Strong Regularity in Near-Rings

S Narmada¹, Sidhartha Sarma S K²

¹Dept. of Mathematics, Sree Narayana College, Kollam, Kerala, India
²Dept. of Mathematics, Campus Library, University of Kerala, Kariavattom, Kerala, India

© 2019, IJSRMSS All Rights Reserved

Abstract — The aim of this paper is to prove some concepts related with strong regularity and strong reducedness in near-rings. We arrive at a conclusion that all reduced and regular near-rings are strongly regular and strongly reduced near-rings. Also we discuss the idea of semicentral in near-rings.

Keywords — Near-rings, Regular, Reduced, Strongly regular, Strongly reduced, Right semicentral

I. INTRODUCTION

Throughout this paper we work with right near-rings. Mason[1] introduced the notion of strong regularity of near-rings and characterized left regular zero-symmetric unital near-rings. Reddy and Murty [2] extended the results in [1] to arbitrary near-rings and proved that the concepts of left regularity, left strong regularity and right regularity in near-rings are equivalent and these imply right strong regularity. Yong Uk Cho and Yasuyuki Hirano[3] showed that the strong regularity in near-ring is equivalent property (*) in[2]. Narmada and Anil Kumar[4] characterize the strong regularity of near-rings.

We will use the following notations:

Given a near-ring \(N \) , \(N_0 = \{ n \in N : n0 = 0 \} \) which is called the zero-symmetric part of \(N \), \(N_0 = \{ n \in N : n0 = n \} = \{ n \in N : mn' = n \text{ for every } n' \in N \} \) which is called constant part of \(N \). Clearly, \(N_0 \) and \(N_c \) are subnear-rings of \(N \). A near-ring \(N \) is called zero-symmetric if \(N = N_0 \) and \(N \) is called a constant near-ring if \(N = N_c \). For basic concepts and notations we shall refer to Pilz[5].

II. PRELIMINARIES

The concept of homomorphism on near-rings are like on rings. \(Z_n \) is an abelian group under addition modulo \(n \). Let \(N, N' \) be near-rings, \(h : N \to N' \) is called near-ring homomorphism if for every \(m, n \in N \) such that \(h(m + n) = h(m) + h(n) \) and \(h(mn) = h(m)h(n) \). A near-ring \(N \) is called left strongly regular if for every \(a \in N \), there exist \(x \in N \) such that \(a = xa^2 \) and left regular if for every \(a \in N \), there exist \(x \in N \) such that \(a = xa^2 \) and \(a = axa \). Right strong regularity and right regularity can be defined in symmetric way. \(N \) is strongly regular if it is both left and right strongly regular. We can say that \(N \) is reduced if \(N \) has no nonzero nilpotent elements, that is, for each \(a \in N \), \(a^n = 0 \), for some positive integer \(n \) implies \(a = 0 \). In ring theory Mc Coy proved that \(N \) is reduced if and only if for each \(a \in N \), \(a^2 = 0 \) implies \(a = 0 \). A near-ring \(N \) is said to be strongly reduced if for each \(a \in N \), \(a^2 \in N_c \) implies \(a \in N_c \).

An idempotent \(e \in N \) is right semicentral if \(en = ne \) for each \(n \in N \). Similarly, left semicentral can be defined in a symmetric way. A near-ring in which every idempotent is right semicentral is called right semicentral near-ring. An idempotent \(e \) in \(N \) is central if \(en = ne \) for each \(x \in N \).

III. CHARACTERIZATION OF HOMOMORPHISM ON \(Z_n \) ([6]):

Suppose \(f : Z_m \to Z_n \) is a group homomorphism and assume \(f(1) = k \), then for \(m \in N \), \(f(m) = mk \) and \(f(-m) = -mk \). Thus \(x \in Z, f(x) = xf(1) = xk \)
\(f(0) = 0f(1) \). Then for \(x \in Z_m, f(x) = xk \) for some \(k \in Z_n \).

That is \(f : Z_m \to Z_n \) is a group homomorphism and \(f(1) = k \), then the homomorphism has the form \(f(x) = xk \) (mod \(n \)).

Conversely, if \(k \) is a solution of \(mx \equiv 0 \) (mod \(n \)) then \(f(x) = xk \) (mod \(n \)) is a homomorphism from \(Z_m \to Z_n \).

Theorem 3.1 : The function \(f : Z_m \to Z_n \) given by \(f(x) = xk \) for some \(k \in Z_n \), fixed is homomorphism of groups if and only if \(mk \equiv 0 \) (mod \(n \)).
Corollary 3.2 : The function $f: Z_m \rightarrow Z_n$ is a homomorphism and $f(x) = xk$ where k is the solution the system $mk \equiv 0 (mod \ n)$ and $(m,n) = 1$, is an on to homomorphism.

Proposition 3.3 : Suppose $f: Z_m \rightarrow Z_n$ is a ring homomorphism and assume $f(1) = k$, since every ring homomorphism is a group homomorphism, $f(x) = xk (mod \ n)$ is a ring homomorphism if and only if k is the solution of the system $mk \equiv 0 (mod \ n)$. Also $k = f(1) = f(1.1) = [f(1)]^2 = k^2 (k \text{ is idempotent})$. That is k is also a solution of the system $x^2 = x (mod \ n)$.

IV. STRONGLY REGULAR NEAR-RINGS

G Pilz[5], gives the description of near-rings of low order and from the above argument of homomorphism on near-rings , [6] gives the idea to construct the near-rings of low order on $Z_n , n \leq 7$. We know that every strongly regular near-ring is strongly reduced (Proposition 1 of [3]).

Lemma 4.1 : [3] Let N be a strongly reduced near-ring. If for any $b, b \in N$ with $ab \in N_c , then ba \in N_c .$ and for every $x \in N , axa , bxa \in N_c$. Furthermore, $b^n \in N_c$ implies $ab \in N_c , for$ each positive integer n.

Theorem 4.2 : If N is strongly regular , then it is strongly reduced and regular.

Proof: By Proposition 1 of [3] , N is strongly reduced. Let $a \in N$. Then, there exists $x \in N$ such that $a = xa^2$. Since $(a - axa)a = 0 \in N_c$, by lemma 4.1, $a(a - axa), axa(a - axa) \in N_c$. Thus $(a - axa)^2 \in N_c$ and this implies $a - axa \in N_c$. Hence, $0 = (a - axa)a = a - axa$ showing that $= axa$. Thus, N is regular.

Theorem 4.3 : A near-ring N is strongly regular if and only if it is right semicentral and regular.

Proof. Assume that N is strongly regular . Then N is strongly reduced and regular, by Theorem 4.2. Let $e^2 = e$. Now, $(e - en)e = 0 \in N_c$. Hence, $en(en - en), en(e - en) \in N_c$ by Lemma 4.1. So, $(en - en)^2 \in N_c$ and this implies $en - en \in N_c$. Hence, $0 = (en - en)e = en - en$, showing that $en = en$. Thus N is right semicentral.

Conversely, assume that N is right semicentral and regular. Let $a \in N$. Since N is regular,a = axa , for some $x \in N$. Then xa is idempotent. Now, $a = (ax)a = (a(ax)x(ax))a = (ax)x^2a^2 = ax^2a^2 = yo^2$, where $y = ax^2 \in N$.

Theorem 4.4 [4] : Let N be a near-ring. Then N is strongly regular if and only if it is strongly reduced and regular.

From Clay’s [7] table [6] classifies reduced and regular near-rings of order ≤ 7 , which are strongly regular and strongly reduced near-rings.

<table>
<thead>
<tr>
<th>Groups</th>
<th>Zero-symmetric, reduced and regular</th>
<th>Nonzero-symmetric, reduced and regular</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z_2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Z_3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Z_4</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>Z_5</td>
<td>7, 8, 10</td>
<td>9</td>
</tr>
<tr>
<td>Z_6</td>
<td>27, 47</td>
<td>24, 35, 48, 49, 52, 53</td>
</tr>
<tr>
<td>Z_7</td>
<td>18, 20, 21, 22, 23, 24</td>
<td>19</td>
</tr>
</tbody>
</table>

REFERENCES