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Abstract—In this paper, we introduced a generalized form of Rayleigh distribution. Shapes of probability density function and 

hazard rate function along with sub-models and statistical properties of the proposed distribution are provided. The usefulness of 

the new distribution is illustrated through real data set by comparing with other generalizations of the Rayleigh distribution. A 

reliability test plan for acceptance or rejection of a lot of products submitted for inspection with lifetimes governed by this 

distribution is developed and illustrated with real data set. 
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I. INTRODUCTION 

 

 The Rayleigh distribution is a special case of the Weibull distribution, which is considered to be a useful life distribution. This 

distribution is also known as the one parameter Burr type X distribution and it has been applied in communication theory to 

describe hourly median and instantaneous peak power of received radio signals. Additionally, it is a common choice in many 

areas including health, agriculture, biology, medicine, engineering and finance. Keeping these applications in mind, we consider 

this distribution in our study.  

Indeed, from the practical point of view, the generalizations of existing distributions are used to model lifetime models. The 

generalized Rayleigh (GR) distribution has been derived in the literature because of limited mathematical structure of Rayleigh 

distribution. One of the attractive extensions of the Rayleigh distribution has been proposed by Vod ̆ [1, 2]. Its probability 

density function (pdf) is given by  

          
                    

      
              (1) 

 Here   is the scale parameter,   is the shape parameter, and      ∫  
 

 
          is the complete gamma function. Its 

survival function is  

            
             

      
                            (2) 

 where        ∫  
 

 
          is the incomplete gamma function hence Karl Pearson’s tables can be used for various values of 

  and  . Various statistical experts have mentioned extensions of GR distribution using different methods. Cordeiro et al. [3] 

introduced four-parameter beta-GR distribution, Gomes et al. [4] introduced the four-parameter Kumaraswamy-GR distribution, 

and MirMostafaee et al. [5] introduced Marshall-Olkin extended GR distribution respectively. 

Adding parameters to an acknowledged distribution is a classical tool for obtaining more flexible distributions. In this work, we 

suggest a new generalization of the GR distribution by using the scheme introduced by Nadarajah et al. [6]. Let           be a 

sequence of independent and identically distributed random variables with survival function      and N be a truncated negative 

binomial random variable, independent of   ’s, with parameters       and    , such that  

        
  

    (
     
   

)                  (3) 

 If                   ), then the survival function of    is  

          
  

    {                }          (4) 
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 Similarly, if     and N is a truncated negative binomial random variable with parameters 
 

 
 and    , then    

               ) also has the same survival function given in (4). If     in (4), then              . If    , then 

this family reduces to the Marshall-Olkin family of distributions [7]. Thus the family of distributions described in (4) is a 

generalization of the family of Marshall-Olkin distributions. The pdf of survival function given in equation (4) is  

          
            

      {          }
    (5) 

Jayakumar and Sankaran [8] defined a generalized uniform distribution using the approach of [6]. Babu [9] introduced Weibull 

truncated negative binomial distribution. Further, Jayakumar and Sankaran [10] introduced generalized exponential truncated 

negative binomial distribution and studied its properties. Also, Jose and Sivadas [11] used the family (4) to introduce the negative 

binomial Marshall-Olkin Rayleigh distribution. 

The organization of the article is as follows. Section 2 deals with a new distribution and its sub-models. Section 3 provides 

statistical properties of the proposed distribution. In Section 4 we consider the estimation of parameters using maximum 

likelihood estimates and Section 5 gives a real-life application. In Section 6 we develop a sampling plan for accepting or rejecting 

a lot and minimum samples sizes and operating characteristic values are calculated and a numerical example is provided. The 

concluding remarks are given in Section 7. 

 

II. GENERALIZED RAYLEIGH-TRUNCATED NEGATIVE BINOMIAL DISTRIBUTION 

 

In this section, we introduce a new distribution called generalized Rayleigh-Truncated negative binomial (GR-TNB) distribution 

which contains some special sub-models and it seems to be quite flexible as an alternative model to be used in a variety of lifetime 

problems. By inserting (1) in (4) the survival function of GR-TNB distribution is given by  

              
  

    {                                  } (6) 

 The corresponding pdf is given by  

              
                              

            {                            }    (7) 

 In addition, the hazard rate function (hrf) of the GR-TNB distribution becomes  

              
                                 

  

           
  

      

                                         
 (8) 

 Notably, following distributions are special cases of the GR-TNB distribution.   

 

 MOE GR Distribution : when  =  in equation (7)  

 MOE half normal : when     and   
 

 
 in equation (7)  

 MOE Reyleigh : when     and     in equation (7)  

 

Figures 1 and 2 display some shapes of pdf and hrf of the GR-TNB model for selected parameter values, respectively. The hrf can 

be bathtub shaped, increasing and increasing-decreasing-increasing depending on the parameter values. The new model allows 

for great flexibility and hence it can be very useful in many practical situations for modeling positive data. 

 

 
 

 

Figure  1: Graphs of pdf of the GR-TNB distribution for different values of  , ,  and  . 
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Figure  2: Graphs of hrf of the GR-TNB distribution for different values of  , ,  and  . 

 
III. GENERAL PROPERTIES 

 
A. Quantile Function 

 The quantile function of X follows GR-TNB distribution, it can be expressed as  

       √  (*
 

   
[,

           

  -
 

 

 
  ]+) 

where u is generated from the Uniform(0, 1) distribution and       is the (standardized) gamma quantile function (with shape 

parameter     and unit scale parameter) available in most of the statistical software packages.  

 

B. Useful Expansions 

We now give simple expansions for the pdf of the GR-TNB distribution.  

We have  

          ∑   
   

     

       
 (9) 

 Thus the cumulative distribution function (cdf) of GR distribution comes as  

          
           

      
∑   

 
            

         
 

 Also we have  

  ∑   
      

    ∑   
          (10) 

 where    ,        
  and for          the coefficients of      are given by  

           
  ∑   

                    

 Thus, from equations (9) and (10), we obtain  

           
            

       
∑   

        
   (11) 

 Consider the following series expansion  

         ∑   
   (

     
 

)            (12) 

 Since      , there are two cases. If       then using expansions (11) and (12) in (7) we get the representation for the 

pdf of GR-TNB as  

      
                 

    
∑   

   ∑     
   ∑   

              
                      (13) 
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Where      
(
 
   

)(
   
 

)        ̅ 

       
. If      , then   ̅      so we can use following inequality  

    ̅ ̅            
 ̅

 
 ̅         (14) 

 Thus from (14) and (7) the pdf of GR-TNB as  

      
               

    
∑   

   ∑   
              

                      (15) 

where      
(
     
   

)        ̅   

         
. 

 

C. Moments 

 The     ordinary moment of   is given by  

   
        ∫  

 

 
         

 Hence the     moment of GR-TNB distribution, when       is given by  

   
  

          

    
∑   

   ∑     
   ∑   

              
        ∫  

 

 
                       

  
          

    
∑   

   ∑     
   ∑   

              
                    

 

Similarly, when     

   
  

       

    
∑   

   ∑   
              

                    

 

D. Bonferroni and Lorenz curves 

The following equation can be used to determine Bonferroni and Lorenz curves 

      ∫  
 

 
        (16) 

They are defined by  

     
    

  
  

          
    

  
  

Where q=G
-1

(p) can be calculated from quantile function for given p and   
 
is the mean. 

 If      , from equation (13), it follow that  

 ∫  
 

 
        

          

    
∑   

   ∑     
   ∑   

              
                           (17) 

 If      , then from equation (15)  

 ∫  
 

 
        

       

    
∑   

   ∑   
              

                            (18) 

 
IV. INFORMATION THEORY MEASURES 

 

The concept of entropy plays a vital role in information theory. The entropy of a random variable is defined in terms of its 

probability distribution, and it has been used in various situations in science as a measure of variation of the uncertainty. 

Numerous measures of entropy have been studied and compared in the literature. Subsequently, Shannon (1948) formalized this 

idea by defining the entropy and mutual information concepts. The Kullback-Leibler’s measure can be understood like a 

comparison criterion between two distributions. Rényi (1961) introduced a new measure of entropy called Rényi entropy is an 

extension of Shannon entropy. The Rényi entropy is defined as       
 

   
   ∫  

 
       ,     and    . Rényi entropy 

of order 1 is Shannon entropy. We consider first       given by,  

       *
         

            
+
 

                          

{                            }       

 

If      , then using the series expansion  

       *
         

      
+
 

∑   
   ∑   

   ∑   
            

                                             

 where  
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(
          
 

)(
 
 
)      ̅ 

          

 

 

 

Corresponding Rényi entropy is  

       
 

   
   {*

         

      
+
 

∑   
   ∑   

   ∑   
           

                          

  
         

       
  

 
 

} 

 Similarly, suppose that   
 

 
. Using the series expansion  

       *
         

      
+
 

∑   
   ∑   

   ∑   
            

                                             

 where  

      
(
          
 

)        ̅      

              

 Thus we obtain that in the case      , the Rényi entropy is  

       
 

   
   {*

         

      
+
 

∑   
   ∑   

           
                          

  
         

       
  

 
 

} 

 

 

V. ESTIMATION 

 

 Let              is a random sample of size n from the GR-TNB distribution with parameters       and  . Let   
           be the     parameter vector. For determining the MLEs of       and  , we have the log-likelihood function 

 

                                                        ∑   
           

∑                                   

       ∑   
                                       

 The components of the score vector,     
     

  
 (   

     

  
    

     

  
    

     

  
    

     

  
)

 

 are given by  

     *
 

       
 

 

   
+  ∑   

   
                   

                              
 

 

    
 

 
 

           

     ∑   
                                       

 

    ∑   
   

  
 

   
       

 
      ∑   

   
                    

                                      
 

 

     ∑   
                             ∑   

   
    

 
             

                                
 

 

 where   is a digamma function and  

  
 

 
              

 

    
∫  

  

  

 
                                    

 

Setting the nonlinear system of equations     ,     ,     and      solving them simultaneously yields the MLEs 

of  ̂. These equations can be solved using statistical software. 

 

VI. DATA ANALYSIS 

 

In this section, we work with an application based on a real data set and found that GR-TNB distribution gives the best fit for the 

data. We consider a real data set reported by Badar and Priest [12], which represents the strength measured in GPa for single 

carbon fibers and impregnated at gauge lengths of 1, 10, 20 and 50 mm. Impregnated tows of 100 fibers were tested at gauge 

lengths of 20, 50, 150 and 300 mm. Here, we consider the data set of single fibers of 20 mm in the gauge with a sample of size 63. 
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The data are: 

1.901, 2.132, 2.203, 2.228, 2.257, 2.350, 2.361, 2.396, 2.397, 2.445, 2.454, 2.474, 2.518, 2.522, 2.525, 2.532, 2.575, 2.614, 2.616, 

2.618, 2.624, 2.659, 2.675, 2.738, 2.740, 2.856, 2.917, 2.928, 2.937, 2.937, 2.977, 2.996, 3.030, 3.125, 3.139, 3.145, 3.220, 3.223, 

3.235, 3.243, 3.264, 3.272, 3.294, 3.332, 3.346, 3.377, 3.408, 3.435, 3.493, 3.501, 3.537, 3.554, 3.562, 3.628, 3.852, 3.871, 3.886, 

3.971, 4.024, 4.027, 4.225, 4.395, 5.020. 

We compare the results of GR-TNB distribution with following generalizations of Rayleigh distribution which are generalized by 

using different generators:   

1. generalized beta Rayleigh(GBR) distribution [13]  

2. Marshall-Olkin Rayleigh (MOR) distribution [7]  

3. exponentiated Kumaraswamy Rayleigh (EKumR) distributions [14]  

4. Weibull generalized Rayleigh (WGR) distribution [15]  

5. log gamma Rayleigh (LGR) distribution [16]  

For each distribution, we estimated the unknown parameters (by the maximum likelihood method), the values of the 

 log-likelihood ( logL), AIC (Akaike Information Criterion), BIC (Bayesian Information Criterion), the values of the 

Kolmogorov-Smirnov (K-S) statistic and the corresponding  -values. 

All the computations were done through the use of R programming language. The result of comparison of the proposed 

distributions for these data is listed in Table 1. From these results we can observe that GR-TNB distribution provide smallest 

 logL, AIC, BIC and K-S statistics values and highest p-value as compare to other distributions. However, this strongly suggests 

that the proposed GR-TNB model yields a better fit to these data than the other distributions. 

Plots of the histogram with fitted density functions and estimated cumulative distribution function for the data are displayed 

Figure 3 and Figure 4. The figure shows GR-TNB distribution acquires the satisfactory pattern of the histogram. Notice that the 

GR-TNB distribution is clearly a competitive model for all the other generalized Rayleigh distributions, since they have the same 

number of parameters. Therefore, the new model may be an interesting alternative to the other available generalized Rayleigh 

models in the literature.   

 

 

 

Figure  3: pdf for fitted distributions of the data set 

 

 
 

Figure  4: Estimated cumulative distribution function for the data set 
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Table  1:  Estimated values,  logL, AIC, BIC, K-S statistics and  -value for data set. 

 

Distribution Estimates  logL AIC BIC K-S  -value 
GR-TNB(   , , )  ̂=0.01199792 

 ̂= 0.16877081 
 ̂= 1.15636093 
 ̂= 8.80147227 

55.97715 
 
 
 

119.9543 
 
 
 

128.5268 
 
 
 

0.068448 
 
 
 

0.9294 
 
 
 

GBR( a,b,c, )  ̂=5.8445538 
 ̂=0.4732349 
 ̂= 4.5648350 
 ̂= 0.5493788 

56.21643 
 
 
 

120.4329 
 
 
 

129.0054 
 
 
 

0.08484414 
 
 
 

0.754889 

MOR( a, )  ̂=49.2637969 
 ̂=0.4217449 

61.92362 
 

127.8472 
 

132.1335 
 

0.08946892 
 

0.6942997 
 

EKumR( a,b,c, )  =12.1478406 
 ̂=0.3468049 
 ̂= 3.5844515 
 ̂= 0.8429350 

56.09576 
 
 
 

120.1915 
 
 
 

128.7641 
 
 
 

0.07676342 
 
 
 

0.8517467 
 
 
 

WGR(a,b, )  ̂ = 2.5247099 
 ̂= 2.0334893 
 ̂= 0.1850751 

61.95698 
 
 

129.914 
 
 

136.3434 
 
 

0.0875886 
 
 

0.7191889 
 
 

LGR(a,b, )  ̂= 6.4860608 
 ̂= 0.6513691 
 ̂= 1.0224604 

57.6557 
 
 

121.3114 
 
 

127.7408 
 
 

0.9986215 
 
 

 0 
 
 

 

VII. ACCEPTANCE SAMPLING PLANS 

 

Acceptance sampling is one the major component of statistical quality control which is used primarily for incoming or receiving 

inspection of any product or material. However, the sampling inspection has producer’s risk and consumer’s risk. In scientific 

sampling plans, these risks are quantified and the sampling criteria are adjusted to balance these risk in right economic factors 

involved. Recently Hybrid Group Acceptance Sampling Plan (HGASP) based on truncated life test discussed by [17]. 

 

A. Reliability Test Plan with GR-TNB Life Time 

In this section, we develop reliability test plan with the life time governed by a distribution with scale parameter   and with 

distribution function; 

 

                *
  

    {                                  }+ (19) 

A common practice in life testing is to terminate the life test by a pre-determined time t and note the number of well-defined 

failures. One of the objectives of these experiments is to set a lower confidence limit on the average life. It is then desired to 

establish a specified average life with a given probability of at least   . The decision to accept the specified average life occurs if 

and only if the number of observed failures at the end of the fixed time t does not exceed a given number c called the acceptance 

number. The test may get terminated before the time t is reached when the number of failures exceeds c in which case the decision 

is to reject the lot. For such a truncated life test and the associated decision rule, we are interested in obtaining the smallest sample 

sizes necessary to achieve the objective. Here we assume that     and   are known while   is unknown. So average life time 

depends only on  . A sampling plan consists of  

    • the number of units n on test,  
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    • the acceptance number c,  

    • the maximum test duration t, and  

    • the ratio 
 

  
 where    is the specified average life.  

 The consumer’s risk not to exceed     , so that    is a minimum confidence level with which a lot of true average life below 

   is rejected, by the sampling plan. For a fixed    our sampling plan is characterized by (n, c, 
 

  
). Here we consider sufficiently 

large lots so that the binomial distribution can be applied. The problem is to determine for given values of   ,         ,    

and c the smallest positive integer n such that  

 

 ∑   
   (

 
 
)                 (20) 

 holds where                 is given by (19) indicates the failure probabilities before time t which depends only on the 

ratio      it is sufficient to specify this ratio for designing the experiment. If the number of observed failures before t is less than 

or equal to c, from (20) we obtain:  

 

                     (21) 

 The minimum values of n which satisfies the inequality (21) are for   =0.75, 0.90, 0.95, .99 and t = 1.25, 1.5, 1.75, 2.0, 2.25, 

2.5, 2.75, 3.0 and         obtained and displayed in Table 2.    

 

Table  2:  Minimum sample sizes necessary to assert the average life to exceed a given value      with probability    and the 

corresponding acceptance number c,         using Binomial probabilities. 

 
            

   
 
 

 

 
 

.75 

c 1.25 1.5 1.75 2 2.25 2.75 3    
 
 

 

 
 

.90 

 

c 1.25 1.5 1.75 2 2.25 2.75 3  

0 48 17 7 2 1 1 1 0 80 28 12 3 2 1 1 0 

1 94 33 14 5 2 2 2 1 136 47 20 6 3 2 2 1 

2 137 48 21 7 4 3 3 2 186 64 28 9 4 4 3 2 

3 180 62 28 9 5 4 5 3 233 81 35 11 6 5 4 3 

4 220 76 34 11 6 5 6 4 279 97 42 13 7 6 5 4 

5 260 90 40 13 7 7 7 5 324 112 49 15 8 7 6 5 

6 300 104 46 15 9 8 8 6 368 128 56 18 9 8 8 6 

7 340 118 52 17 10 9 9 7 412 143 63 20 11 9 9 7 

8 380 133 59 19 11 10 10 8 454 158 70 22 12 10 10 8 

9 420 145 65 21 12 11 11 9 497 172 76 24 13 12 11 9 

 
 

 

.95 

0 104 36 15 4 2 2 1  
 

 

.99 

0 160 55 23 6 3 2 2 0 

1 165 57 25 7 3 3 2 1 231 95 34 10 4 3 3 1 

2 219 76 33 10 5 4 3 2 295 101 44 13 6 5 4 2 

3 270 93 41 12 6 5 5 3 350 120 52 15 7 6 5 3 

4 319 110 48 15 7 6 6 4 404 139 61 18 9 7 6 4 

5 367 127 56 17 9 7 7 5 457 157 69 20 10 8 7 5 

6 414 143 63 19 10 9 8 6 508 175 76 23 11 9 8 6 

7 459 159 70 21 11 10 9 7 558 192 84 25 13 11 9 7 

8 504 175 77 24 13 11 10 8 607 209 92 28 14 12 11 8 

9 549 190 84 26 14 12 11 9 655 226 99 30 15 13 12 9 

 

 

If                 is small and n is large (as is true in some cases of our present work), the binomial probability may be 

approximated by Poisson probability with parameter      so that the left side of (20) can be written as  

 ∑   
   

     

 
      (22) 

where                . The minimum values of n satisfying (22) are obtained for the same combination of p values as those 

used for (20). The results are given in Table 3.  

 

The operating characteristic (OC) function of the sampling plan (n, c,     ) gives the probability L(p) of accepting the lot with:  

      ∑   
   (

 
 
)            (23) 

 where                is considered as a function of the lot quality parameter  . For given   ,      the choice of c and n is 

made on the basis of OC. Values of the OC as a function of        for a few sampling plans are given in Table 4. The OC 

curves for    ,        and different values of n as given in Table 4 are shown in Figure 5.  
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Table  3:  Minimum sample sizes necessary to assert the average life to exceed a given value      with probability    and the 

corresponding acceptance number c,         using Poisson probabilities. probabilities. 
            

   
 

 
 

 

 
.75 

c 1.25 1.5 1.75 2 2.25 2.75 3    
 

 
 

 

 
.90 

 

c 1.25 1.5 1.75 2 2.25 2.75 3  

0 49 18 8 3 2 2 2 0 81 29 13 5 3 3 3 0 

1 95 34 15 6 4 3 3 1 137 48 22 8 5 5 4 1 

2 138 49 22 8 5 5 4 2 187 66 30 10 7 6 6 2 

3 180 63 29 10 6 6 6 3 235 83 37 13 8 8 7 3 

4 221 78 35 12 8 7 7 4 281 99 45 15 10 9 9 4 

5 261 92 41 14 9 8 8 5 326 114 52 18 11 10 10 5 

6 301 107 48 16 10 10 9 6 370 130 59 20 13 12 11 6 

7 341 119 54 19 12 11 10 7 414 145 65 22 15 13 12 7 

8 381 133 60 21 13 12 11 8 457 160 72 25 16 14 14 8 

9 419 147 66 23 14 13 13 9 499 175 79 27 17 15 15 9 

 
 

 

.95 

0 106 37 30 10 7 6 6  
 

 

.99 

0 162 57 26 9 7 6 5 0 

1 167 59 41 14 9 8 8 1 234 82 37 13 9 7 7 1 

2 222 78 52 18 11 10 10 2 296 104 47 16 10 9 9 2 

3 273 96 61 21 13 12 12 3 353 124 56 19 12 11 11 3 

4 322 113 70 24 15 14 13 4 408 143 64 22 14 13 12 4 

5 370 130 78 27 17 15 15 5 461 162 73 25 16 14 14 5 

6 417 146 87 30 18 17 16 6 512 179 81 28 17 16 15 6 

7 462 162 95 32 20 19 18 7 562 197 89 30 19 17 17 7 

8 508 178 103 35 22 20 19 8 612 214 96 33 21 19 18 8 

9 552 193 111 38 23 22 21 9 660 231 104 36 22 20 20 9 

 

The producer’s risk is the probability of rejecting lot when     . We can compute the producer’s risk by first finding 

         and then using the binomial distribution function. For a given value of the producer’s risk say 0.05, one may be 

interested in knowing what value of      will ensure a producer’s risk less than or equal to 0.05 if a sampling plan under 

discussion is adopted. It should be noted that the probability p may be obtained as function of     , as 

 

     
 

  

  

 
  (24) 

 The value      is the smallest positive number for which the following inequality hold:  

 ∑   
   (

 
 
)                (25) 

 For a given sampling plan (n, c,     ) and specified confidence level   , the minimum values of      satisfying the inequality 

(25) are given in Table 5. 

 

B. Numerical Example 

Consider the following ordered failure times of the release of a software given in terms of hours from the starting of the 

execution of the software denoting the times at which the failure of the software is experienced (Wood [18]). This data can 

be regarded as an ordered sample of size 10 with observations.  

xi , i = 1, . . . , 10 = 519, 968, 1430, 1893, 2490, 3058, 3625, 4422, 5218, 5823  

Consider the specified average life to be 1000 hrs and the testing time be 2250 hrs, this leads to ratio of          with 

corresponding n and c as 10 and 5 obtained from Table 2 for        . Therefore, the corresponding sampling plan for 

the above sample data is (n=10, c=5,          ). Based on the observations, it is to decide whether the product is 

accepted or rejected. We accept the product only, if the number of failures after 2250 hrs is less than or equal to five. So 

we accept the product. 

Table  4:  Operating characteristic values of the sampling plan (n, c,      for given    and         under GR-TNB 

probabilities. 
           

   n c      .8 1  1.2  1.4 1.6  1.8 

 

 
 

.75 

48  2  1.25  0.000874  0.239616  0.767986  0.956849  0.992761  0.9987 

21  2  1.5  0.000899  0.238354  0.758215  0.951207  0.991042  0.9983 

11  2  1.75  0.000851  0.224325  0.744938  0.945785  0.989367  0.9978 

7  2  2  0.000573  0.171166  0.692567  0.929569  0.985298  0.9968 

5  2  2.25  0.000538  0.125061  0.621854  0.905043  0.979057  0.9952 

4  2  2.5  0.00047  0.082177  0.517006  0.859224  0.966524  0.992 

3  2  2.75  0.004868  0.142707  0.563329  0.869635  0.968604  0.9925 

3  2  3  0.000712  0.048586  0.336642  0.723364  0.918108  0.9781 

 64  2  1.25  0.000031  0.098207  0.616272  0.913784  0.984165  0.9971 
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.90 

28  2  1.5  0.000029  0.094699  0.598428  0.901776  0.980177  0.996 

14  2  1.75  0.000043  0.099003  0.602903  0.900198  0.978734  0.9955 

9  2  2  0.000016  0.00294  0.203976  0.659152  0.900198  0.9741 

6  2  2.25  0.000031  0.048796  0.473569  0.843475  0.962368  0.9911 

4  2  2.5  0.00047  0.082177  0.517006  0.859224  0.966524  0.992 

4  2  2.75  0.000016  0.014035  0.24718  0.676845  0.904131  0.9743 

3  2  3  0.000712  0.048586  0.336642  0.723364  0.918108  0.9781 

 
 

 

.95 

76  2  1.25  0.000002  0.047443  0.506506  0.873315  0.975135  0.9953 

33  2  1.5  0.000002  0.046238  0.48978  0.858061  0.969402  0.9937 

17  2  1.75  0.000002  0.040683  0.469109  0.843973  0.963956  0.992 

10  2  2  0.000003  0.033355  0.438649  0.82725  0.958093  0.9902 

6  2  2.25  0.000031  0.048796  0.473569  0.843475  0.962368  0.9911 

5  2  2.5  0.000007  0.017102  0.30969  0.741864  0.92965  0.982 

5  2  2.75  0.0004  0.00116  0.094586  0.486775  0.815862  0.9451 

3  2  3  0.000712  0.048586  0.336642  0.723364  0.918108  0.9781 

 

 

 

.99 

101  2  1.25  0.000001  0.005822  0.272528  0.743359  0.940267  0.9876 

44  2  1.5  0.000086  0.008536  0.293993  0.746194  0.937059  0.986 

22  2  1.75  0.000085  0.008306  0.288882  0.735645  0.930474  0.9835 

13  2  2  0.00005  0.005496  0.250193  0.702338  0.916734  0.979 

9  2  2.25  0.000016  0.002171  0.172882  0.62393  0.884727  0.9688 

6  2  2.5  0.000001  0.003233  0.173035  0.617564  0.881426  0.9674 

6  2  2.75  0.000001  0.000087  0.03321  0.330619  0.715158  0.9059 

4  2  3  0.000712  0.048586  0.336642  0.723364  0.918108  0.978116 

 

 

. 

Figure  5: OC Curve 

 

Table  5:  Minimum ratio of true   and required    for the acceptability of a lot with producer’s risk of 0.05 for       
  under GR-TNB probabilities. 

              

   c 1.25 1.5 1.75 2 2.25 2.5 2.75 3 

 

 

 

 
 

 

.75 

 1.25  1.5  1.75  2  2.25  2.5  2.75  3 

0  3.34  3.21  3.61  3.23  3.63  3.33  3.66  3.99 

1  2.43  2.28  2.25  2.23  2.14  2.03  2.23  2.44 

2  2.11  2  1.93  1.95  1.94  1.98  2.17  2.1 

3  1.96  1.88  1.8  1.79  1.71  1.77  1.95  2.12 

4  1.88  1.79  1.75  1.7  1.7  1.66  1.83  1.99 

5  1.82  1.73  1.66  1.62  1.59  1.58  1.74  1.9 

6  1.77  1.68  1.63  1.58  1.59  1.61  1.77  1.66 

7  1.74  1.65  1.59  1.54  1.52  1.56  1.71  1.87 

8  1.73  1.64  1.56  1.52  1.52  1.52  1.68  1.83 

9  1.7  1.61  1.56  1.51  1.48  1.49  1.55  1.69 

10  1.68  1.6  1.54  1.49  1.45  1.46  1.6  1.75 

 
 

 

0  4.43  3.72  3.61  3.89  3.63  4.03  4.44  3.99 

1  2.67  2.49  2.4  2.38  2.38  2.38  2.61  2.44 

2  2.32  2.18  2.08  2.12  2.05  1.98  2.17  2.08 
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.90 

3  2.11  2.01  1.99  1.95  1.83  1.91  2.1  1.91 

4  2.02  1.91  1.84  1.79  1.76  1.77  1.95  1.8 

5  1.94  1.84  1.8  1.7  1.71  1.68  1.84  1.72 

6  1.9  1.79  1.75  1.7  1.64  1.61  1.77  1.83 

7  1.84  1.75  1.7  1.65  1.62  1.63  1.8  1.76 

8  1.8  1.72  1.66  1.6  1.58  1.58  1.74  1.72 

9  1.79  1.68  1.63  1.58  1.56  1.55  1.7  1.69 

10  1.76  1.67  1.59  1.56  1.52  1.51  1.66  1.75 

 
 

 

 
 

.95 

0  4.07  3.88  3.87  3.7  3.86  3.79  4.17  3.75 

1  2.79  2.67  2.57  2.46  2.51  2.38  2.61  2.44 

2  2.43  2.28  2.2  2.19  2.05  2.16  2.2  2.08 

3  2.22  2.09  2.01  2  1.91  1.91  1.95  2.12 

4  2.07  1.98  1.92  1.86  1.83  1.77  1.83  1.99 

5  2.02  1.91  1.85  1.79  1.71  1.77  1.74  1.9 

6  1.94  1.86  1.85  1.73  1.7  1.71  1.77  1.83 

7  1.9  1.8  1.75  1.7  1.68  1.63  1.71  1.76 

8  1.86  1.77  1.7  1.67  1.61  1.65  1.68  1.72 

9  1.84  1.74  1.66  1.62  1.59  1.61  1.77  1.69 

10  1.8  1.71  1.85  1.56  1.52  1.51  1.66  1.75 

 
 

 

 
 

.99 

0  4.56  4.37  4.3  4.06  4.17  4.29  4.17  4.55 

1  3.15  2.92  2.82  2.78  2.67  2.64  2.61  2.85 

2  2.58  2.49  2.36  2.32  2.34  2.28  2.37  2.37 

3  2.37  2.25  2.14  2.08  2.05  2.03  2.1  2.12 

4  2.22  2.13  2.03  2.00  1.94  1.95  1.95  1.99 

5  2.14  2.03  1.94  1.9  1.83  1.84  1.84  1.9 

6  2.07  1.94  1.88  1.820  1.78  1.77  1.77  1.83 

7  2.02  1.9  1.82  1.76  1.76  1.75  1.8  1.76 

8  1.96  1.87  1.79  1.76  1.74  1.69  1.74  1.83 

9  1.92  1.83  1.75  1.7  1.66  1.65  1.7  1.78 

10  1.9  1.79  1.75  1.67  1.62  1.66  1.66  1.75 

 

VIII. CONCLUSIONS 

 

In this note, we propose a four-parameter distribution namely, the Generalized Rayleigh-Truncated Negative Binomial 

(GR-TNB) distribution. The GR-TNB distribution provides a flexible mechanism for statistical analysis of positive data. This 

distribution is motivated by the wide use of the Rayleigh distribution in practice, and also for the fact that generalization of 

Marsall-Olkin extended distribution can be constructed by adding a parameter (say ). We have studied some properties of 

proposed distribution include: shapes of pdf and hrf. We have provided a mathematical treatment of the distribution and 

estimation of the model parameters are computed by the method of maximum likelihood. The real data application of the 

GR-TNB distribution show that it could provide a better fit than other generalizations of Rayleigh distribution used in lifetime 

data analysis. Also reliability test plan is derived on the basis that the life distribution of the test item follows GR-TNB 

distribution. We provide the minimum sample size needed to decide for acceptance or rejection of a lot. Some useful tables are 

provided and applied to a real data to establish the test plan.   
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