
 © 2014, IJSRCSE All Rights Reserved 11

 International Journal of Scientific Research in Computer Science and Engineering International Journal of Scientific Research in Computer Science and Engineering International Journal of Scientific Research in Computer Science and Engineering International Journal of Scientific Research in Computer Science and Engineering

 Technical Paper Vol-2, Issue-1 E-ISSN: 2320-7639

Improving Effectiveness of Query Optimizer

Jyoti Haweliya1*, Ravinder Kaur Narang2

 1*Department of Computer Engineering, IET, DAVV, Indore, India, jyoti.samad@rediffmail.com
 2 Department of Information Technology, IET, DAVV, Indore, India, ravinder11narang@yahoo.com

Available online at www.isroset.org

Received: 24 Dec 2013 Revised: 08 Jan 2014 Accepted: 20 Jan 2014 Published: 28 Feb 2014

Abstract— Query Optimization is important tasks in Relational DBMS. Given a query, there are many plans that a database
management system (DBMS) can follow to process it and produce its answer. All plans are equivalent in terms of their final
output but vary in their cost, i.e., the amount of time that they need to run. Process of finding good evaluation plan is called
Query Optimization .The plan is formed from different combination of operators and the way these operators are implemented
in database affects the cost of query. However, the literature do not attempt to give us comparison of different implementation
algorithms for operators and to what particular type of plan a Query Optimizer should select for a particular situation.
Therefore it is the purpose of this paper to understand and develop a comparison among them by taking example of a simple
query. Further on basis of our analysis, we found some proposals that will help Query Optimizer to rule out good plans from
bad plans in effect improving effectiveness of Query Optimizer.
Keywords- Query Optimizer, Prefer Pipelining, Sequential Access

I. INTRODUCTION

Johann Christopher [1] describes the path that a query
traverses through a DBMS until its answer is generated. The
query is first parsed and its validity is checked .Then query is
passed to query optimizer .The query optimizer generates all
alternative plans and plans are then evaluated to find the cost
for each plan and finally the best plan is selected Then the
best plan passed to Query Processor for executing against
database. This paper focus on the particular query
optimization process. Ramkrishnan and Gehrek [9] described
that the process of query optimization involves two basic
steps as first enumerating all alternative plans and the second
is to evaluate costs to select the best plan. The different plans
are possible for executing query .Each plan is formed by some
rearrangement of operators. As for example Consider a query
having select and join both type of operations to be performed
.So, First plan can be as selection operation performed first
and then join performed on the results, Second plan can be as
joined performed first on the join attribute and then selection
done on the result, Another plan can be the way selection
operator implemented as selection may be implemented as
sequential or using btree or hashing etc.Then after evaluating
all different possible plans ,the query optimizer estimate the
cost of each enumerated plan and choosing the plan with
lowest cost .For costs evaluation there are various steps
performed by an optimizer as reading input tables which can
be done using sequential,iteration,indexing etc.Then
optimizer writes the results of search or read. Further if results
are required in sorted form so, sorting step also adds to the
costs. Each of above step incurs a cost, reading tables, writing
temporary results and then if sorting is required, then results
are sorted.

Yannis E. Ioannidis [3] described that the costs for each
above can be calculated using standard cost functions. So, the
way an operator is implemented affects the costs.

Costs can be calculated by various costs evaluation functions.
The way these different implementation algorithms are
presented makes it difficult to compare and analyze them. So;
the goal of this paper is to provide the comparison of some
algorithms by taking an example of a simple query and to
analyze all different available options on it. Further we found
some proposals will help query optimizer to take decisions as
to which algorithm will be best in what situation.

II. LITERATURE REVIEW

Johann Christophe[1] describes wide variety of Query
Optimization techniques .The way in which these techniques
are presented gives their output same but differs in the way
they optimize the query .Different techniques address
different order in which to execute the operations. For each
Technique an evaluation plan is constructed and it is the
Query optimizer’s responsibility to create evaluation plan
Ramkrishnan and Gehrek [9]described that evaluation plans
are formed from different operators and the operators can be
implemented using different algorithms .So the
implementation algorithms affects the cost of complete
evaluation plan. After creating an evaluation plan, Query
Optimizer makes use of System catalog and implementation
information to evaluate costs [3].System catalog in database
contains the complete data and metadata for the table .So,
Query Optimizer makes use of data as how many pages, rows
the table consists of. What type of access structure is there on
the Index, no of attributes, logical and physical structure etc Corresponding Author: Jyoti Haweliya

 ISROSET- Int. J. Sci. Res. in Computer Science & Engineering Vol-2, Issue-1, PP (11-13) Feb 2014, E-ISSN: 2320-7639

 © 2014, IJSRCSE All Rights Reserved 12

Literature also gives us various cost evaluation functions to
evaluate costs of different evaluation plans. [4]. There are
various advanced ways of Query Optimization [5] that
researchers have proposed over the past years as Semantic
Query,Nested Query,Mutiple Query, Dynamic ,parametric
etc. Semantic Query Optimization [6] is a form which relies
on rewriting a given Query semantically equivalent Ones.
This makes use of heuristics and rule based approach for
rewritings. Further Optimization is on Global Query
Optimization [7]. This presents work on queries that become
available for optimization at the same time, from multiple
concurrent users, or embedded in a single program.So, here
instead of optimizing a single Query, one may be able to find
a good plan for executing group of queries. Further work on
Parametric and Dynamic Query Optimization [8], propose
using the actual parameter values at run time and simply pick
the plan that is optimal with little or no overhead.Futhermore,
there are much interesting work done in the areas like rule
based optimization, nested queries, aggregate query
optimization etc their further details can be provided in the
references provided. But goal of this paper is to present issues
related to simple individual queries and how query optimizer
works for simple queries

III. METHODOLOGY

As described by Ramkrishnan and Gehrek query optimizer
while evaluating the query finds out all alterative options to
process the query. For a query there can be enormous number
of plans that can be possible to process it, but for calculating
costs Optimizer does not evaluate all generated plans but
some subset of plans. Based on rules as defined by query
optimization algorithm optimizer is able to eliminate bad
plans. Costs Evaluation Functions given by Korth [10] are as
follows

NPages (A) =No of Pages of Relation
a Sequential Scan: NPages
Hash Index(r)/b (I)
Btree: d (I) +p(r)*s/O (log (n))
Tuple: Npages1+ (tupleSize*Npages2)
Page: Npages1+ (Npages1*Npages2)
Nested: M+N. [M/B]
Merge: sort(r) +sort(s) +p(r) +p(s)

Here we present a methodology for Query Optimization. The
steps are approximation of what actually system does to
evaluate Query, find costs and select best plan. By taking
example of Single Relation Query, we aim at describing the
complete optimization procedure an optimizer would follow
to execute it. Example Consider following query:

Select first.IntId, second. Status, second.refId from User first,
User second where first.IntId=second.refId.The evaluation
plan can be constructed as:

 Figure 1:Evaluation plan for Query

But there are several other plans are possible like performing
self join or taking cross product and then performing selection
operation or first selection and then the join. Here we mention
a plan which shows that any type of search is possible on
selection operation and any type of join is possible. But which
combination is best can be found by utilizing costs and
system catalog information. As for example for this particular
plan we consider no of rows for User table as 1000 and by
utilizing following Literature Key points we can find the best
combination of join and search to evaluate cost. On basis of
key points and cost calculation methods made available to us
by various earlier Literature and papers, we are able to
prepare following comparison chart for various combinations
of operators. By looking at this chart, we conclude that for a
query which contains equality as a conjunct, Hash Index (for
search) in combination with Sort-Merge join is the best
Evaluation plan.

TABLE I: COMPARISON TABLE

Fig1.2 Comparison Chart

A Proposal : Cross product should never be formed
Results of a cross-product is typically much larger than result
of a join, Joins have therefore received a lot of attention.
Example cost of result can be approximated by the fraction of
tuples that will appear in the result and fraction of tuples
depends on the reduction factor as

NPages*(size of attribute)*RF
(size of tuple) (NK)

RF:-Fraction of tuples that satisfies a given conjunct Cross
Product consists of almost entire table’s rows as compared to
joins which retrieve only the matching rows in the result.

Plan Page Tuple Nested Merge
Sequential 61 120 29 21

BTree 43 102 11.15 3.5

Hash Index 41 121 9 1.5

 ISROSET- Int. J. Sci. Res. in Computer Science & Engineering Vol-2, Issue-1, PP (11-13) Feb 2014, E-ISSN: 2320-7639

 © 2014, IJSRCSE All Rights Reserved 13

B Proposal : Give preference to Sequential access over
Unclustered Btree
Sequential access scans entire file .Example Table Employee
contains 1000 pages and selection is of the form name<’C%’.
We estimate that roughly 10% of employee tuples are in the
result .This is total of 100 pages. or 10,000 tuples so, cost of
sequential scanning Employee would be 1000I/Os depends on
the no. of pages. Whereas consider the case of unclustered
Btree Index .here each tuple could cause us to read a page .so
in the worst case we could have up to 10,000I/Os.

C Proposal : Prefer Pipelining over Materialization
When Query composed of multiple operators, result of an
operator is to be passed to other Operator up in the hierarchy.
As above mentioned when costs of result is calculated, step to
write intermediate results also affects the costs.So,if result of
an operator is pipelined rather than materializing a huge costs
can be saved. Example costs of writing intermediate results is
given by following formula

NPages*(size of attribute)*RF
(size of tuple) (NK)

This cost adds in the final result. In pipelining intermediate
results are not written to temporary tables

D Proposal : Make Use of Partitioning in joins (if possible).
Implementation technique like Simple Nested loop for joins
enumerate all tuples of tables to be joined and discard the
tuples that do not meet the join condition. Whereas the
algorithms like Index Nested Loop Join makes use of
partitioning, tuples in the two relations can be thought of as
belonging to partitions, such that tuples in the same partitions
can join with each other and for each tuple in one relation, it
uses an index on second relation to locate tuples in same
partition. Thus only a subset is compared entire relation is
never compared. Example Simple Nested Loop is a tuple-at-
a-time evaluation. So, if Employee table consists of 1000
pages and each page is of 100 rows which is to be joined with
500 pages of Manager Table .Then cost of Simple Nested
Loop will be 1000+(1000*100*500) I/Os which gives costs as
1000+(5*10e7)I/Os. As compared to Index Nested Loop
which utilizes an index on second Relation, consider example
of hash index, so costs goes down to 100*1000*(1+1.2)which
is equal to 221,000I/Os. So, even if go for any type of
indexing Index Nested Loop performs much better than
Simple Nested Loop.

E Proposal : Sort-Merge Join Vs Block Nested Loop Join
Sort-Merge Join as compared to Block Nested Loop makes
use of Partitioning and but do not rely on pre-existing Index.
A Sort-Merge Join sort the two relations on join attribute and
merge phase begins with scanning each tuple of each relation.
Cost of sorting is O (MlogM) and cost of merging is M+N.
so the total costs becomes:

O (MlogM)+O(NlogN)+M+N.

Example consider 1000 and 500 pages of Employee and
Manager respectively. cost of sort-Merge Join becomes
4000+2000+1000+500=7500I/Os Consider block Nested
Loop , which relies on utilizing available number of buffer
pages ,If buffer pages are less to hold entire relation ,so break
relation into blocks that can fit into available blocks. costs is
given as

M+(N*[M/B])

where M,N are no of I/Os to scan the two relations and B is
available number of buffer pages. So, if we consider no of
buffer pages available as 35 so the cost for above Employee
and Manager relation becomes becomes 15000I/Os , which is
not better than Sort-Merge Join but if we increase buffer
pages to 300 so the costs of block nested loop drops to
2500I/Os which is better than sort-Merge Join,Finally
available buffer pages affects choice of algorithm.

IV. CONCLUSION

We analyzed that query consists of many operations and each
operation can have many execution options, and each
execution options can be evaluated by a cost fuctions, by
which we can find some best evaluation strategy. We derived
comparison chart and Best practices which will help query
optimizer to make decisions to select efficient plan and
eliminate several bad plans that are generated. Further in
some cases chosen optimization plan may not be the optimal
(best) strategy – it is just a reasonably efficient strategy for
executing query.

REFERENCES

[1]. Johann Christopher Freytag, ”Basic Principles of
Query Optimization”, March 1989/09, CA, pp 801-
807.

[2]. Yannis E. Ioannidis, University of Wisconsin, “Query
Optimization”, June 1982.

[3]. Visshy Posala, Bell Labs, Query Optimization, April
1992

[4]. S. Mein, “Principles of Query Optimization”, 1990.
[5]. L. Vieille , “Advanced Query Optimization”, March

1989
[6]. C. White., Principles of Semantic Query , 1986
[7]. G.von Bultz, Translating and Optimizing Global

Queries, 1987
[8]. W. Wang , Optimizing Dynamic AND Parametric

Queries, 1985
[9]. Ram Krishnan and Gehrek, Introduction to Relational

Database
[10]. Silberschatz, Korth, Sudarshan, Introduction to

Database concepts

