

International Journal of Scientific Research in ______ Mathematical and Statistical Sciences Volume-5, Issue-5, pp.114-120, October (2018) **Research Paper**

E-ISSN: 2348-4519

Hamiltonian Decomposition of Special Class of Ladder Graphs

L.T. Cherin Monish Femila^{1*} and S. Asha²

¹Dept. of Mathematics, Nesamony Memorial Christian College, Marthandam, INDIA ²Dept. of Mathematics, Nesamony Memorial Christian College, Marthandam, INDIA

(Affiliated to Manonmaniam Sundaranar University, Abishekapatti, INDIA)

*Corresponding Author: cherinmonishfemila@gmail.com, Research Scholar (Reg.No.12604)

Available online at: www.isroset.org

Received: 04/Oct/2018, Accepted: 19/Oct/2018, Online: 31/Oct/2018

Abstract— A path in a graph G that contains every vertex of G is called Hamiltonian path. A cycle in a graph G that contains every vertex of G is called a Hamiltonian cycle of G. A Hamiltonian graph is a graph that contains a Hamiltonian cycle. A graph is uniquely Hamiltonian if it contains exactly one Hamiltonian cycle. A decomposition of a graph G into Hamiltonian cycles will be called Hamiltonian decomposition of G. In this paper, we decompose some families of graphs such as ladder, triangular ladder, diagonal ladder, and circular ladder using the concept of Hamiltonian decomposition. Also using the concept of Hamiltonian decomposition of ladder graphs we decompose the diagonal ladder graph.

Keywords— Hamiltonian cycle, Hamiltonian graph, uniquely Hamiltonian, Hamiltonian decomposition, Ladder Graph

I. INTRODUCTION

Graph theory is proved to be tremendously useful in modeling the essential features of systems with finite components. Graphical models are used to represent telephone network, railway network, communication problems, traffic network etc. A graph is a convenient way of representing information involving relationship between objects. The objects are represented by vertices and the relations by edges. The concept of decomposition of graphs in Hamiltonian cycles, Hamiltonian path decomposition of regular graphs was introduced by Klas Markstrom[1]. Decomposition of complete graphs into Hamilton cycles was discussed in [2] and J.C. Bermond [3] deals about Hamiltonian Decompositions of Graphs, Directed Graphs and Hypergraphs.

A path in a graph G that contains every vertex of G is called **Hamiltonian path**. A cycle in a graph G that contains every vertex of G is called a **Hamiltonian cycle** of G. A **Hamiltonian graph** is a graph that contains a Hamiltonian cycle. A graph is **uniquely Hamiltonian** if it contains exactly one Hamiltonian cycle. A decomposition of a graph G into Hamiltonian cycles will be called **Hamiltonian decomposition** of G.

The **Ladder graph** L_n , $n \ge 2$ is defined by $P_n \ge P_n$, where P_n is a path with n vertices and x denotes the Cartesian product and P_2 is a path with two vertices.

A Triangular Ladder graph TL_n , $n \ge 2$ is a graph obtained from the Ladder graph $L_n = P_n x P_2$ by adding the edges $u_i v_{i+1}$ for $1 \le i \le n-1$.

The **Diagonal Ladder graph** is a Ladder graph with additional edges u_iv_{i+1} and v_iu_{i+1} , denoted by DL_n .

The Circular Ladder graph CL_n , $n \ge 3$ is defined by $CL_n = C_n \times K_2$, where C_n is a cycle with n vertices and x denotes the cartesian product and K_2 is a complete graph with two vertices.

Section I contains the introduction of Hamiltonian decomposition of graphs and related topics, Section II contains Hamiltonian decomposition of ladder graphs, Section III contains Hamiltonian decomposition of triangular ladder graphs, Section IV contains Hamiltonian decomposition of circular ladder graphs, Section VI concludes research work.

II. HAMILTONIAN DECOMPOSITION OF LADDER GRAPH L_n

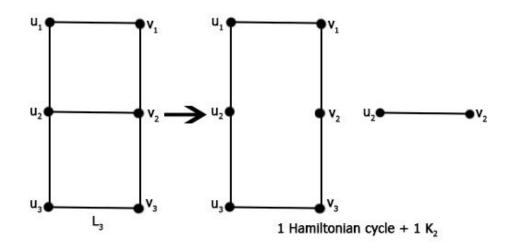
Theorem: 2.1

The Ladder graph L_n , $n \ge 2$ is uniquely Hamiltonian and the rest of the edges form n-2 copies of K₂.

Proof:

Form a spanning cycle: connect the vertex u_1 of Q_1 to v_1 of Q_2 and connect the vertex u_n of Q_1 to v_n of Q_2 at the same time. This is the only Hamiltonian cycle. Because connecting any vertex u_i , $2 \le i \le n-1$ of Q_1 to v_i , $2 \le i \le n-1$ of Q_2 makes a cycle which is not a spanning cycle. Therefore, L_n , $n \ge 2$ is uniquely Hamiltonian. The remaining edges joining the vertices u_i , $2 \le i \le n-1$ of Q_1 to v_i , $2 \le i \le n-1$ of Q_1 to v_i , $2 \le i \le n-1$ of Q_2 makes n-2 copies of K_2 .

Example:2.2



III. HAMILTONIAN DECOMPOSITION OF TRIANGULAR LADDER GRAPH TL_n

Theorem: 3.1

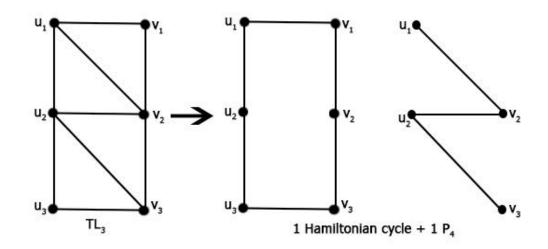
The Triangular Ladder graph TL_{n} , $n \ge 2$ is uniquely Hamiltonian and the rest of the edges form a path P_{2n-2} .

Proof:

 $\label{eq:Let TL} \mbox{Let TL}_n, n \geq 2 \mbox{ be the Triangular Ladder graph with vertex set V: \{u_1, u_2, u_3, ..., u_n, v_1, v_2, v_3, ..., v_n\}. \mbox{ By definition, clearly we get two paths } Q_1 \mbox{ and } Q_2 \mbox{ of length } n, \mbox{ } Q_1: u_1 u_2 u_3 ... u_n \mbox{ and } Q_2: v_1 v_2 v_3 ... v_n.$

Form a spanning cycle: connect the vertex u_1 of Q_1 to v_1 of Q_2 and connect the vertex u_n of Q_1 to v_n of Q_2 at the same time. This is the only Hamiltonian cycle. Because connecting any vertex u_i , $2 \le i \le n-1$ of Q_1 to v_i , $2 \le i \le n-1$ of Q_2 or connecting any vertex u_i , $1 \le i \le n-1$ of Q_1 to v_i , $2 \le i \le n-1$ of Q_2 or connecting any vertex u_i , $1 \le i \le n-1$ of Q_1 to v_i , $2 \le i \le n$ of Q_2 makes a cycle which is not a spanning cycle. Therefore, TL_n, $n \ge 2$ is uniquely Hamiltonian. The remaining edges joining the vertices u_i , $2 \le i \le n-1$ of Q_1 to v_i , $2 \le i \le n-1$ of Q_2 or connecting any vertex u_i , $1 \le i \le n-1$ of Q_1 to v_i , $2 \le i \le n$ of Q_2 makes a path P_{2n-2} .

Example: 3.2



IV. HAMILTONIAN DECOMPOSITION OF DIAGONAL LADDER GRAPH DL_n

Theorem: 4.1

 $\label{eq:constraint} \begin{array}{l} \mbox{The Diagonal Ladder graph DL}_n, n \geq 2 \mbox{ can be decomposed into} \\ \mbox{ } \left\{ \begin{array}{l} 3 \mbox{ Hamiltonian cycles if } n = 2. \\ 2 \mbox{ Hamiltonian cycles and } n - 2 \mbox{ copies of } K_2 \mbox{ if } n \geq 3. \end{array} \right. \end{array}$

Proof:

Let DL_n , $n \ge 2$ be the Diagonal Ladder graph with vertex set $V: \{u_1, u_2, u_3, ..., u_n, v_1, v_2, v_3, ..., v_n\}$.

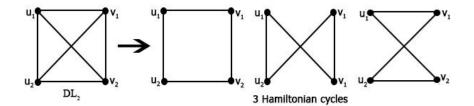
Case 1: n = 2

Let DL_2 be the Diagonal Ladder graph with vertex set V: { u_1, u_2, v_1, v_2 }. By definition, DL_2 is obtained from L_2 which is uniquely Hamiltonian, so that DL_2 has a Hamiltonian cycle. Also DL_2 has additional edges u_1v_2 and u_2v_1 . Connecting these two edges in two ways, we get two Hamiltonian cycles. Therefore, DL_2 has 3 Hamiltonian cycles.

Case 2: $n \ge 3$

By definition, DL_n is obtained from L_n which is uniquely Hamiltonian, so that DL_n has a Hamiltonian cycle. Now, we construct two paths Q_1 and Q_2 with the additional edges u_iv_{i+1} and $u_{i+1}v_i$ of length n, $Q_1:u_1v_2u_3v_4...u_{n-3}v_{n-2}u_{n-1}v_n$ and $Q_2:v_1u_2v_3u_4...v_{n-3}u_{n-2}v_{n-1}u_n$. Form a spanning cycle: connect the vertex u_1 of Q_1 to v_1 of Q_2 and connect the vertex v_n of Q_1 to u_n of Q_2 at the same time. Therefore, DL_n , $n \ge 3$ contains 2 Hamiltonian Cycles. Also the remaining edges joining the vertices u_i , $2 \le i \le n-1$ of Q_1 to v_i , $2 \le i \le n-1$ of Q_2 makes n-2copies of K_2 .

Example: 4.2





V. HAMILTONIAN DECOMPOSITION OF CIRCULAR LADDER GRAPH CL_n

Theorem: 5.1

The Circular Ladder graph CL_n , $n \ge 3$ can be decomposed into $\left\{ \right\}$

 \int n Hamiltonian cyclesif n is odd n + 2 Hamiltonian cyclesif n is even

and the rest of the edges form the 1-factorization.

Proof:

Let CL_n , $n \ge 3$ be the Circular Ladder graph with vertex set $V:\{u_1, u_2, u_3, ..., u_n, v_1, v_2, v_3, ..., v_n\}$. We consider two cases to prove this theorem.

Case 1: n is odd

We construct n paths in the inner cycle

 $Q_1: u_1u_2u_3...u_{n-2}u_{n-1}u_n,$

 $Q_2: u_2u_3u_4...u_{n-1}u_nu_1,$

· · · · · ·

 $Q_n: u_n u_1 u_2 ... \ u_{n-3} u_{n-2} u_{n-1}, \ n \geq 3.$

Also, we construct n paths in the outer cycle

 $R_1: v_1v_2v_3...v_{n-2}v_{n-1}v_n,$

 $R_2: v_2v_3v_4...v_{n-1}v_nv_1,$

· · ·

. . .

 $R_n \!\!: v_n v_1 v_2 \!\! \ldots \!\!\! v_{n\text{--}3} v_{n\text{--}2} v_{n\text{--}1}, \, n \geq 3.$

Now, we connect the end vertices of each paths Q_i and R_i , $1 \le i \le n, n \ge 3$, we get n spanning cycles.

Case 2: n is even

© 2017, IJSRMSS All Rights Reserved

We construct n paths in the inner cycle

 $Q_1: u_1u_2u_3...u_{n-2}u_{n-1}u_n,$

 $Q_2: u_2 u_3 u_4 ... u_{n-1} u_n u_1,$

. . .

.

.

 $Q_n: u_n u_1 u_2 ... \ u_{n-3} u_{n-2} u_{n-1}, \ n \geq 4.$

Also, we construct n paths in the outer cycle,

 $R_1: v_1v_2v_3...v_{n-2}v_{n-1}v_n,$

 $R_2: v_2v_3v_4...v_{n-1}v_nv_1,$

.

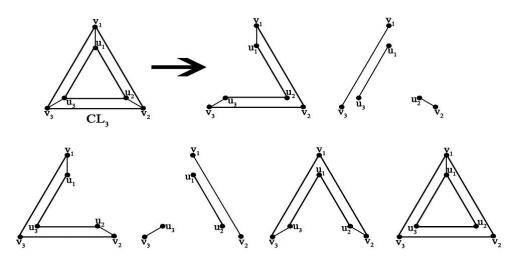
. . .

 $R_n: v_n v_1 v_2 ... \ v_{n\text{--}3} v_{n\text{--}2} v_{n\text{--}1}, \ n \geq 4.$

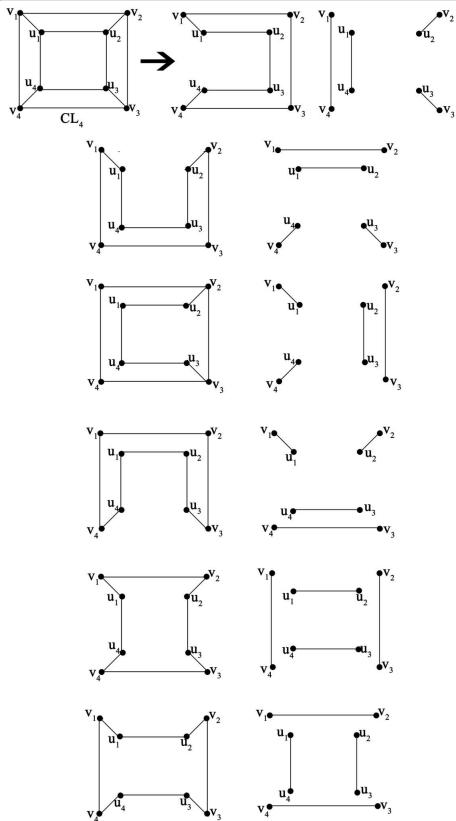
Now, we connect the end vertices of each paths Q_i and R_i , $1 \le i \le n$, $n \ge 4$, we get n spanning cycles. Also, we construct two more $spanning \ cycles, \ C_1: u_1v_1v_2u_2...u_{n-1}v_nu_nu_1 \ and \ C_2: u_2v_2v_3u_3...u_nv_nv_1u_1u_2. \ Therefore, \ if \ n \ is \ even, \ we \ get \ n+2 \ spanning \ cycles.$

The remaining edges of Circular Ladder graph CL_n , $n \ge 3$ in both cases form the 1-factorization.

Example: 5.2



3 Hamiltonian cycles + 1 factorization



6 Hamiltonian cycles + 1 factorization

V. CONCLUSION

We investigate Hamiltonian decomposition of some families of graphs such as ladder, triangular ladder, circular ladder graphs using the concept of Hamiltonian decomposition of graphs. Also, we investigate Hamiltonian decomposition of diagonal ladder graphs using the concept of Hamiltonian decomposition of ladder graphs.

REFERENCES

- [1] Klas Markstrom, "Even cycle decomposition of 4-regular graphs and line graphs".
- [2] Murugesan N., Vanadhi T., "Hamiltonian decomposition of complete graphs and complete digraphs", Global Journal of theoretical and applied Mathematics Sciences, Vol 1, No 1, (2011), ISSN 2248-9916.
- [3] Bermond J.C., "Hamiltonian Decompositions of Graphs, Directed Graphs and Hypergraphs", Advances in Graph Theory, Annals of Discrete Mathematics 3 (1978) 21-28.
- [4] Bondy J.A., Murty U.S.R., "Graph Theory with Applications", 1976, Elsevier, New York.
- [5] Bosak J., "Decompositions of Graphs", 1990, Kluwer Academic Press, Dordrecht.
- [6] Seoud. M.A., Shakir M. Salman, "On Difference Cordial Graphs", Mathematica Aeterna, Vol. 5, 2015, no. 1, 105 124.

AUTHORS PROFILE

Mrs. L.T. Cherin Monish Femila pursued M.Sc and M.Phil from Manonmaniam Sundaranar University, Tirunelveli in 2014 & 2015. Her area of research is Graph Theory. Her main research work focuses on Decomposition of graphs.

Dr. S. Asha pursued M.Sc., M.Phil. and Ph.D from Manonmaniam Sundaranar University, Tirunelveli in 2004, 2006 & 2012. She is currently working as Assistant Professor in Department of Mathematics from Nesamony Memorial Christian College, Marthandam since 2006. Her area of research is Graph Theory. Her main research work focuses on Decomposition of graphs. She has 13 years of teaching experience and 4 scholars doing Ph.D under her guidance.

