𝑄(𝑎, 𝑧) is regularized incomplete gamma function. 

Using basic of inverse regularized incomplete gamma 

function 

 
𝑡𝜉

𝜁𝜂 = 𝑄−1 (𝜔 +
1

𝜉
, 1 − 𝑈 )  

  

theorem follows by solving the following equation. 

 

2.4. Order Statistics 

Let for the random samples 𝑇1 , 𝑇2 , ..., 𝑇𝑛  taken from 

continuous population with pdf 𝑓𝑇(𝑡) and cdf with 𝐹𝑇(𝑡), thus 

𝑇(1), 𝑇(2), ..., 𝑇(𝑛) be the order statistics, then the pdf and cdf 

of 𝑟𝑡ℎ order statistics 𝑇(𝑟) is given by 

 

 𝑓𝑇(𝑟)
(𝑡) =

𝑛!

(𝑟−1)!(𝑛−𝑟)!
[𝐹𝑇(𝑡)]𝑟−1[1 − 𝐹𝑇(𝑡)]𝑛−𝑟𝑓𝑇(𝑡)      (2.15) 
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using equation (2.1) and (2.2) in equation (2.15), we get the 

pdf of 𝑟𝑡ℎ order statistics 𝑇(𝑟) of LBLT, given by 

 

𝑓𝑇(𝑟)
(𝑡) =

𝑛!

(𝑟−1)!(𝑛−𝑟)!
[

 𝛾(𝜔+
1

𝜉
,   

𝑡𝜉

𝜁𝜂)

Γ(𝜔+
1

𝜉
)

]

𝑟−1

[
 Γ(𝜔+

1

𝜉
,   

𝑡𝜉

𝜁𝜂)

Γ(𝜔+
1

𝜉
)

]

𝑛−𝑟
 𝜉𝑡𝜔𝜉 𝑒𝑥𝑝(−

𝑡𝜉

𝜁𝜂)

𝜁
𝜂(𝜔+

1
𝜉

)
Γ(𝜔+

1

𝜉
)

 

=
𝑛!

(𝑟−1)!(𝑛−𝑟)!

 𝜉𝑡𝜔𝜉  𝑒𝑥𝑝(−
𝑡𝜉

𝜁𝜂)

𝜁
𝜂(𝜔+

1
𝜉

)
(Γ(𝜔+

1

𝜉
))

𝑛 [𝛾 (𝜔 +
1

𝜉
,   

𝑡𝜉

𝜁𝜂)]
𝑟−1

[Γ (𝜔 +

1

𝜉
,   

𝑡𝜉

𝜁𝜂)]
𝑛−𝑟

                 (2.16) 

 

by using equation (2.16), we get pdf of 1𝑠𝑡  and 𝑛𝑡ℎ  order 

statistics respectively, 

 𝑓𝑇(1)
(𝑡) =

𝑛 𝜉𝑡𝜔𝜉  𝑒𝑥𝑝(−
𝑡𝜉

𝜁𝜂)

𝜁
𝜂(𝜔+

1
𝜉

)
(Γ(𝜔+

1

𝜉
))

𝑛 [Γ (𝜔 +
1

𝜉
,   

𝑡𝜉

𝜁𝜂)]
𝑛−1

 

 𝑓𝑇(𝑛)
(𝑡) =

 𝑛 𝜉𝑡𝜔𝜉  𝑒𝑥𝑝(−
𝑡𝜉

𝜁𝜂)

𝜁
𝜂(𝜔+

1
𝜉

)
(Γ(𝜔+

1

𝜉
))

𝑛 [𝛾 (𝜔 +
1

𝜉
,   

𝑡𝜉

𝜁𝜂)]
𝑛−1

 

 

3. Parameters Estimation 
 

In present section, we will estimate the parameters of the 

LBLT distribution using the maximum likelihood technique. 

Let 𝑡1, 𝑡2, …, 𝑡𝑛 be the random samples of size 𝑛 follows the 

LBLT distribution, then the likelihood function 

 𝐿 =  
 𝜉𝑛  

𝜁
𝑛𝜂(𝜔+

1
𝜉

)
(𝛤(𝜔+

1

𝜉
))

𝑛 𝑒𝑥𝑝 (−
∑ 𝑡𝜉

𝜁𝜂 ) ∏ 𝑡𝜔𝜉𝑛
𝑖=1  

The log-likelihood function can be written as 

 𝑙𝑜𝑔 𝐿 = 𝑛 𝑙𝑜𝑔 𝜉 − 𝑛𝜂 (𝜔 +
1

𝜉
) 𝑙𝑜𝑔 𝜁 − 𝑛 𝑙𝑜𝑔 𝛤 (𝜔 +

1

𝜉
) −

1

𝜁𝜂
∑ 𝑡𝑖

𝜉𝑛
𝑖=1 + 𝜔𝜉 ∑ 𝑡𝑖

𝑛
𝑖=1        (3.1) 

 

differentiating equation (3.1), with respect to 𝜔, 𝜂, 𝜉 and 𝜁 

equating with zero respectively, we get normal equations 

 

 
𝑑 𝑙𝑜𝑔 𝐿

𝑑𝜔
= −𝑛𝜂 𝑙𝑜𝑔 𝜁 − 𝑛𝜓 (𝜔 +

1

𝜉
) +  𝜉 ∑ 𝑡𝑖

𝑛
𝑖=1  (3.2) 

 
𝑑 𝑙𝑜𝑔 𝐿

𝑑𝜂
= −𝑛 (𝜔 +

1

𝜉
) 𝑙𝑜𝑔 𝜁 +  

1

𝜁𝜂 𝑙𝑜𝑔𝜁 ∑ 𝑡𝑖
𝜉𝑛

𝑖=1  (3.3)

  

   
𝑑 𝑙𝑜𝑔 𝐿

𝑑𝜉
=

𝑛

𝜉
+

𝑛𝜂 𝑙𝑜𝑔 𝜁

𝜉2 − 𝑛𝜓 (𝜔 +
1

𝜉
) 

                                  −
1

𝜁𝜂
∑ 𝑡𝑖

𝜉
𝑙𝑜𝑔𝑡𝑖 +𝑛

𝑖=1 𝜔 ∑ 𝑡𝑖
𝑛
𝑖=1  (3.4) 

  
𝑑 𝑙𝑜𝑔 𝐿

𝑑𝜁
= −

𝑛𝜂

𝜁
(𝜔 +

1

𝜉
) +

𝜂

𝜁𝜂+1
∑ 𝑡𝑖

𝜉𝑛
𝑖=1  (3.5) 

where, 𝜓(𝑧) =
𝑑

𝑑𝑧
𝛤(𝑧) =

𝛤′(𝑧)

𝛤(𝑧)
 is a logarithmic derivative of 

gamma function. As it seems, from equations (3.2), (3.3), 

(3.4) and (3.5), the analytical solution of 𝜔, 𝜂, 𝜉 and 𝜁 are not 

available. Consequently, Iterative methods must be used for 

non-linear parameter estimation. 

 

4. Entropy, Bonferroni and Lorenz curves 
 

Entropy is an important concept in several academic 

disciplines, including physics, communication theory, 

probability and statistics, and economics. To quantify the 

degree to which a system exhibits diversity, uncertainty, or 

unpredictability, one might use the entropy metric. A random 

variable’s entropy You may think of T as a quantitative 

measure of the amount of variance or uncertainty linked to it. 

 

4.1. Shannon’s Entropy 

Shannon’s entropy is defined as 

𝑆(𝑡) = −𝐸(𝑙𝑜𝑔𝑓(𝑡))  

 𝑆(𝑡) = −𝐸 (𝑙𝑜𝑔 (
 𝜉𝑡𝜔𝜉 𝑒𝑥𝑝(−

𝑡𝜉

𝜁𝜂)

𝜁
𝜂(𝜔+

1
𝜉

)
Γ(𝜔+

1

𝜉
)

)) 

 𝑆(𝑡) = −𝐸 (𝑙𝑜𝑔 (
 𝜉

𝜁
𝜂(𝜔+

1
𝜉

)
𝛤(𝜔+

1

𝜉
)

) −
𝑡𝜉

𝜁𝜂 + 𝜔𝜉𝑙𝑜𝑔(𝑡)) 

𝑆(𝑡) = −𝑙𝑜𝑔 (
 𝜉

𝜁
𝜂(𝜔+

1
𝜉

)
𝛤(𝜔+

1

𝜉
)

) +
𝐸(𝑡𝜉)

𝜁𝜂 − 𝜔𝜉 𝐸(𝑙𝑜𝑔(𝑡))

               (4.1) 

 

we get 

  𝐸(𝑡𝜉) = 𝜁𝜂 (𝜔 +
1

𝜉
)                     (4.2) 

  𝐸(𝑙𝑜𝑔(𝑡)) =  
1

𝜉
𝜓 (𝜔 +

1

𝜉
) +

𝜂

𝜉
𝑙𝑜𝑔𝜁       (4.3) 

using equation (4.2) and (4.3) in equation (4.1), we get 

 𝑆(𝑡) = −𝑙𝑜𝑔 (
 𝜉

𝜁
𝜂(𝜔+

1
𝜉

)
𝛤(𝜔+

1

𝜉
)

) + (𝜔 +
1

𝜉
) − 𝜔 (𝜓 (𝜔 +

1

𝜉
) +

𝜂𝑙𝑜𝑔𝜁)                 (4.4) 

 

4.2. Renyi Entropy 

Renyi entropy of order k is defined as 

 

  𝐻𝑘 =
1

1−𝑘
𝑙𝑜𝑔 ∫ (𝑓(𝑡))𝑘𝑑𝑡

∞

0
 

 𝐻𝑘 =
1

1−𝑘
𝑙𝑜𝑔 (∫ (

 𝜉𝑡𝜔𝜉 𝑒𝑥𝑝(−
𝑡𝜉

𝜁𝜂)

𝜁
𝜂(𝜔+

1
𝜉

)
Γ(𝜔+

1

𝜉
)

)

𝑘

𝑑𝑡
∞

0
) 

    ==

1

1−𝑘
𝑙𝑜𝑔 (∫ (

 𝜉

𝜁
𝜂(𝜔+

1
𝜉

)
𝛤(𝜔+

1

𝜉
)

)

𝑘

𝑡𝜔𝜉𝑘  𝑒𝑥𝑝 (−
𝑘𝑡𝜉

𝜁𝜂 ) 𝑑𝑡
∞

0
) 

by using transformation 𝑦 = (
𝑘𝑡𝜉

𝜁𝜂 ), we get 

 𝐻𝑘 =
1

1−𝑘
𝑙𝑜𝑔 (

𝜉𝑘−1𝛤(𝜔𝑘+
1

𝜉
)

𝜁

𝜂
𝜉

(𝑘−1)
𝑘

𝜔𝑘+
1
𝜉(𝛤(𝜔+

1

𝜉
))

𝑘)              (4.5) 
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4.3. Lorenz curves and Bonferroni  

It is assumed that the random variable T is non-negative and 

has a twice-differentiable, continuous cumulative distribution 

function. The Bonferroni curve for the random variable T is 

defined as follows: 

 

𝐵(𝑝) =
1

𝑝𝜇
∫ 𝑡𝑓(𝑡)𝑑𝑡

𝑞

0
  

where, 𝑝 = 𝐹(𝑡), 𝑞 = 𝐹−1(𝑝) and 𝜇 = 𝐸(𝑡) 

              𝐵) =
1

𝑝(𝜁𝜂/𝜉
 𝛤(𝜔+

2
𝜉

)

𝛤(𝜔+
1
𝜉

)
)

∫
 𝜉𝑡𝜔𝜉+1 𝑒𝑥𝑝(−

𝑡𝜉

𝜁𝜂)

𝜁
𝜂(𝜔+

1
𝜉

)
𝛤(𝜔+

1

𝜉
)

𝑑𝑡
𝑞

0
  

𝐵(𝑝) =
𝜉

𝑝𝜁𝜔𝜂𝛤 (𝜔 +
2
𝜉

)
∫ 𝑡𝜔𝜉+1 𝑒𝑥𝑝 (−

𝑡𝜉

𝜁𝜂
) 𝑑𝑡

𝑞

0

 

 

by using transformation 𝑦 = (
𝑡𝜉

𝜁𝜂), we get 

       𝐵(𝑝) =
𝜁2𝜂/𝜉

𝑝𝛤(𝜔+
2

𝜉
)

𝛾 (𝜔 +
2

𝜉
,

𝑞𝜉

𝜁𝜂)                       (4.6) 

 

Lorenz curve is defined as 

  𝐿(𝑝) =
1

𝜇
∫ 𝑡𝑓(𝑡)𝑑𝑡

𝑞

0
 

  𝐿(𝑝) = 𝑝𝐵(𝑝) 

by using equation (4.6), we get 

  𝐿(𝑝) =
𝜁2𝜂/𝜉

𝛤(𝜔+
2

𝜉
)

𝛾 (𝜔 +
2

𝜉
,

𝑞𝜉

𝜁𝜂)   (4.7) 

 

5. Real data Application 
 

The Length-biased Lifetime (LBLT) distribution is applied on 

two actual lifetime datasets. The results indicate that both 

datasets exhibit a superior match with the Length-biased 

Lifetime (LBLT) distribution as compared to the Length 

biased weighted Lindley distribution, Length-Biased Gamma-

Rayleigh Distribution and Two-Parameter Weighted Rama 

Distribution. 

 

The first set of data shows how long it took for twenty people 

to feel better after taking an analgesic. Sule and Halid (2023) 

[17] have utilized this data set. 

 

The summary of data set is given as: 

 

Min. Max Mean S.D. S.E. Median Mode 

1.1 4.1 1.9 0.7041 0.1574 1.7 1.7 

  
Table 2: The ML estimates for first data set 

Distribution 𝜔 𝜂 𝜉 𝜁 

LBLT 79.4897 3.2270 0.3464 0.2721 

LBWL   1.9011 1.53E-05 

LBGR   1.8478 0.5753 

TPWR   0.4251 1.0770 

 

 

 

Table 3: Evaluate the first dataset's goodness of fit 

Distribution − logL AIC BIC AICC HQIC 

LBLT 17.096 42.193 46.176 44.546 42.971 

LBWL 22.104 48.209 50.201 48.840 48.597 

LBGR 19.170 42.340 44.332 42.972 42.729 

TPWR 24.302 52.603 54.595 53.235 52.992 

  

where,     

 𝐴𝐼𝐶 = 2𝑃 − 2 𝑙𝑜𝑔𝐿     

 𝐵𝐼𝐶 = 𝑃 𝑙𝑜𝑔 𝑛 − 2 𝑙𝑜𝑔𝐿 

  𝐴𝐼𝐶𝐶 = 𝐴𝐼𝐶 +
2𝑃(𝑃+1)

𝑛−𝑃−1
 

 𝐻𝑄𝐼𝐶 = 2𝑃𝑙𝑜𝑔(𝑙𝑜𝑔(𝑛)) − 2𝑙𝑜𝑔𝐿 

n = sample size, P = number of parameters. 

 

 
Figure 4: Data fitting plots with densities for first data set 

 

 
Figure 5: Data fitting plots with ecdf for first data set 

 
The durability of 1.5 cm glass fiber tested at the National 

Physical Laboratory in England is represented by the second 

set of data used by Alzaatreh et. al (2015) [18]. Summary of 

the second data set 
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Min. Max. Mean S.D. S.E. Median Mode 

0.550 2.24 1.523 0.3153 0.0397 1.6 1.61 

 
Table 4: The ML estimates for second data set 

Distribution 𝜔 𝜂 𝜉 𝜁 

LBLT 0.5237 2.6237 7.7951 5.4140226 

LBWL   6.0702 1.09E-06 

LBGR   4.908438 2.238172 

TPWR   0.6942377 1.455 

 
Table 5: Evaluate the second dataset's goodness of fit 

Distribution − log L AIC BIC AICC HQIC 

LBLT 12.860 33.719 42.292 34.3859 37.09 

LBWL 203.108 410.215 414.502 410.409 411.9 

LBGR 19.282 42.564 46.850 42.757 44.25 

TPWR 24.302 52.604 54.595 53.235 52.99 

 

 
Figure 6: Data fitting plots with densities for second data set 

 

 
Figure 7: Data fitting plots with ecdf for second data set 

 

It is easy to notice from Table 3, 5 and Fig. 4, 5, 6 and 7, that 

the New Length-biased Lifetime distribution exhibits a better 

fit as compared to the Length biased weighted Lindley 

distribution, Length-Biased Gamma-Rayleigh distribution 

and Two-Parameter Weighted Rama distribution for fitting 

the datasets. 

 

6. Conclusion 
 

The Length-biased Lifetime distribution is a new distribution 

that is suggested in this article. Four parameters, shape and 

scale parameters, define the distribution under consideration. 

Parameter estimation and characteristics of this distribution, 

including its moments, failure rate, reliability function, etc., 

are thoroughly investigated using specific formulas. We have 

analysed and compared the AIC, BIC, AICC, and HQIC 

criteria. Both data sets from real life shows that AIC is 

minimum for LBLT as shown in table 3 & 5, and LBLT is 

better fitted as shown in fig 4, 5, 6 & 7, compared to the 

Length biased weighted Lindley distribution, Length-Biased 

Gamma-Rayleigh Distribution and Two Parameter Weighted 

Rama Distribution.  
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