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Abstract—The problem of unsteady viscous incompressible MHD free convection flow of an electrically conducting fluid 

between two heated vertical parallel plates in the presence of a uniform magnetic field applied transversely to the flow is 

considered. The induce field along the lines of motion varies transversely to the flow and the fluid temperature changing 

with time. An analytical solution for velocity, induced field and the temperature distributions are obtained for small and 

large Magnetic Reynolds numbers. The skin-friction at the two plates is obtained. Velocity distribution, induced field and 

skin-friction are plotted graphically against the distance from the plates. It has been observed that with the increase in the 

Magnetic Reynolds number, at constant Hartmann number, leads to an increase in the skin-friction gradually. But with the 

increase in Hartmann number, at constant Magnetic Reynolds number, the skin-friction decreases.  
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 I.         INTRODUCTION  

            The phenomenon of magnetohydrodynamic flow 

has been a subject of growing interest in view of its 

possible applications in many branches of science and 

technology and also industry. The subject of magneto 

hydrodynamics has attracted the attention of a large 

number of scholars due to its diverse applications in 

several problems of technological importance. 

         Skin friction measurement techniques commonly 

used are point measurement systems wherein the average 

(averaged over the measurement volume) skin friction at a 

point is determined. The measurement method may be a 

direct method, indirect measurement or empirical 

determination methods. There are excellent reviews on 

these methods (Hanratty and Campbell [1], Winter [2], 

Schetz [3] and Naughton and Sheplak [4]) those discuss 

the advantages and disadvantages of each of the methods. 

        Free convection flow past different types of vertical 

bodies is studied because of their wide applications. Free 

convection flow of fluids past a semi-infinite isothermal 

vertical plate was first investigated by Pohlhausen [5] who 

solved the problem by momentum integral method. 

      An exact solution to MHD Stokes  problem for an 

infinite vertical plate with variable temperature has been 

studied by Soundalgekar [6]. He neglected the induced 

magnetic field and observed that in air, an increase in time 

t, leads to an increase in the skin-friction but in water, it 

decreases. An increase in the Hartmann number M, leads 

to an increase in the skin-friction.       

    In a fluid, the variation of temperature causes variation 

of density. This in turn changes force of buoyancy which 

governs the fluid motion. This type of unsteady fluid 

motion under the action of uniform magnetic field applied 

externally reduces the heat transfer and the skin friction 

considerably. This process of reduction of heat transfer 

and skin friction of the fluid motion has various 

engineering applications such as nuclear reactor, power 

transformation etc. Several authors' studies this type of 

MHD free convection laminar flow. Das and Sanyal [7] 

and Borkakati et. al [8] investigated the fully developed 

flow of a viscous incompressible conducting fluid in 

presence of a uniform magnetic field. Recently Gourla et. 

al [9] discussed an unsteady free convection flow through 

the vertical parallel plates in the presence of uniform 

magnetic field. 

    Ostrach [10, 11] considered the combined natural and 

forced convection flow of a viscous incompressible fluid 

between two vertical parallel plates. Grief et.al [12] and 

Gupta et.al [13] studied the incompressible free convection 

flow through a porous medium. Soundalgekar and Ramana 

Murty [14] discussed the heat transfer in MHD flow with 

pressure gradient, suction and injection. He observed that 

an increase in the magnetic field parameter leads to an 

increase in velocity, skin-friction, rate of heat transfer and 

a fall in temperature. Also an increase in suction leads to a 

fall in the value of the skin-friction and the rate of heat 
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transfer, opposite to the case of injection. Soundalgekar 

and Bhatt. [15] considered the laminar convection flow 

through a porous medium between two vertical plates. 

      Kim [16] investigate the unsteady two-dimensional 

laminar flow of a viscous incompressible electrically 

conducting polar fluid via a porous medium past a semi-

infinite vertical porous moving plate in the presence of a 

transverse magnetic field. He observed that for a constant 

plate moving velocity with the given magnetic and 

permeability parameters, and Prandtl and Grashof 

numbers, the effect of increasing values of suction velocity 

parameter results in an increasing surface skin friction. It 

is also observed that the surface skin friction decreases by 

increasing the plate moving velocity.  

       The problem of combined heat and mass transfer of an 

electrically conducting fluid in MHD free convection 

adjacent to a vertical surface with Ohmic heating and 

viscous dissipation is analyzed by Chen [17]. He presented 

the results for the velocity, temperature, and concentration 

distributions, as well as the local skin-friction coefficient, 

local Nusselt number, and the local Sherwood number.  

Dahake S.P. and Dubewar A.V.[18] have studied effects of 

radiation on magnetohydrodynamic convection flow past 

an impulsively started vertical plate submersed in a porous 

medium with suction. 

Recently A Study of Unsteady MHD Vertical Flow of an 

Incompressible, Viscous, Electrically conducting Fluid 

bounded by Two Non-Conducting Plates in Presence of a 

Uniform inclined Magnetic Field investigated by 

Goswami, Singha and Deka [19] 

  Very recently Sharma and Dubewar [20] discussed MHD 

Flow between Two Parallel Plates under the Influence of 

Inclined Magnetic Field by Finite Difference Method. 

They considered, when the upper plate is moving with 

constant velocity under the influence of inclined magnetic 

field, the lower plate is held stationary. 

    In this paper, we have investigated the fully developed 

free convection laminar flow of an incompressible viscous 

electrically conducting fluid between two vertical parallel 

plates in the presence of a uniform magnetic field applied 

transversely to the flow. This induces a field along the 

lines of motion which varies transversely to the flow. The 

temperature of the fluid is assumed to be changing with 

time. The analytical solutions for velocity, induced 

magnetic field and the temperature distributions are 

obtained for small and large Magnetic Reynolds number 

mR .The skin-friction at the two plates are obtained for 

different magnetic field parameters and are plotted 

graphically. . It has been observed that with the increase in

mR , the Magnetic Reynolds number, at constant M , the 

Hartmann number, leads to an increase in the skin-friction 

gradually. But with the increase in M , at constant mR , the 

skin-friction decreases.  

II.       FORMULATION OF THE PROBLEM  

       We are considering an unsteady laminar convective 

flow of a viscous incompressible electrically conducting 

fluid between two vertical parallel plates. Let X -axis be 

taken along vertically upward direction through the central 

line of the channel and Y -axis is taken perpendicular to 

the X -axis. The plates of the channel are at hy  . A 

uniform magnetic field 
0B  is applied parallel to Y -axis 

which in turn induces a field along X -axis that varies 

along Y -axis. The velocity and magnetic field 

distributions are  0.0),(yuV 


 and  0,),( 0ByBB 


 

respectively. Here 
0B  and )(yB  are applied and induced 

magnetic field respectively. 

          In order to derive the governing equations of the 

problem the following assumptions are made. 

(i) The fluid is finitely conducting and the viscous 

dissipation and the Joule heat are neglected. 

(ii) Hall effect and Polarization effect are negligible. 

(iii) Initially (i.e. at time 0t ) the plates and the fluid are 

at zero temperature (i.e. 0T ) and there is no flow 

within the channel. 

 

 (iv) At time 0t , the temperature of the plate hy   

change according to )1(0

nteTT   where 0T  is a 

constant temperature and 0n  is a real number denoting 

the decay factor. 

(v) The plates are considered to be infinite and all the 

physical quantities are functions of y  and t  only. 

       III.           GOVERNING EQUATIONS 

      Under the above assumptions the governing equations 

are 
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where the third term in the right hand side of equation (2) 

is the magnetic body force and  


J  is the current density 

due to the magnetic field defined by 

      

  e

B
J




 


)(
                                           (5) 

 



Z   is the force due to buoyancy, )( 0 TTgZ 



 
           

(6)  

Where  

        k = Thermal conductivity, 

        = Electrical conductivity,  

        = fluid density, 

     
e  = Permeability of the medium, 

        = co-efficient of viscosity, 

      

e

m



1

  , magnetic diffusitivity, 

        



   , kinematic viscosity, 

    Using the velocity and magnetic field distribution as 

stated above, the equations (1) to (4) are as follows: 
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    Here, .1

pC

k


   

 The boundary conditions are 
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Considering the non-dimensional terms 
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this reduces to 
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IV            SOLUTIONS 
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                      V    SKIN FRICTION 

The skin friction at the plates 1y , is defined as 

  

1






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
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                                                    (24)                                      

Substituting the non-dimensional quantities (11), we get 
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removing the asterisks, we get 
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using relation (16), we get 

 

1

0























y

nte
dy

dfhgT




                       (26) 

              VI    RESULTS AND DISCUSSION   

    Figure (2-5) has been obtained by plotting the velocity 

distribution f  against y at different Magnetic Reynolds 

number mR  and Hartmann number M  when n=1.0,

71.0rP , 0.1aR , 0.1eR  . 

    Figure (6-9) has been obtained by plotting the induced 

magnetic field g  against y at different values of Magnetic 

Reynolds number mR  and Hartmann number M  when 

n=1.0, 71.0rP , 0.1aR , 0.1eR  .  

    Figure (10-11) has been obtained by plotting the skin 

friction against y by considering the same above fluid 

parameters. 

    Figure (12-13) has been obtained by plotting the 

temperature distribution   against y at different Prandtl 

number rP  and n=1.0 . 

    For computational process MATHEMATICA  V5.1 is 

used. All these plotting has been done by using MATLAB 

6.0.0.88  

(i) When mR  is small, the variation of velocity increases 

very slowly for all values of M . 

(ii) When mR  is high, the rate of fluctuation of the 

velocity and induced field is faster when M  is big (=5.5) 

[figures (5) and (9)]. 

(iii) Velocities at the central plane of the channel are 

maximum and gradually decline towards the plates for all 

values of mR  and M  ,[figure-(2-5)]. 

(iv) At high values of mR (=50 to 1000), the fluid velocity 

and the induced field increases steadily and distinctly with 

the increase of mR  when M  is high (=5.5) while they 

remains almost same when M  is small (=1.5). 
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(v) With the increase of mR  at constant M , the skin-

friction gradually increases but it is decreases with the 

increase of M  at constant mR , [figure-(10-11)]. 

(vi)  In figure (12) we have observed that the temperature 

increases steadily and distinctly with the increases of
rP . 

(vii) In figure (13) we have noticed that at high values of 

rP (=5 to 12), the temperature first decreases then 

increases slowly.  
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VI. CONCLUSION AND FUTURE SCOPE 

 

      In this article we have studied about free convection 

laminar flow of an incompressible viscous electrically 

conducting fluid between two vertical parallel plates in the 

presence of a uniform magnetic field applied transversely 

to the flow. Also analytical methods is applied to compute 

for velocity, induced magnetic field and the temperature 

distributions for small and large Magnetic Reynolds 

number. The skin-friction at the two plates are 

obtained for different magnetic field parameters 

and the results are plotted graphically. The fluid 

properties density, viscosity, thermal and electrical 

conductivity are supposed to be constant in our discussion. 

But in actual practice, especially the fluid viscosity and 

density vary with temperature.  Hence there are 

opportunities to extend the problem by considering fluid 

density and viscosity as variable with temperature. The 

thermal diffusion effect is not considered in this paper, 

which may be included to make it more practical. 
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