

 © 2013, IJSRCSE All Rights Reserved 4

 International Journal of Scientific Research in Computer Science International Journal of Scientific Research in Computer Science International Journal of Scientific Research in Computer Science International Journal of Scientific Research in Computer Science andandandand Engineering Engineering Engineering Engineering

 Technical Paper Vol-1, Issue-6 ISSN: 2320-7639

CCTF: Component Certification & Trust Framework
Latika Kharb

Department of IT, JIMS, Sector-0, Rohini, New Delhi, INDIA, lkharb@gmail.com

Available online at www.isroset.org

Received: 28 Nov 2013 Revised: 08 Dec 2013 Accepted: 20 Dec 2013 Published: 30 Dec 2013

Abstract— Trust is important while assembling the components, as users want to know that a component will function as
required and “advertised” and certification is a mechanism through which trust is gained. When both these notions are
applied to component software development, we recognize that what is required to produce reliable and stable software,
worthy of certification of certification of trust. We begin with defining key terms used in this paper and follow this with a
discussion on trust and its relationship to certification. We continue with descriptions of a basic form of proposed CCTF:
Component Certification & Trust Framework and then present an extension to basic framework that supports establishing
trust.
Index Terms – Trusted Component, Third-Party Certification, Component Based Software Project Manager

I. INTRODUCTION

Component-based software engineering (CBSE) /
Component-Based Development (CBD) / Software
Componentry is a branch of the software engineering
discipline, with emphasis on decomposition of the
engineered systems into functional or logical components
with well-defined interfaces used for communication across
the components [1]. A component should be able to be
developed, acquired and incorporated into the system and
composed with other components independently in time and
space [2]. As a component is typically developed in a system
environment that is different from environment of final
system where component is integrated, so it’s difficult to
predict component behavior in a new system [3]. In this
paper, we describe the framework, and describe two possible
forms that the framework may take in order to establish trust
among participants in component-based design.

II. TRUST AND CERTIFICATION

Establishing trust in a piece of hardware, software or a
network is somewhat similar to the process that an
individual uses to trust a service organization. Certification
is a mechanism by which trust is gained and associated with
certification is a higher level of trust that can be assumed
when using implicit trust mechanisms.

Component users want to know that a component will
function as “advertised”. However, in this paper we restrict
our scope to the framework’s support for trusted
interactions. At a minimum, there are five roles required to
support component-based development of systems. In the
following discussion, we describe each of these roles and
follow up with a discussion of the ways in which the
participants interact. We then discuss alternative
mechanisms for extending the basic framework to address

the issue of trusted component property values.

III. COMPONENTS OF THE CCTF

Components play a critical role in many software systems.
Thus, our ability to reason about the properties of
assemblies of components is of great concern to modern
system implementers. Our ability to understand the
functional and extra-functional properties of such systems
suffer from:
� a lack of information about component behavior,
� a lack of confidence in the information that is available,

and
� an inability to determine properties of component

assemblies based on "black box" component
representations.

In this section, we’ll present an overview of component
terminology used in this paper.

� Component Technology Specifier defines what it means

to be a component as well as the types of interactions
used to connect components.

� Component technology implementer provides the
infrastructure that enforces the standards imposed by a
component technology.

� Reasoning framework developer creates analysis
techniques for predicting quality attributes of
component assemblies.

� Component implementer creates components that are
conformant with some component standard.

� System implementer assembles components to fulfill
some high-level function.

� Component technology consists of a standard for
developing and modeling components and a language
in which to specify component assemblies.

� Component framework is a conformant implementation
of a component technology.

Corresponding Author Latika Kharb

 ISROSET- IJSRCSE Vol-1, Issue-6, PP(4-6) Nov-Dec 2013

 © 2013, IJSRCSE All Rights Reserved 5

IV. REQUIREMENTS FOR A TRUSTED

COMPONENT

A component should be able to be developed, acquired and
incorporated into the system and composed with other
components independently in time and space [2].
Certification certifies that it will do precisely this (for all
contexts where its dependencies are satisfied). It will
therefore provide a basis for component certification.
Requirements necessary for a trusted component include:

� The CSPM (Component Software Project Manager) of

the project and an engineering trained leader who
motivates all members of the project team towards
implementing the one best way.

� Verification by the sub-CSPM and third-party
certification organization that the developers are
adhering to design decisions of the project and
subproject groups.

� Verification that performance specifications are
followed, gaps identified, risks mitigated and test cases
developed early during the design phase and validated
at the completion of the project.

� Certification is a necessary activity to enable reasoning
about the behavior of component-based systems. It is
admirable that developers would be entrusted with
considerable knowledge of the development of
components.

V. INTERACTION AMONGST COMPONENTS IN CCTF

Typically, the development of component-based systems
starts with a collection of existing components [4]. In Figure
1, we’ve shown the five basic elements of a component
technology along with their interactions.

The semantics is described below.

1. Step 1: The component technology implementer
uses the specification provided by a Specifier of
the component technology to build conformant
component infrastructure.

2. Step 2: The component technology specifier may
suggest that a particular analysis technique be
developed to support reasoning about some quality
attribute that is important to the types of systems
likely to be developed using this framework.

3. Step 3: The component technology implementer
may suggest new types of analyses, and the
developer of the reasoning framework will provide
input as to what types of analyses are useful within
certain types of systems.

4. Step 4: The component infrastructure provider
must provide the system implementer with trusted
infrastructure properties.

5. Step 5: The component implementer receives its
standards information from the implementer of the
component technology.

6. Step 6: The developer of the reasoning framework
defines component properties that must be trusted,
while the organization that actually build the
component may be required to divulge otherwise
hidden implementation details to support a
particular analysis technique.

7.

Figure 1: The CCTF

Figure 2: Extended CCTF

8. Step 7: The developer of the system receives

components and property documentation from the
component implementer, and may notify the
component implementer of the desire to use an
analysis technique for which a component under
consideration has not been validated.

9. Step 8: A reasoning framework developer supplies
the system implementer with the necessary
algorithms for performing the compositional
analysis techniques, and the system implementer
may indicate to the developer of the reasoning
framework that a new type of analysis would be
useful.

The five basic roles of Components are:
� Component technology Specifier defines what it

means to be a component as well as the types of
interactions used to connect components. The
resulting specification defines a standard that must
be adhered to by component and infrastructure
developers.

 ISROSET- IJSRCSE Vol-1, Issue-6, PP(4-6) Nov-Dec 2013

 © 2013, IJSRCSE All Rights Reserved 6

� Component technology implementer provides the
infrastructure that enforces the standards imposed
by a component technology.

� Reasoning framework developer creates analysis
techniques for predicting quality attributes of
component assemblies. The developer of the
reasoning framework defines what needs to be
known about a component in order to be amenable
to the technique. It may also supply the means by
which to determine the component property.

� Component implementer creates components that
are conformant with some component standard.

� System implementer assembles components to
fulfill some high-level function. The system
implementer expects to be able to predict the
quality attributes of a proposed design before
commitments are made to use specific components.

In Figure 2, we’ve shown our original framework extended
with the addition of a Component Property Certifier.
� Component Property Certifier acts as a trusted third

party. A property certifier might verify credentials
that were provided by the component implementer
along with components or, alternatively, create an
additional credential. The component implementer
trusts the certification organization with the source
code for a component and the system implementer
trusts that the certificates supplied along with
components and obtained through a certifier are
valid.

The original communication between the component
implementer and the system implementer has been replaced
by an interaction between the component implementer and
the component property certifier and two new two-way
interactions have been added.

� The redirection of Step 9 forces the supply of

components to go through the certifier.
� The two-way Step 10 between reasoning framework

developer and property certifier represents the
mutually informing relationship between the
developer of compositional analysis techniques and
the user of them. The reasoning framework developer
might devise an algorithm that requires knowledge of
component internals that are not certifiable. In this
case, the property certifier needs to notify the

developer of the analysis technique so that
adaptations to the algorithm can be explored.

� The two-way Step 11 between the property certifier
and system implementer indicates that a request from
the developer for components with specific
certificates and property certifier’s supply of those
components.

VI. CONCLUSION

In this paper, we conclude that COSD is a promising
discipline to be considered as one of the alternatives to
promote software evolution and also to improve the
software development process of currently complex systems
with the help of our proposed CCTF: Component
Certification & Trust Framework. Research and practice in
the areas of component trust and certification, component
technology, and software architecture to date has been
conducted largely in isolation and has only touched on a few
core issues.

REFERENCES

[1]. Paul Clements, From subroutines to subsystems:
Component-Based Software Development, Allen
Brown, Ed., Component-Based Software
Engineering: Selected Papers from Software Institute,
pages 3-6, 1996

[2]. Szyperski, C. Component Software: Beyond Object-
Oriented Programming, Addison-Wesley, 1998. 213.

[3]. Kharb L. Assessment of Component Criticality with
Proposed Metrics, IndiaCom 2008, BVICAM.

[4]. McInnis, Component-Based Development: The
Concepts, Technology and Methodology, Castek
Software Factory Inc., www.CBD~HQ.com

AUTHORS PROFILE

Dr. Latika Kharb is working in Department of MCA as
GGSIPU Faculty in JIMS: Jagan Institute of
Management Studies, New Delhi. She is an
MCA, PhD(Computer Science). She has
published over 30 research papers/articles in
various International, National Journals and
Conferences.

