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Abstract- A mathematical model of the transmission dynamics of measles incorporating passively immune class is developed. 

The dynamics of the disease are expressed with the help of a set of ordinary differential equations. The model is analysed 

qualitatively and quantitatively. Equilibrium points of the determined and their stability analysed. From the study it has been 

shown that for a stable disease-free equilibrium the reproduction number is less than   and more than   for an unstable disease-

free equilibrium. The spread of the disease in the population is dependent on the level of between the susceptible individuals 

and the infected individuals. The rate at which passive immunity in an infant is lost also has a great impact on the spread of the 

disease. 
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I.  INTRODUCTION 

 

Measles is an infectious and highly contagious viral 

respiratory disease. It spreads through coughing and/or 

sneezing, close personal contact of the susceptible individual 

with an infected person or direct contact of the susceptible 

individuals with nasal or throat secretions from an infected 

individual. The infectious secretions remain in the air or on 

infected surfaces for up to two hours after an infected person 

sneezes or coughs. Worldwide, measles is the fifth leading 

cause of death among „under-five‟ children with         

reported deaths in 2017 [1]. There is no known specific 

treatment for measles. However, infection and subsequent 

recovery confers permanent and lifelong immunity on an 

individual [2, 3]. Because of the health burden and the high 

death rates the disease causes, it is important to develop 

effective control strategies.  

 

Getting vaccinated is the best way to prevent measles [4]. 

Although the vaccines, which are available in two doses 

(MCV1 & MCV2), have an effectiveness of between 90 and 

95%, only a small percentage of children in the Kenya and 

the sub-Saharan Africa receive MCV2 [4, 5]. Some of the 

challenges facing vaccination efforts include nomadic 

lifestyles [6], terrain, religious beliefs, accessibility to health 

facilities [7], conflicts and other logistical challenges. A 

mathematical model is a powerful tool in the analysis of  

 

measles transmission dynamics. Models can also be used to 

simulate possible scenarios in case of an epidemic. 

Mathematical models help in explaining a system, showing 

how different components affect the model and making 

important predictions about the systems behavior. 

 

This study incorporates the passive immunity compartment 

in the transmission dynamics in order to give a proper insight 

into the measles dynamics.  

 

The rest of the paper is organized as follows. In section 2, we 

formulate the model and illustrate some of its basic 

properties. In section 3, we demonstrate positivity, determine 

the points of equilibria and perform stability analysis of the 

system. In section 4, numerical results of the analysis are 

presented. Section 5 concludes the paper. 

 

II. FORMULATION OF THE MATHEMATICAL 

MODEL OF MEASLES 

 

In this section, we describe and develop the model of 

measles dynamics based on the several assumptions. 

 

2.1.  MODEL ASSUMPTIONS 

In developing the model, the following assumptions were 

made; 

1. Individuals get into the system by birth only. 

http://www.isroset.org/


  Int. J. Sci. Res. in Mathematical and Statistical Sciences                                                Vol. 6(2), Apr 2019, ISSN: 2348-4519 

  © 2019, IJSRMSS All Rights Reserved                                                                                                                                   2 

2. All new born infants acquire passive immunity from 

their mothers hence they are disease free. 

3. All the variables and parameters used in the model are 

non-negative. 

4. All recovered individuals acquire permanent 

immunity. 

5. There is free interaction within the population. 

 

2.2.  MODEL EQUATIONS 

The model starts with the birth of infants who enter the 

passive immune class,   , at a rate   of the total population, 

 . Compartment   diminishes by   ,     and    due to 

immunity loss, successful vaccination and natural deaths 

respectively at the appropriate rates  ,    and   respectively. 

Children who lose passive immunity, enters the susceptible 

class,  . This is the class of individuals who can get infected 

when there is sufficient contact with an infected individual or 

secretion. The number of individuals in   diminishes by    

and    due to Measles exposure and natural deaths, at the 

rates   and   respectively and increases by    due to loss of 

passive immunity at a rate   . The susceptible individuals 

enter the class of exposed individuals,  . In this class, are the 

people who are not infectious but are in latent period. The 

compartment   is increased by    as a result of susceptible 

individual(s) coming into contact with infectious 

individual(s) at a rate  . This population is decreased by    

and    due to individuals entering the infective class,  , and 

dying naturally at rates   and   respectively. The 

compartment   of the infected individuals increases by    as 

a result of infection at rate  , and diminishes by   ,    and 

   due to natural recovery, natural deaths and infection-

induced deaths, at rates   ,   and   respectively. Finally, 

individuals enter the recovered class,   when they recover 

from the disease. The number of individuals in compartment 

  increases by    and     at rates   and    respectively. 

This is because of recovery from the disease and successful 

vaccination. The population in   reduces by    as a result of 

natural deaths. The total population with respect to all the 

compartments is given by: 

 
Figure 1: Schematics depicting transitions between 

different compartments, transmission and mortalities 

rates (Authors 2019) 

The mathematical model is described by the following 

system of equations 

    ⁄         (   ) 

    ⁄         ⁄    

    ⁄      ⁄  (   ) 

    ⁄     (     ) 
    ⁄           

        ( ) 

    ⁄  (   )     describe the rate of change in 

the total population. 

The initial conditions of model ( ) are:  ( )     
    ( )         ( )          ( )         
 ( )             

The population in each compartment can be scaled by 

the total population   to get the fraction of the 

respective population. The scaling is done using the 

following transformations     ⁄ ,     ⁄ , 

    ⁄ ,     ⁄  and     ⁄ . 

This scaling transforms the system of equations in (1) 

to: 

    ⁄                 

    ⁄                

    ⁄               

    ⁄                 

    ⁄              

     ( ) 

III. MODEL ANALYSIS 

 

In this section, the scaled model ( )  is analysed qualitatively 

to help us study the dynamics of the overall system. 

 

3.1. POSITIVITY AND INVARIANT REGION 

The system of equations in model ( ) are solved to obtain 

 ( )   ( )  (      )   ,  ( )   ( )  (       )  

 ,  ( )   ( )  (      )    and 

 ( )   ( )  (        )   . From these solutions, all the 

variables are non-negative which is consistent with our 

expectation since the variables represent human beings.  

On the other hand, if we let the set    *(        )  
  
               +  and (         )( )     , 

then  the solution set (         )( ) of equations is positive 

for all     which makes biological sense. 

 

3.2. BASIC REPRODUCTION NUMBER (  ) 
Basic reproduction number,   , is a significant threshold in 

determining whether the disease dies out or persists in the 

population. It is a measure of the speed with which a disease 

spreads through a population. In this study, we compute   , 
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using the next generation matrix method as formulated by [8] 

in which we determine the dominant eigenvalue of the steady 

state Jacobian matrix of the model after linearization. This is 

done by taking the column matrix of new infections getting 

in compartment   and   from   and denoting it as  , that is; 

  (    )  
then taking the column matrix of transfer of individuals into 

compartment   and   by any other means and denoting it as 

  , that is; 

  (
(      ) 

    (        ) 
) 

The partial derivatives of   and   with respect to e and i 

gives the square matrix   and   respectively. Thus,  

  .
   
  

/            (
         

           
) 

 At the disease-free equilibrium (DFE), 

  (
    
       

)  and    (
 

  (   )

(   )

  
)             

Evaluating F and V at disease free equilibrium and then 

computing the dominant eigenvalue of      we obtain    as 

   
   (   )

(   )(     )(   )
                  ( )   

3.3. EXISTENCE AND STABILITY OF DISEASE-

FREE EQUILIBRIUM, DFE 

The disease-free equilibrium   
  is obtained by equating 

the system of equations ( ) to zero and solving it in the 

absence of infection i.e.     and    . The disease 

free equilibrium of our model is given by; 

  
  (           )  
( (   ) (   )⁄   (   ) (   )⁄     )  where 

  ,   ,   ,    and    are proportions of passively 

immunes, susceptible, exposed, infected and recovered 

in absence of the disease.  

The Jacobian obtained from equation ( ) at the DFE is

   

(

 

 (   )     (   ) (   )⁄

    *  (   )   (   )    (   )+ (   )⁄

   (   )   (   ) (   )⁄

    (     ) )

  

To simplify the analysis of the Jacobian, we use the 

transformations   (   ) ,   (   ) ,   (  
   ) , the expression for    which yields the 

eigenvalues      ,      , 

   
 (     ) √(     )       (    )

  
 and    

 (     ) √(     )       (    )

  
. While   ,    and    

have negative real parts,    will be negative if and only 

if       (    )   . Therefore, the model is 

locally stable whenever      and unstable if     . 

3.4. EXISTENCE AND STABILITY OF ENDEMIC 

EQUILIBRIUM, EE 

The EE point   
 , is a steady state solution that shows 

that the disease does not die in the population instead it 

persists. From equations (3) the EE point is given by 

setting the respective derivatives to zero. The endemic 

equilibrium point of the model    
  (           ) 

where,  

   
 (   )

(     ) 

   
(   )(     )

  

   
 (   )

(     )
  

 (   )(   )

(     )(     ) 
  
(   )(   )

  

   
  (   )

(   )(     )
 

  (   )(   )

(     )(   )(     ) 
 
(   )

 

 

The Jacobian obtained from equation ( ) at the EE is;  

 (   )  (

         
            
           
         

) 
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where

     (   )   *
  (   )

(   )(     )
 

  (   )(   )

(     )(   )(     ) 
 
(   )

 
+ 

    ( *
  (   )

(   )(     )
 

  (   )(   )

(     )(   )(     ) 
 
(   )

 
+    )

  *
  (   )

(   )(     )
 

  (   )(   )

(     )(   )(     ) 
 
(   )

 
+ 

      *
  (   )

(   )(     )
 

  (   )(   )

(     )(   )(     ) 
 
(   )

 
+ 

    (   )   *
  (   )

(   )(     )
 

  (   )(   )

(     )(   )(     ) 
 
(   )

 
+ 

     
 (   )

(     )
        * 

(   )(     )

  
  +   

(   )(     )

  
 

     
(   )(     )

  
  

 (   )

(     )
  

 (   )(   )

(     )(     ) 
  
(   )(   )

  
 

    (     )    
  (   )

(   )(     )
 

  (   )(   )

(     )(   )(     ) 
 
(   )

 
 

               

The eigenvalues were obtained by solving the matrix   (   ) with a characteristic equation 

   
     

     
                                                        ( ) 

Where 

    ,                       ,                                                      

                                                                         

                                                      

To determine the signs and roots of equation (5), we 

use Routh-Hurwitz criterion and Descartes rule i.e. 

given the polynomial  ( )     
     

     
  

        where the coefficients of    are real 

constants,            we define the   Hurwitz 

matrices equal to the number of sign changes    of the 

characteristic polynomial as; 

                 |
   
   

|      

|

    
      
    

|     |

     
       
       

|  

Where      if    . All the roots of the polynomial 

are negative or have negative real parts if and only if 

the determinants of all the Hurwitz matrices are 

positive. From our equation 5, It is clear that   ,   , 

  ,    and    are all positive,    (  )      , 

   (  )        ,    (            
 )  and 

   (  )           
      

 . 

Since all the determinants are positive it implies 

that all the eigenvalues of the Jacobian matrix have 

negative real part. Hence the EE is stable when 

    . 

IV. NUMERICAL RESULTS AND SIMULATIONS 

 

In this section, we employ numerical techniques and 

MATLAB‟s built-in       solver function to compute 

and simulate the formulated mathematical model. The 
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      solver evaluates the system of differential 

equations using the fourth-order Runge-Kutta method 

for ODEs. The initial population sizes and conditions 

are       ,       ,       ,       and 

     while the parameter values used in the 

simulation are indicated in Appendix A. The results 

from the numerical simulations are shown in Figures 

       .

 
 )                                                                         )          

Figure 5.1: Simulations of susceptible individuals.

In figure     the number of the susceptible decreases 

for around the first twenty days and then it starts 

increasing. This decrease could be due to increase in 

recovery due to vaccination, since when individuals are 

vaccinated, they acquire permanent immunity upon 

recovery. It could also be attributed to those susceptible 

entering into the exposed class. After around thirty 

days, the number of susceptibles starts increasing due 

to the number of individuals from the partial immune 

class entering to the susceptible class who are not 

vaccinated increasing.

 
 )                                                                                      )          

Figure 5.2: Simulations of exposed individuals

In figure 5.2, there is a rapid decrease in the population 

of the exposed individuals in the first few days. This 

rapid decrease might be as a result of treatment of early 

detected cases as well as transition from exposed to the 

infectious states. However, in figure     ( )  the 

number of infected individual increases slightly then 
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there is a significant drop between the tenth and fortieth 

day. The increase in the infected individuals could have 

been due to more susceptible individuals becomes 

exposed due to high contact rate with those infected. 

The decrease might be as a result of treatment of early 

detected cases as well as transition from exposed to the 

infectious states.

 
 )                                                                                               )          

Figure 5.3: Simulations of infectious individuals. 

In figure 5.3, the number of infected individual 

increases slightly then there is a significant drop 

between the tenth and fortieth day. The increase in the 

infected individuals could have been due to the exposed 

individual becoming infectious. The decrease in 

infection could be due to the infected recovering from 

the disease as a result of treatment. 

 
 

 )                                                                                               )          

Figure 5.4: Simulation of the human population 
 

The number of recovered individual increases steadily 

and then becomes constant as indicated in figure    . 

This could be due to the number of individuals who 

were successively vaccinated after birth increasing as 

well as the disease being detected and treated early, 

leading to recovery. The number of individuals with 

passive immunity is increasing slightly in (a), while in 

(b), it is decreasing with time. The increase in (a) could 

be due to the increase in the number of new born 

healthy babies in the compartment M who are 

successively vaccinated and hence have a permanent 

immunity, while the decrease in (b) could be due to 

high number of the individuals becoming susceptible 
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after losing their partial immunity and yet they are in 

high contact rate with the infected. 

V. DISCUSSION AND CONCLUDING REMARKS 

 

In this study we developed a system of differential 

equations to model diverse dynamics of measles 

transmission. To accomplish this, a five compartmental 

model was developed. In our analysis, we derived    

mathematically and proved that      for a stable 

equilibrium point; whereas is       in the case of 

unstable equilibrium point. The numerical simulations 

showed that the spread of measles in the population 

depends on how the susceptible individuals come into 

contact with the infected people.  From Fig. 5.4, it is 

evident that the rate at which passive immunity is lost 

is directly proportional to the contact rates. It has also 

been shown that the loss of the passive immunity the 

infants get from their mothers has an impact on the 

spread of the disease. In this study, measles vaccination 

and treatment of the infected individuals have proved to 

be very vital in its prevention and eradication. 
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APPENDIX: DATA FOR BASELINE PARAMETER VALUES 

In this appendix we show the data and explanation for the parameter values of the model and the references for the 

values. 

Table 1: Parameter values used in simulating the model for the transmission of measles with passive immunity 

Parameter description Symbol Dimension Value Reference 

Birth rate                          , - 

Mortality rate                         , - 

Contact rate                        ,     - 

Infectious rate               ,  - 

Recovery rate due to treatment                 ,  - 

Rate of mortality due to measles                  , - 

Passive immunity loss rate                   ,  - 

Proportion of individuals 

successfully vaccinated at birth.  
                  , - 

 
 


