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Abstract — Human Activity Recognition (HAR) involves identifying and classifying physical activities performed by 

individuals using data collected from sensors like accelerometers, gyroscopes, or cameras. HAR has broad applications in 

healthcare, fitness monitoring, and human-computer interaction, where accurate activity recognition can enhance user 

experiences and provide actionable insights. Despite progress in standalone deep learning models, limitations persist in 

capturing both spatial and temporal dependencies effectively. To address this, we developed a hybrid deep learning model 

combining Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks. CNNs were employed to 

extract spatial features from multivariate time-series sensor data, while LSTMs captured temporal dependencies crucial for 

accurate classification. The UCI HAR dataset, consisting of six activity labels, was used to benchmark the model. The 

implementation was carried out in Python, leveraging libraries like TensorFlow and Keras. The proposed hybrid CNN-LSTM 

model achieved an overall accuracy of 94%, with precision, recall, and F1-scores (macro and weighted averages) also reaching 

94%. Individual activity labels recorded F1-scores ranging from 85% to 100%, demonstrating the model's robustness across 

diverse activities. These findings validate the effectiveness of the hybrid CNN-LSTM architecture in overcoming the limitations 

of standalone models. The ability to capture both spatial and temporal patterns in sensor data underscores the model's potential 

in advancing HAR applications. This study provides a foundation for future research in refining hybrid approaches, exploring 

additional datasets, and deploying such models in real-world applications. The results have significant implications for 

improving healthcare monitoring, fitness tracking, and human-computer interaction systems. 

 

Keywords — human activity recognition, CNN-LSTM, hybrid deep learning, multivariate time-series, temporal dependencies, 

spatial feature extraction

 
 

1. Introduction 
 

Human Activity Recognition has emerged as one of the key 

research areas, which allows the classification and analysis of 

physical activities using data captured by sensors such as 

accelerometers, gyroscopes, and cameras. This area offers a 

great potentiality in healthcare, fitness monitoring, human-

computer interaction, and ambient-assisted living, where an 

accurate identification of activities may drive innovations in 

personalized applications and services [1]. HAR systems face 

challenges due to the complex and variable nature of human 

motion and the high dimensionality of sensor data. Effective 

HAR requires robust algorithms that accurately capture 

spatial and temporal features within activity data. Traditional 

machine learning methods, such as Support Vector Machines 

(SVM) and k-Nearest Neighbors (KNN), have been widely 

employed for HAR tasks. While these models achieved 

considerable success, their dependency on handcrafted feature 

extraction limits their scalability and generalization across 

diverse datasets [2]. In contrast, deep learning models, 

particularly Convolutional Neural Networks (CNNs) and 

Recurrent Neural Networks (RNNs), have demonstrated 

superior performance by automating feature extraction and 

capitalizing on the hierarchical structure of data 

representations [3]. However, standalone CNNs and RNNs 

each have inherent limitations. While CNNs represent an 

outstanding performance in image-spatial feature extraction, 

their architecture lacks any effective way of modeling 

temporal dependencies. In contrast, RNNs and their advanced 

improvement by Long Short-Term Memory have outstanding 

performance on temporal pattern mining while having 

problems with complexities over spatial features. 

 

In the recent years, to mitigate these limitations, several 

hybrid architectures have been developed that combine CNNs 

and LSTMs. These models combine the best of both - CNNs 

which is good at identifying patterns in spatial features, while 
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LSTMs excel at understanding how things change over time 

(temporal modeling). By using both, these models achieve 

better results in recognizing human activities [4]. Despite 

promising results, gaps remain regarding how to optimally 

adapt these hybrid models to multivariate time-series datasets, 

which are quite common in HAR applications. For example, 

sensor noise, activity overlap, and imbalanced datasets are 

some of the challenges that require further research and 

innovation. This paper aims to address the challenges in 

Human Activity Recognition (HAR) by introducing a new 

model that combines the strengths of Convolutional Neural 

Networks (CNNs) and Long Short-Term Memory networks 

(LSTMs). The CNN part of the model analyzes the raw sensor 

data to identify important spatial patterns. The LSTM part 

then takes this information and learns how these patterns 

change over time, which is crucial for correctly classifying 

different activities. To test this new model, the researchers 

used the UCI HAR dataset, a well-known and widely used 

dataset in this field. This dataset is chosen because it includes 

a diverse range of real-world activities and data from various 

sensors, making it a good benchmark for evaluating the 

model's performance. The overarching objective of this study 

is to enhance classification accuracy while ensuring 

robustness across diverse activity types. By addressing the 

limitations of standalone models and optimizing the hybrid 

architecture, this research contributes to advancing HAR 

methodologies. These findings have a great impact on 

applications in healthcare, fitness tracking, and human-

computer interaction, thus providing a basis for further 

research in this area.  

 

The HAR dataset used in this study was created by recording 

30 individuals performing everyday activities like walking, 

climbing stairs, and resting. These participants, aged 19-48, 

wore smartphones equipped with motion sensors 

(accelerometer and gyroscope) on their waists. The sensors 

captured detailed movement data, including acceleration and 

rotation, at a high rate of 50 times per second. To ensure 

accuracy, the recordings were accompanied by video footage, 

which was then manually reviewed to label each activity. This 

dataset, publicly available on [5], is diverse and well-suited 

for research due to its inclusion of various individuals and 

activities. This paper is organized as follows: Section 2 

provides a review of relevant literature. Section 3 outlines the 

research methodology, including data sources, text 

preprocessing techniques, and the model architecture. Section 

4 presents the results of the study and a discussion of their 

significance. Finally, Section 5 concludes the paper with a 

summary of the findings. 

 

2. Related Works 
 

HAR has been a subject of extensive research, with both 

traditional machine learning and more recent deep learning 

techniques being explored. While traditional methods played 

a crucial role in early HAR research, advancements in deep 

learning have led to significant improvements in terms of 

accuracy and reliability. This section presents a 

comprehensive review of existing research, examining their 

methodologies, underlying principles, and limitations. 

Additionally, it emphasizes how our proposed hybrid CNN-

LSTM model overcomes some of these limitations. 

 

[6] investigated the use of SVM and Decision Trees (DT) for 

activity recognition using smartphone sensors. The study 

relied on handcrafted feature extraction to process raw 

accelerometer and gyroscope data, which were then fed into 

the models for classification. While the approach provided 

interpretable results and achieved reasonable accuracy, its 

dependence on manual feature engineering limited its 

scalability and generalization to other datasets. Additionally, 

these models struggled with complex time-series patterns, 

such as overlapping activities. The hybrid CNN-LSTM model 

overcomes these issues by automating feature extraction and 

learning hierarchical representations, enabling better handling 

of high-dimensional, multivariate data.  

 

HAR systems often rely on wearable sensors, which can be 

challenging for elderly individuals. To address this limitation, 

[7] proposed a vision-based approach using CCTV footage 

and camera images. Their system employed a HAR feature-

based classifier to detect human poses in images and a 

Convolutional Neural Network (CNN) to recognize activities. 

Our research utilized a custom dataset of 5,648 images to 

train a similar HAR system. The results were promising, 

achieving a high detection accuracy of 99.86% and a 

recognition accuracy of 99.82%. Moreover, the system 

demonstrated real-time performance, processing 

approximately 22 frames per second after 20 training epochs. 

 

In their work, [8] explored the recognition of complex human 

activities using a high-performance 1D - CNN model. HAR is 

a significant area of research with diverse applications in 

healthcare, social sciences, and human-computer interaction. 

Many human activities are complex and require monitoring to 

improve well-being, quality of life, and health. This study 

proposed a novel approach for recognizing complex HAR 

using a 1D - CNN model trained on data collected from a tri-

axis accelerometer sensor embedded in a smartwatch. The 

dataset comprises three complex activities: studying, playing 

games, and mobile scrolling. 1D CNNs offer a compelling 

combination of high accuracy and reduced computational 

complexity for HAR tasks. The proposed model was trained 

and optimized using Python on a self-curated dataset, 

achieving an impressive accuracy of 98.28%. These 

promising preliminary results demonstrate the effectiveness 

of the 1D CNN model for recognizing these target activities 

and provide a strong foundation for further advancements in 

the field of HAR. 

 

In their research, the authors in [9] proposed a novel approach 

for recognizing human activities using a one-dimensional 

Convolutional Neural Network (1D CNN). This method 

leverages triaxial accelerometer data collected from users' 

smartphones. The study focused on three distinct activities: 

walking, running, and staying still. To extract relevant 

features, the x, y, and z acceleration values were combined 

into a single vector magnitude, which served as the input for 

the 1D CNN model. The proposed 1D CNN model 

demonstrated superior performance, achieving an accuracy of 
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92.71% in recognizing these activities, surpassing the baseline 

random forest approach which attained an accuracy of 

89.10%. 

 

[10] pioneered the use of a hybrid CNN-RNN architecture for 

HAR, combining the strengths of CNNs for spatial feature 

extraction and RNNs for capturing temporal dependencies 

within multivariate sensor data. While this hybrid approach 

showed promising results with significant accuracy 

improvements over standalone models, it employed basic 

RNNs, limiting its ability to effectively handle long-term 

dependencies. Furthermore, the model's performance was 

impacted by imbalanced datasets, where certain activity 

classes were underrepresented. This study addresses these 

limitations by proposing a novel hybrid CNN-LSTM model. 

By incorporating Long Short-Term Memory (LSTM) 

networks instead of basic RNNs, the model enhances its 

ability to capture and learn from long-term dependencies 

within the sensor data. Additionally, the study employs data 

augmentation techniques to mitigate the impact of class 

imbalance, thereby improving the overall robustness and 

generalizability of the model. 

 

Smartphones, with their increasing sophistication and 

widespread adoption, have become powerful platforms for 

activity recognition. This has led to the development of 

numerous applications aimed at monitoring daily routines and 

fostering healthier lifestyles. A key challenge in this domain 

lies in developing efficient methods for accurately 

recognizing various physical activities, such as walking, 

jogging, and sitting. In their work, [11] proposed a novel 

approach utilizing a Convolutional Neural Network (CNN) to 

identify human activities based on data collected from the 

three-axis accelerometer embedded in smartphones. The study 

focused on recognizing a range of activities, including 

walking, jogging, sitting, standing, and ascending/descending 

stairs. A unique aspect of their approach is the direct 

utilization of raw, three-dimensional accelerometer data as 

input for the CNN, eliminating the need for complex 

preprocessing steps. The CNN-based model demonstrated 

exceptional performance, achieving an impressive 91.97% 

accuracy in recognizing these activities. This significantly 

outperformed the traditional Support Vector Machine (SVM) 

approach, which achieved an accuracy of 82.27% when using 

six manually extracted features from the raw accelerometer 

data. These findings highlight the effectiveness of the 

proposed CNN model in delivering high recognition accuracy 

while minimizing computational overhead. 

 

[12] proposed a multimodal HAR system that combined data 

from multiple sensor types, such as accelerometers, 

gyroscopes, and magnetometers. The study demonstrated that 

multimodal approaches could improve classification accuracy 

by using corresponding information from diverse sensors. 

However, the integration of multiple sensor modalities 

required extensive preprocessing and synchronization, 

complicating the implementation. The proposed hybrid CNN-

LSTM model simplifies the architecture by focusing on 

efficiently extracting and processing features from single-

sensor multivariate data, providing a balance between 

simplicity and performance. 

 

These studies reviewed, therefore, indicate a great deal of 

progress in the HAR area using both machine learning and 

deep learning techniques. Traditional approaches require 

handcrafted features, which can limit scalability and 

performance. In such a way, the proposed CNN-LSTM hybrid 

model ensures strong feature extraction on any given dataset. 

Another is Temporal Modeling. Standalone CNNs can't 

capture temporal dependencies that are present in sequential 

activities. By incorporating LSTMs, the proposed model 

effectively handles temporal dynamics. Other limitations 

include a limited ability for spatial feature extraction: 

Standalone LSTM models are not optimized for spatial 

feature extraction, which is quite critical for multivariate 

sensor data. The hybrid model uses CNNs to address this gap. 

Many of the existing models suffer in the case of rare activity 

classes. The hybrid model uses data augmentation and class 

weighting to mitigate this issue. Most of the attention-based 

and multimodal models are challenging to deploy in real time. 

The proposed hybrid architecture balances the trade-off 

between complexity and performance, making it appropriate 

for real-time applications. The hybrid CNN-LSTM model 

addresses these limitations and therefore provides a complete 

solution for a HAR task, paving the path toward more 

accurate, robust, and efficient activity recognition systems. 

 

3. Methodology 
 

In the next section, we will discuss four important methods 

used in our HAR system 

 

3.1 Data Source and Splitting 

The HAR dataset used in this study was collected from 30 

volunteers aged 19-48 performing six daily activities 

(WALKING, WALKING_UPSTAIRS, 

WALKING_DOWNSTAIRS, SITTING, STANDING, 

LAYING) while carrying a waist-mounted Samsung Galaxy S 

II. The smartphone's embedded accelerometer and gyroscope 

captured 3-axis linear acceleration and angular velocity at a 

50Hz sampling rate. Video recordings were used for manual 

data labeling. This publicly available dataset was randomly 

divided into training (70%) and testing (30%) sets. The raw 

sensor data (accelerometer and gyroscope) underwent pre-

processing, including noise filtering. Subsequently, the data 

was segmented into 2.56-second windows with a 50% 

overlap, resulting in 128 readings per window. To isolate 

body acceleration from the acceleration signal, which 

includes both body motion and gravitational components, a 

Butterworth low-pass filter with a cutoff frequency of 0.3 Hz 

was applied, assuming gravitational forces primarily reside in 

low-frequency bands. Finally, a feature vector was extracted 

from each window, encompassing both time-domain and 

frequency-domain features. 

 

3.2 Data Preprocessing 

After loading the dataset, the next phase is data preprocessing. 

The results inf Figure 1 indicate that the dataset used for the 

study is clean and does not contain any problematic records, 
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which is an excellent starting point for training and testing 

your machine learning model. The duplicates in train = 0 and 

duplicates in test = 0 indicates that there are no duplicate rows 

in either the training or testing datasets. Duplicate rows could 

arise from repeated data entries, which can lead to bias in the 

model. Their absence ensures that the model is trained and 

evaluated on unique, diverse data points, enhancing the 

reliability of its performance. While the invalid values in 

Train = 0, and invalid values in test = 0 

 

 
Figure 1. Checking for Duplicates and Nulls 

 

"Invalid values" refer to missing or inappropriate entries in 

the dataset, such as NaN, null values, or data entries that do 

not make sense in the context of the problem (e.g., negative 

values for an attribute that should only be positive). The 

absence of invalid values confirms that the dataset is complete 

and well-prepared, with no gaps or errors that might adversely 

affect model training or testing. A clean dataset minimizes the 

risk of the model learning spurious patterns or being 

negatively impacted by anomalies, leading to more accurate 

and reliable predictions. It ensures that the model’s 

performance during training and testing reflects its true 

capability, as there are no artifacts or errors to skew results 

and saves preprocessing time that would otherwise be spent 

cleaning the data. 

 

Figure 2 shows visualization of user-provided data within the 

training set, grouped by activity labels. Each bar represents 

the distribution of activities such as Standing, Sitting, Laying, 

Walking, Walking Downstairs, and Walking Upstairs for 

different users. The activities are relatively well-distributed 

across the users, indicating that the dataset captures diverse 

activity patterns across different individuals. However, slight 

variations in bar heights suggest that some activities may have 

been performed more frequently than others by certain users.  

 

 
Figure 2. Data Provided by Users in Train Set 

While most activities seem to have balanced contributions 

across users, a few peaks (taller bars) may reflect 

overrepresentation of specific activities for some individuals, 

potentially affecting model training. The variability in the 

height of bars for different users highlights inter-user 

differences in activity patterns. This is important for assessing 

the robustness of the HAR model when applied to new users. 

This balanced yet slightly variable distribution supports the 

generalizability of the hybrid CNN-LSTM model but 

underscores the need to mitigate biases caused by 

overrepresented activities or users. 

 

Figure 3 illustrates the distribution of activity data contributed 

by users in the test set, categorized into activities or events 

such as walking upstairs, sitting, and standing. Compared to 

the training set, the test set shows a more noticeable variation 

in activity representation among users. Some activities, such 

as Sitting and Laying, appear to be overrepresented for certain 

users, while others like Walking Downstairs seem less 

frequent overall. 

 

 
Figure 3. Data Provided by Users in Test Set 

 

The observed variation in the number of instances for 

different activities across the test set indicates potential class 

imbalances. This uneven distribution raises concerns about 

the model's generalization performance, as underrepresented 

activities may be less accurately predicted. While the 

diversity of activity distribution across users is crucial for 

assessing the robustness of the hybrid CNN-LSTM model, it 

necessitates careful consideration of performance metrics to 

ensure fair evaluation of all activity classes. 

 

Figure 4 displays the total count of activities available in the 

training set, where each activity is represented by its total 

occurrence. The activity distribution in the training set is 

relatively balanced, with similar counts across most activities. 

However, slight differences suggest that certain activities 

have been performed more frequently, which could influence 

the training process by biasing the model toward these 

activities. This overall balance supports the creation of a 

robust model capable of generalizing well to different activity 

classes, though minor adjustments might still be needed for 

underrepresented activities to ensure uniform performance. 
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Figure 4. Count of Activities in Total (Train) 

 

The bar chart in Figure 5 illustrates the distribution of 

activities performed in the test dataset. The activity 

"STANDING" has the highest count, while 

"WALKING_DOWNSTAIRS" shows the lowest. The 

activities are generally well-represented, indicating a balanced 

dataset for most activities, though slight variations in count 

may affect model performance, particularly for 

underrepresented activities. This balance suggests sufficient 

data diversity for robust activity recognition, though 

optimization might focus on improving accuracy for less 

frequent activities. 

 

 
Figure 5. Count of Activities in Total (Test) 

 

3.3 Method 1 - Convolutional Neural Networks 

CNNs are a class of deep learning models specifically 

designed to process grid-like data, such as images or time-

series data. In the context of HAR, CNNs excel at extracting 

spatial features from multi-sensor data, including 

accelerometer and gyroscope readings, by applying 

convolutional operations to the input data. Given an input 

sensor data matrix X ∈ R
n x m

 (where n is the time dimension 

and m can be represented as the number of sensor channels), a 

kernel K ∈ R
k x m 

(where k is the kernel size) slides over the 

input, performing element-wise multiplications followed by 

summation. The output feature map Y is mathematically 

represented as: 

 

Y(i , j) = ∑ ∑ 𝑋(𝑖 + 𝑝, 𝑞). 𝐾(𝑝, 𝑞)𝑚−1
𝑞=0

𝑘−1
𝑝=0           (1) 

 

This operation extracts local patterns from the sensor data, 

such as transitions between activities. After convolution, an 

activation function f, typically ReLU, is applied to introduce 

non-linearity: 

Y
ˈ
(i , j) = f(Y(i, j)) = max(0, Y(i, j))           (2) 

 

Pooling layers (e.g., max-pooling) decrease the spatial 

dimensions of feature maps, while retaining the most 

prominent features while reducing computational complexity: 

P(i, j) = 𝑚𝑎𝑥𝑝=0
𝑠−1  𝑌ˈ(𝑖 + 𝑝, 𝑗 ∶ 𝑗 + 𝑠)           (3) 

 

Where s is the pooling size. Flattened feature maps are passed 

to fully connected layers for classification, producing activity 

probabilities using a softmax function: 

Ўi = 
exp (𝑧𝑖)

∑ exp(𝑧𝑗)𝐶
𝑗=1

             (4) 

 

where z is represented as the output of the last dense layer, 

and C is known as the number of activity classes. CNNs excel 

in extracting spatial correlations between sensor channels, 

identifying unique patterns for different activities (e.g., 

walking vs. running). 

 

3.4 Method 2 – Long Short-Term Memory 

LSTM networks are a specialized type of RNN specifically 

designed to effectively capture long-range dependencies 

within sequential data. In the context of HAR, LSTMs excel 

at analyzing temporal patterns in sensor data streams to 

accurately classify activities that unfold over multiple time 

steps. The core of an LSTM unit comprises of three key gates: 

the input gate, the forget gate, and the output gate, which 

meticulously control the flow of information within the 

network. Let xt be the input vector at time t, ht -1 the hidden 

state from the previous time step, and Ct -1  the cell state. The 

forget gate determines which information to remove from the 

previous cell state: 

ft = σ(Wf . [ht – 1, xt] + bf)            (5) 

 

where Wf and bf are the weight matrix and bias, respectively, 

and σ is the sigmoid activation function. The input gate 

decides which new information to store: 

it = σ(Wf . [ht – 1, xt] + bi)            (6) 

 

Updates the cell state with candidate values: 

Ĉt = tanh(WC . [ht – 1, xt] + bC)           (7) 

 

Cell state update combines the previous cell state and new 

candidate values: 

Ct = ft ʘ Ct - 1 + it ʘ Ct            (8) 

 

Output gate computes the new hidden state based on the 

updated cell state:   

ot = σ(Wo . [ht – 1, xt] + bo)            (9) 

ht = ot ʘ tanh(Ct)           (10) 

 

LSTMs are particularly effective in modeling temporal 

dependencies, such as recognizing sequences of movements 
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(e.g., standing to walking). However, they may struggle to 

extract spatial correlations within multivariate sensor data, 

limiting their standalone effectiveness for HAR tasks. 

 

3.5 Method 3 – Proposed Hybrid Model 

The hybrid CNN-LSTM architecture uses the strengths of 

both CNN and LSTM. CNNs are basically used to extract 

spatial features from multivariate sensor data, and these 

features are fed as input into LSTM layers to capture temporal 

dependencies for activity classification. For the input 

representation,  

 

Sensor data X ∈ R
n x m

 (time steps n, sensor channels m) is fed 

into CNN layers for spatial feature extraction. To do CNN 

feature extraction, the output from the CNN layers is a high-

dimensional feature map F ∈ 𝑅𝑛ˈ 𝑥 𝑑, where n′ is represented 

as the reduced time dimension after pooling, and d is the 

number of features. The next phase is the LSTM Temporal 

Modeling where the feature map F is passed to LSTM layers 

to model temporal dependencies: 

 

ht = LSTM(Ft, ht – 1, Ct – 1)          (11) 

 

For the classification layer, the final hidden state hT (at the 

last time step T) is passed to fully connected layers for 

classification, producing activity probabilities using softmax: 

 

Ў = 
exp(𝑧𝑖)

∑ exp(𝑧𝑗)𝐶
𝑗=1

           (12) 

 

Hybrid CNN-LSTM architectures exhibit a significant 

advantage in terms of feature representation. By leveraging 

the spatial feature extraction capabilities of CNNs and 

integrating them with the temporal modeling capabilities of 

LSTMs, these hybrid models effectively address the 

limitations inherent in using CNNs or LSTMs independently. 

This synergistic approach results in a more comprehensive 

and informative representation of the underlying activity 

patterns. Also, the architecture efficiently handles the high-

dimensionality of sensor data while combining spatial and 

temporal modeling ensures higher accuracy, particularly for 

complex activities involving transitions. Mathematically, 

given input X, CNN output: F = CNN(X), LSTM output: hT = 

LSTM(F), the hybrid activity probabilities can be represented 

as given input X: 

 

ў𝑖 =  
exp(𝑊ℎ .ℎ𝑡+𝑏ℎ) 

∑ exp(𝑊ℎ .ℎ𝑡+𝑏ℎ)𝐶
𝑗=1

          (13) 

 

This hybrid approach when implemented should demonstrate 

superior performance on benchmark datasets, achieving high 

accuracy and robustness in classifying diverse activities. The 

architecture of the Hybrid CNN-LSTM Model for HAR 

shown in Figure 4 visualizes the flow of data: 

 

 
Figure 5. Architecture of the system 

 

The input sensor data takes the raw multivariate time-series 

data collected from sensors and the CNN layers then extract 

spatial features from the input data by identifying patterns 

across sensor channels. The next phase is the flattening Layer 

that converts the CNN feature maps into a 1-dimensional 

vector for temporal processing. The LSTM Layers captures 

temporal dependencies in the sequence of features for activity 

classification, then the fully connected (FC) layer processes 

the temporal features and outputs activity class scores. Lastly, 

softmax Layer converts the class scores into probabilities for 

final classification. This architecture combines the strong 

point of CNNs for spatial analysis and LSTMs for temporal 

modeling, offering robust performance for HAR tasks.  

 

4. Discussion of Findings 
 

The classification report offers a comprehensive evaluation of 

the hybrid CNN-LSTM model's performance. It provides 

detailed metrics, including precision, recall, F1-score, and 

accuracy, for each activity class and overall. These metrics are 

essential for a thorough understanding of the model's 

performance on both individual activities and across the entire 

dataset.  

 

4.1 Evaluation Metrics 

Table 1 summarizes the evaluation metrics employed in this 

research, along with their corresponding values. Precision, 

one of the key metrics, measures the proportion of true 

positive predictions among all instances predicted as positive. 

Essentially, it quantifies the model's ability to minimize false 

positive classifications. 

Precision = 
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑇𝑃)

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑇𝑃)+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝐹𝑃)
       (14) 

 

True Positives (TP) represent instances where the model 

correctly identifies a class, while False Positives (FP) occur 

when the model incorrectly classifies an instance as belonging 

to a particular class. A high precision value (approximately 

1.00) for class 0 indicates a very low rate of false positives, 

suggesting that the model rarely misclassifies instances as 

belonging to class 0. Conversely, the slightly lower precision 

of 0.87 for class 4 implies a higher rate of false positives, 

indicating that more instances were mistakenly classified as 

belonging to class 4, as evident in Table 1. 
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Recall, also known as sensitivity or true positive rate, 

measures the proportion of actual positive instances that are 

correctly identified by the model. It essentially reflects the 

model's ability to detect all relevant cases within the dataset. 

Recall = 
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑇𝑃)

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑇𝑃)+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 (𝐹𝑁)
        (15) 

 

False Negatives (FN) occur when the model incorrectly fails 

to predict an instance as belonging to its true class. Class 2 

demonstrates perfect recall (1.00), signifying that all actual 

instances of class 2 were correctly identified by the model. In 

contrast, Class 3 exhibits a lower recall (0.84), indicating that 

the model missed some instances belonging to this class, 

resulting in a higher number of false negatives. These 

findings are further illustrated in Table 1. 

The F1-score represents the harmonic mean of precision and 

recall, providing a single, balanced measure of a model's 

overall performance. A high F1-score signifies that the model 

exhibits both high precision and high recall. 

F1 = 2 . 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 .  𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
          (16) 

 

Class 5 achieves an F1-score of 1.00, demonstrating near-

perfect balance between precision and recall for this class. In 

contrast, Class 3 exhibits a lower F1-score (0.85), reflecting 

the combined impact of its lower precision and recall values, 

as evident in Table 1. 

 

Support refers to the number of instances belonging to each 

class within the dataset, representing the total occurrences of 

that class used for evaluation. Class 5 exhibits the highest 

support with 537 instances, providing the model with more 

opportunities to learn and generalize from this class. 

Conversely, Class 2 has lower support with 420 instances. 

Despite this, Class 2 still achieves a high F1-score, 

demonstrating the model's robustness and ability to generalize 

effectively even with limited data for this class, as shown in 

Table 1. 

 

Accuracy measures the overall proportion of correctly 

predicted instances across all classes within the dataset. It 

provides a general assessment of the model's overall 

performance. 

Accuracy = 
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃) + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 (𝑇𝑁)

𝑇𝑜𝑡𝑎𝑙 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠
       (17) 

 

The overall accuracy is 0.94, indicating that 94% of all 

predictions were correct as shown in table 1. 

 

Macro average calculates the average of precision, recall, and 

F1-score across all classes, giving equal weight to each class 

regardless of their class distribution or support. 

Macro Avg = 
∑ 𝑀𝑒𝑡𝑟𝑖𝑐𝑖

𝐶
𝑖=1

𝐶
         (18) 

 

where C is represented as the number of classes. Macro 

averages for recall, precision, and F1-score are all 0.94, 

showing consistent performance across classes. 

Weighted average computes the average of precision, recall, 

and F1-score across all classes, giving greater weight to 

classes with higher support (more instances). It accounts for 

class imbalance. 

Weighted Avg = 
∑ 𝑀𝑒𝑡𝑟𝑖𝑐𝑖  .  𝑆𝑢𝑝𝑝𝑜𝑟𝑡𝑖

𝐶
𝑖=1

𝑇𝑜𝑡𝑎𝑙 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠
        (19) 

 

The weighted average for recall, precision, and F1-score is 

0.94, indicating strong overall performance, particularly 

considering the class distribution within the dataset, as shown 

in Table 1. 

 
Table 1 Classification Report 

 precision     recall   f1-score    support 

0 1.00 0.99 0.99 496 

1 0.98 0.95 0.97 471 

2 0.93 1.00 0.96 420 

3 0.87 0.84 0.85 491 

4 0.87 0.88 0.87 532 

5 0.99 1.00 1.00 537 

     

accuracy   0.94 2947 

macro avg 0.94 0.94 0.94 2947 

weighted 

avg        

0.94 0.94 0.94 2947 

  

The model demonstrates high overall performance (∼0.94 for 

all metrics) with some variation across classes. High precision 

and recall for certain classes (e.g., 0, 5) indicate strong 

performance, while slightly lower scores for others (e.g., 3, 4) 

highlight areas for improvement. 

 

4.2 Confusion Matrix 

 

Figure 6 presents a confusion matrix that provides a detailed 

breakdown of the human activity recognition model's 

performance across six activity categories. Each row 

corresponds to the true activity label, while each column 

represents the predicted label. The diagonal entries indicate 

correct classifications, while off-diagonal entries signify 

misclassifications. Activities like "WALKING," "LAYING," 

and "STANDING" show strong performance with minimal 

misclassifications. For instance, "LAYING" achieved 537 

correct predictions with only three misclassifications as 

"SITTING," reflecting the model's robustness in 

distinguishing this activity. 

 

 
Figure 6. Confusion Matric 
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"SITTING" and "STANDING" show higher confusion, with 

several "SITTING" instances misclassified as "STANDING" 

(71 cases). This observation suggests that the model may have 

difficulty distinguishing between these two activities, 

potentially due to similarities in their motion or postural 

profiles as captured by the sensors. For 

"WALKING_UPSTAIRS" and 

"WALKING_DOWNSTAIRS," the confusion is more 

noticeable. "WALKING_UPSTAIRS" had 24 instances 

misclassified as "WALKING_DOWNSTAIRS," indicating 

that the model finds it challenging to distinguish between 

these closely related activities. This might be due to 

overlapping patterns in the sensor data for these movements. 

The majority of predictions are on the diagonal, highlighting 

the model's ability to generalize across most activity types. 

This is a positive indicator of its effectiveness in recognizing 

diverse activities. The misclassifications, particularly between 

"SITTING" and "STANDING" as well as 

"WALKING_UPSTAIRS" and 

"WALKING_DOWNSTAIRS," point to areas where the 

model could be refined. Techniques such as incorporating 

additional features, improving preprocessing steps, or 

adjusting model hyperparameters might help mitigate these 

issues. In summary, the confusion matrix demonstrates that 

the model performs well overall, with high accuracy for most 

activities. 

 

5. Conclusion 
 

This study aimed to develop a robust hybrid Convolutional 

Neural Network-Long Short-Term Memory (CNN-LSTM) 

model for HAR. HAR, a critical task in domains such as 

healthcare, fitness, and human-computer interaction, involves 

identifying physical activities from sensor data. While 

significant progress has been made in HAR methodologies, 

existing models often struggle to effectively capture both 

spatial and temporal features, leading to suboptimal 

performance. To address this limitation, we propose a novel 

hybrid architecture that leverages the strengths of both CNNs 

and LSTMs. CNN layers were employed to extract intricate 

spatial features from raw sensor data, while LSTM layers 

were incorporated to model the temporal dependencies crucial 

for distinguishing between sequential activities. The model 

was evaluated on the widely-used UCI HAR dataset, 

achieving a high classification accuracy of 94% and strong 

F1-scores across all activity classes. These results 

demonstrate the superior performance of the proposed hybrid 

model compared to standalone CNN or LSTM models, 

particularly in handling complex activity sequences. The 

hybrid approach effectively mitigates the limitations observed 

in prior work, such as difficulty in learning long-term 

dependencies and insufficient generalizability across diverse 

activity types. Furthermore, the combination of CNN and 

LSTM layers enhances the model's robustness in handling 

datasets with imbalanced class distributions, as evidenced by 

its consistent precision and recall metrics across all activity 

classes. 

 

While this study demonstrates the effectiveness of the 

proposed hybrid CNN-LSTM model, several avenues for 

future research remain. Firstly, incorporating attention 

mechanisms into the architecture could significantly enhance 

performance. By enabling the model to focus on the most 

critical temporal or spatial features within the sensor data, 

attention mechanisms have shown promise in improving 

activity classification accuracy in recent studies [12]. 

Secondly, using transfer learning techniques could address the 

challenge of data scarcity. By fine-tuning pre-trained models 

trained on large datasets, the model's performance can be 

improved even with limited data available for the specific 

HAR task. Transfer learning has shown promising results in 

previous activity recognition research. Thirdly, exploring 

multi-modal sensor fusion by integrating data from multiple 

sources, such as accelerometers, gyroscopes, and cameras, 

can significantly enhance the model's ability to classify 

diverse activities accurately. This approach has the potential 

to significantly benefit HAR systems in complex real-world 

scenarios, including healthcare monitoring and industrial 

environments. Finally, research efforts should be directed 

towards optimizing the deployment of hybrid CNN-LSTM 

models on edge devices, such as smartphones. This involves 

exploring techniques such as model pruning and quantization 

to minimize latency, reduce energy consumption, and ensure 

real-time performance without compromising classification 

accuracy. By addressing these research directions, we can 

further advance the field of Human Activity Recognition by 

developing more accurate, efficient, and robust HAR systems 

that are applicable to a wider range of real-world scenarios. 
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