
 © 2015, IJSRCSE All Rights Reserved 7

 International Journal of Scientific Research in Computer Science and EngineeringInternational Journal of Scientific Research in Computer Science and EngineeringInternational Journal of Scientific Research in Computer Science and EngineeringInternational Journal of Scientific Research in Computer Science and Engineering

 Research Paper Volume-3, Issue-4 ISSN: 2320-7639

Realization of FIR Filter using Distributed Arithmetic Architecture

Chandan Singh

Dept. of ECE, Guru Gobind Singh Indraprashta University/India
reachforchandan007@gmail.com

Available online at www.isroset.org

Received: 16 Jul 2015 Revised: 22 Jul 2015 Accepted: 23 Aug 2015 Published: 30 Aug 201

Abstract— This work represents an efficient implementation of Finite Impulse response (FIR) filter using Distributed Arithmetic

(DA) architecture. Distributed Arithmetic (DA) architecture is an efficient technique for calculation of inner product or multiply and

accumulate (MAC) using Look-up tables. In absence of DA, the direct method of implementing MAC uses dedicated multipliers

which are fast but consume considerable hardware.

MAC operation is common in digital signal processing algorithms. Here DA replaces the explicit multiplications by ROM

look-up tables which is an efficient technique to implement on FPGA. To save the memory units, we have divided the look-up tables.

Area saving from using DA can be up to 80% in DSP hardware design. This work shows the implementation of an eight order FIR

filter using DA architecture through VHDL coding and the code is finally simulated using Modelsim and then compared with

MATLAB output.

Keywords:- Distributed Arithmetic (DA) architecture, VHDL. MATLAB, FIR Filter

I. INTRODUCTION

The term filter is commonly used to describe a device that

discriminates according to some attribute of the objects

applied to its input, what passes through it. For example, an

air filter allows air to pass through it but prevents dust

particles that are present in the air from passing through.

As we know that a linear time invariant system performs a

type of discrimination or filtering among the various

frequency components at its input. The nature of this

filtering action is determined by the frequency response

characteristics H(w), which in turn depends on the choice

of the system parameters (e.g. the coefficients in the

difference equation characterization of the system). Thus by

proper selection of the coefficients, we can design

frequency selective filters that pass signals with frequency

components in some bands while they attenuate signals

containing frequency components in other frequency bands.

In general, a linear time invariant system modifies the input

signal spectrum X(w) according to its frequency response

H(w) to yield an output signal with spectrum Y(w) = H(w).

X(w). Here H(w) acts as a weighting function or a spectral

shaping function to the different frequency components in

the input signal.

Filtering is used in digital signal processing in a variety of

ways. For example, removal of undesirable noise from

desired signals, spectral shaping such as equalization of

communication channels, signal detection signals, and so

on.

Filters can be broadly defined into two categories.

(1) FIR (Finite Impulse Response) Filters and

(2) IIR (Infinite Impulse Response) filter.

As the name suggests an FIR filter is a one which has a

finite duration impulse response i.e. it has an impulse

response that is zero outside of some finite time interval

whereas an IIR system is having an infinite duration

impulse response.

An FIR filter of length M with input x(n) and output y(n) is

described by the difference equation.

Y(n) = b0x(n) +b1x(n-1)+…….+b(M-1)x(n-M+1)

 = ∑ k=0
M-1

 bkx(n-k)

Where { bk } is the set of filter coefficient.

As we can see that the realization of the FIR filters needs a

lots of multiplication and accumulation in its equation, a

normal design of such a filter would require many

multipliers and adders which can significantly increase the

area on chip and consequently the cost of such a system.

Therefore we require an efficient technique that will solve

the area optimization problem and can reduce the area and

thus the overall cost of the system.

One such technique is the Distributed Arithmetic

Architecture which can significantly solve the need of

such multipliers and adders.

 ISROSET- Int. J. Sci. Res. in Computer Science & Engineering Vol-3(4), PP (7-12) Aug 2015, E-ISSN: 2320-7639

 © 2015, IJSRCSE All Rights Reserved 8

II. DISTRIBUTED ARITHMETIC

ARCHITECTURE

 Distributed Arithmetic architecture is an efficient

technique for calculation of inner product or multiply and

accumulate (MAC). DA technique basically replaces the

explicit multiplications by ROM look-up tables. Here

multiplications are reordered (or shifted) and then added such

that the arithmetic becomes distributed through the structure.

It is a technique which is bit-serial in nature and hence can

appear to be slow as compared to direct method of multiplier

implementation. However when the number of elements in a

vector is nearly the same as the word-size, DA is quite fast.

The K length FIR filter can be described as

 eqn. 1

Let xk be a N bit scaled 2’s complement number.

|xk| < 1

xk { bk0 bk1 bk2….bk(N-1)}

where bk0 is the sign bit

xk can be written as

 eqn. 2

Subsituting eqn.2 in eqn. 1

 eqn. 3

 eqn. 4

Expanding the extreme right hand side part of eqn.4

eqn. 5

y = -[b10.A1 + b20.A2 + b30.A4+b40.A5………………….bk0.Ak]

 +[(b11.A1)2
-1

 + (b12.A1)2
-2

 +(b13.A1)2………(b1(N-1).A1)2
-(N-

1)
]

 +[(b21.A2)2
-1

 + (b22.A2)2
-2

 +(b23.A2)2
-3

………(b2(N-1).A1)2
-(N-

1)
]

 .

 .

 .

 +[(bk1.Ak)2
-1

 + (bk2.Ak)2
-2

 +(bk3.Ak)2
-3

………(bk(N-1).Ak)2
-

(N-1)
]

Further simplification leads to (arranging coefficients with

same places of decimal)

y=-

[b10.A1+b20.A2+b30.A4+b40.A5……………………….bk0.Ak]

 +[(b11.A1) + (b21.A2)…………………...………...+ (

bk1.Ak)]2
-1

 +[(b12.A1) + (b22.A2)…………...………………..+ (

bk2.Ak)]2
-2

 .

 .

 .

+[(b1(N-1).A1) + (b2(N-1).A2)…………………..+(bk(N-1).Ak)]2
-(N-

1)

eqn. 6

Considering eqn. 6

……………………has only 2
k
 possible values.

…………………….has only 2
k
 possible

vaules.

Thus by storing these values in a LUT with address inputs

as (kn)and after shifting it, depending upon the place of b

i.e. k, and finally adding the sign bit as well, we can realize

eqn. 6 which is actually a Distributed Arithmetic

Architecture.

Thus for the above realization we need a ROM of size 2
k

Let’s take an example to see the contents of LUT

Let number of taps k=4

Fixed coefficients are A1 = 2, A2 = 3, A3=4, A4=5

 ISROSET- Int. J. Sci. Res. in Computer Science & Engineering Vol-3(4), PP (7-12) Aug 2015, E-ISSN: 2320-7639

 © 2015, IJSRCSE All Rights Reserved 9

 2

k
 = 2

4
 = 16 Size ROM

 where k = 4

b1

n

b2

n

b3

n

b4

n

Contents in ROM

0 0 0 0 0

0 0 0 1 A4 = 5

0 0 1 0 A3=4

0 0 1 1 A3+A4 = 9

0 1 0 0 A2 = 3

0 1 0 1 A2+A4 = 8

0 1 1 0 A2+A3 = 7

0 1 1 1 A2+A3+A4 = 12

1 0 0 0 A1 = 2

1 0 0 1 A1+A4 = 7

1 0 1 0 A1+A3= 6

1 0 1 1 A1+A3+A4 = 11

1 1 0 0 A1+A2 = 5

1 1 0 1 A1+A2+A4 = 10

1 1 1 0 A1+A2+A3 = 9

1 1 1 1 A1+A2+A3+A4= 14

 Table 1

Fig. 1 Basic DA architecture.

III. DESIGN OF FIR FILTER

Now we will design a low pass filter of desired specifications

as shown below using window technique.

Order of the filter = 8

Cut of frequency Fc = 1.5MHz

Sampling frequency Fs = 5MHz

Window used = Hamming window

First we will find the filter coefficients using Matlab

command. We have used hamming window for this purpose.

 h(n) = { 0.0022 -0.0320 0.0418 0.4880 0.4880 0.0418 -

0.0320 0.0022}

These filter coefficients are first converted to 2’s complement

form to be used in the code. For this purpose we have taken

binary values only upto 11 places of decimal.

Fig 2. Frequency and phase response of the filter using

Matlab

Now we will use these coefficients to design the filter using

DA architecture.

The code for the same is written in VHDL which is then

simulated using Modelsim. The results are then compared

with Matlab output.

IV. SIMULATION OF FIR FILTER USING MODELSIM SE

6.4

Simulation of the filter is done by Modelsim SE 6.4.

Now if we closely examine the code what we have written

and what should be the equation of the FIR filter, we will

see a difference in the equation.

Code equation

Y=∑n=0
N
hnx(n) eqn. 7

Actual Filter equation

Y(n) = ∑ k=0
K-1

hk x(n-k) eqn. 8

By closely examining the Filter equation, it is apparent that

the inputs given to the filter (X1-X7) should have some

format.

 ISROSET- Int. J. Sci. Res. in Computer Science & Engineering Vol-3(4), PP (7-12) Aug 2015, E-ISSN: 2320-7639

 © 2015, IJSRCSE All Rights Reserved 10

For example,

Suppose the input signal given to the Filter is

xin = {x(0) x(1) x(2) x(3) x(4) x(0) x(1) x(2) x(3)

x(4)……}

Where x(0) is the value of the Xin at 0 interval. So we will

discard any value of Xin in the Filter equation which goes

before 0 interval i.e. for negative value of time.

Output at different time intervals can be calculated using

eqn. 8

Y(0) = h(0)x(0)

Y(1) = h(0)x(1) + h(1)x(0)

Y(2) = h(0)x(2) + h(1)x(1) + h(2)x(0)

Y(3) = h(0)x(3) + h(1)x(2) + h(2)x(1) + h(3)x(0)

Y(4) = h(0)x(4) + h(1)x(3) + h(2)x(2) + h(3)x(1) + h(4)x(0)

.

.

.

Y(10) = h(0)x(10) + h(1)x(9) + h(2)x(8) + h(3)x(7) +

h(4)x(6) + h(5)x(5) + h(6)x(4) + h(7)x(3) #value of h(n) is

only uptoh(0)- h(7) due the order of the filter i.e. order 8

.

.

Filter i/p Output Y(n)

 Y(0) Y(1) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) Y(8) Y(9) Y(10) …

X(0) x(0) x(1) x(2) x(3) x(4) x(0) x(1) x(2) x(3) x(4) x(0) …

X(1) 00 x(0) x(1) x(2) x(3) x(4) x(0) x(1) x(2) x(3) x(4) …

X(2) 00 00 x(0) x(1) x(2) x(3) x(4) x(0) x(1) x(2) x(3) …

X(3) 00 00 00 x(0) x(1) x(2) x(3) x(4) x(0) x(1) x(2) …

X(4) 00 00 00 00 x(0) x(1) x(2) x(3) x(4) x(0) x(1) …

X(5) 00 00 00 00 00 x(0) x(1) x(2) x(3) x(4) x(0) …

X(6) 00 00 00 00 00 00 x(0) x(1) x(2) x(3) x(4) …

X(7) 00 00 00 00 00 00 00 x(0) x(1) x(2) x(3) …

Table 2

In the above table, each Y(n) is a sum of the values of X(0)-

X(7) of the respective column.

By evaluating the above table, it is clear that the first input

to Filter code i.e. X(0) is same as the input signal given for

processing through the Filter and rest of the inputs to the

Filter code i.e from X(1)-X(7) are just the delayed version

of the same.

Thus we need to write an input testbench stimuli which

should follow the above sequence while giving the inputs to

the Filter w.r.t. to the original input signal taken for

processing through the low pass filter.

V. ANALYSIS OF FIR FILTER WITH AN INPUT SIGNAL

Signal taken as input to the Filter for processing is a square

wave with frequency 1MHz and sampling frequency of

5MHz having amplitude 0.5.

The same signal is also analyzed using Matlab for

comparison with Filter output.

We will have 5 samples per cycle. Inputs used are in

hexadecimal

 0.5 => 40

-0.5 => C0

 Input Stimuli using Macro in Modelsim
laoding design for simulation. Complied file is

my_lib.fir

vsim my_lib.fir

Enabing wave window

view wave

Deleting previous waves from prior simulation, if any.

delete wave *

Adding signals to wave window.

add wave *

##Setting zeorth input X0, value changes after every

200ns.

force -deposit x0 16#00, 16#40 200, 16#40 400, 16#40 600,

16#C0 800, 16#C0 1000, 16#40 1200, 16#40 1400, 16#40

1600, 16#C0 1800, 16#C0 2000, 16#40 2200, 16#40 2400,

16#40 2600, 16#C0 2800, 16#C0 3000, 16#40 3200, 16#40

3400, 16#40 3600, 16#C0 3800, 16#C0 4000

 ISROSET- Int. J. Sci. Res. in Computer Science & Engineering Vol-3(4), PP (7-12) Aug 2015, E-ISSN: 2320-7639

 © 2015, IJSRCSE All Rights Reserved 11

##Setting first input X1, value changes after every 200ns.

force -deposit x1 16#00, 16#00 200, 16#40 400, 16#40 600,

16#40 800, 16#C0 1000, 16#C0 1200, 16#40 1400, 16#40

1600, 16#40 1800, 16#C0 2000, 16#C0 2200, 16#40 2400,

16#40 2600, 16#40 2800, 16#C0 3000, 16#C0 3200, 16#40

3400, 16#40 3600, 16#40 3800, 16#C0 4000

##Setting second input X2, value changes after every

200ns.

force -deposit x2 16#00, 16#00 200, 16#00 400, 16#40 600,

16#40 800, 16#40 1000, 16#C0 1200, 16#C0 1400, 16#40

1600, 16#40 1800, 16#40 2000, 16#C0 2200, 16#C0 2400,

16#40 2600, 16#40 2800, 16#40 3000, 16#C0 3200, 16#C0

3400, 16#40 3600, 16#40 3800, 16#40 4000

##Setting third input X3, value changes after every 200ns.

force -deposit x3 16#00, 16#00 200, 16#00 400, 16#00 600,

16#40 800, 16#40 1000, 16#40 1200, 16#C0 1400, 16#C0

1600, 16#40 1800, 16#40 2000, 16#40 2200, 16#C0 2400,

16#C0 2600, 16#40 2800, 16#40 3000, 16#40 3200, 16#C0

3400, 16#C0 3600, 16#40 3800, 16#40 4000

##Setting fourth input X4, value changes after every 200ns.

force -deposit x4 16#00, 16#00 200, 16#00 400, 16#00 600,

16#00 800, 16#40 1000, 16#40 1200, 16#40 1400, 16#C0

1600, 16#C0 1800, 16#40 2000, 16#40 2200, 16#40 2400,

16#C0 2600, 16#C0 2800, 16#40 3000, 16#40 3200, 16#40

3400, 16#C0 3600, 16#C0 3800, 16#40 4000

##Setting fifth input X5, value changes after every 200ns.

force -deposit x5 16#00, 16#00 200, 16#00 400, 16#00 600,

16#00 800, 16#00 1000, 16#40 1200, 16#40 1400, 16#40

1600, 16#C0 1800, 16#C0 2000, 16#40 2200, 16#40 2400,

16#40 2600, 16#C0 2800, 16#C0 3000, 16#40 3200, 16#40

3400, 16#40 3600, 16#C0 3800, 16#C0 4000

##Setting sixth input X6, value changes after every 200ns.

force -deposit x6 16#00, 16#00 200, 16#00 400, 16#00 600,

16#00 800, 16#00 1000, 16#00 1200, 16#40 1400, 16#40

1600, 16#40 1800, 16#C0 2000, 16#C0 2200, 16#40 2400,

16#40 2600, 16#40 2800, 16#C0 3000, 16#C0 3200, 16#40

3400, 16#40 3600, 16#40 3800, 16#C0 4000

##Setting seventh input X7, value changes after every

200ns.

force -deposit x7 16#00, 16#00 200, 16#00 400, 16#00 600,

16#00 800, 16#00 1000, 16#00 1200, 16#00 1400, 16#40

1600, 16#40 1800, 16#40 2000, 16#C0 2200, 16#C0 2400,

16#40 2600, 16#40 2800, 16#40 3000, 16#C0 3200, 16#C0

3400, 16#40 3600, 16#40 3800, 16#40 4000

setting reset value which is set at 0.

force -deposit reset 0 0

##Running simulation for 4200ns

run 4200

Fig. 3 FIR Filter using DA architecture

Fig. 4 Output waveforms of FIR filter from Modelsim

Fig. 5 Output waveforms of FIR filter from Matlab

 ISROSET- Int. J. Sci. Res. in Computer Science & Engineering Vol-3(4), PP (7-12) Aug 2015, E-ISSN: 2320-7639

 © 2015, IJSRCSE All Rights Reserved 12

VI. RESULT & CONCLUSION

As can be seen from the waveform comparison in the last

section, the output waveform of the Modelsim (FIR filter)

and the MATLAB matches with each other.

Thus the implemented FIR filter using DA architecture is

suitable for the desired low pass filtering without using any

multiplier. It can be used for any order low pass filter by

changing the equation used and the corresponding change in

the vhdl code. Further improvement can be done by taking

into account the property of even symmetry of FIR filters and

hence further reduction can be done in the requirement of

memory units.

REFERENCES

[1]. Ramesh.R, Nathiya.R “Realization of FIR filter using

Modified Distributed Arithmetic Architecture” An

internation journal Vol 3. No. 1, February 2012.

[2]. Yajun Zhou ; Sch. of Autom., HangZhou Dianzi Univ.,

Hangzhou, China ; Pingzheng Shi “Distributed

Arithmetic for FIR Filter implementation on FPGA”

IEEE 2011 International Conference on Multimedia

Technology (ICMT), pp 294 - 297July 2011 Print ISBN:

978-1-61284-771-9, DOI: 10.1109/ICMT.2011.6003032

[3]. Sang Yoon Park, Pramod Kumar Meher “Low-Power,

High-Throughput, and Low-Area Adaptive FIR Filter

Based on Distributed Arithmetic” IEEE Transactions on

circuits and systems-II: Express briefs, Vol. 60, N0. 6,

pp. 346-350 June 2013.

[4]. M Surya Prakash, Rafi Ahamed Shaik “Low-Area &

High-Throughput Architecture for an Adaptive filter

using Distributed Arithmetic” IEEE Transaction on

Circuit & System, Vol. 60, No. 11, pp. 781-785, Nov.

2013

