

© 2018, IJSRCSE All Rights Reserved 41

International Journal of Scientific Research in ____________________________ Research Paper .
Computer Science and Engineering

Vol.6, Issue.4, pp.41-55, August (2018) E-ISSN: 2320-7639

A Novel Approach to Minimize DFA State Machines Using Linked List

Yogesh Pant

Dept. of CIS, HSET, SRHU, Dehradun, India

*Corresponding Author: yogepant123@gmail.com

Available online at: www.isroset.org

Accepted: 20/Aug/2018, Online: 31/Aug/ 2018
Abstract— DFA minimization is a significant problem in algorithm design. Minimization of DFA works on the concept of

DFA equivalence: Two DFA‘s are equivalent if and only if both accept the identical strings of same set. Plethora of

computational problems can be solved simply by using the encoding method. Combinatorial objects which are to be used as

strings over a finite alphabet can be encoded. Standard algorithms from computational linear algebra are subjected to be

used efficiently to solve the computational problems if a DFA recognize the set of encoded strings. This proposed method

provides better results whereas other methods may face serious problem of time and space complexities.

Keywords— DFA; NFA; Regular expressions; Compiler Design; Linked List

I. INTRODUCTION

A DFA is defined as a mathematical concept, which can be
implemented in software and hardware as well to solve
many problems due to the deterministic behavior of a DFA.
For instance, a DFA can be used for the implementation of
a program that decides whether or not entered email address
and password is valid [1].

The set of regular languages is recognized by DFA [3]
which are helpful in lexical analysis and pattern matching.
DFAs can be constructed from nondeterministic finite
automata.

A deterministic finite state automaton (DFA) [11]
comprises of a finite set of states which are labeled with
alphabets and directed edges between two states. For every
state, at most one outgoing edge denoted by a given letter
from the alphabet is there. Hence, a transition of a state to
another labeled by some letter is deterministic. DFA
consists of an initial state and a set of the states called
accepting or final state. The DFA accepts a string if the
letters of the string decide transitions from the initial state to
an accepting state or final state. The set of strings which are
accepted by a DFA is called a language.

II. DFA MINIMIZATION

DFA minimization is normally a task that converts a
deterministic finite automaton (DFA) into another
equivalent DFA and that equivalent DFA has minimum
number of states. Various algorithms are used to achieve
this task [6].

There will be a minimal automaton i.e. a DFA which has a
minimum number of states for each and every language
that is regular in nature and this DFA is always unique.
The minimal DFA makes sure that the computational cost
for tasks such as pattern matching is minimal.

There exist two classes of states that we can remove /
merge from the original DFA to reduce it without altering

the language it accepts .The two states are as follows:

A. UNREACHABLE STATES
For any input string, these are the states which are not
accessible or reachable from the initial state of the DFA.

B. NON-DISTINGUISHABLE STATES
For any input string, these are those states that cannot be
differentiated from one another.

DFA minimization is basically implemented in three
steps, subsequent to the removal/merger of the related
states. Since the removal of non-distinguishable states is
the most expensive one on the basis of computations,
hence it is normally done as the final step. Unreachable
states can be simply removed from the DFA without
altering the language that it accepts.

III. APPLICATIONS

Deterministic Finite Automata (DFA) and particularly its
minimization algorithms possess some applications as
listed below:

 Path finding DFA in AI.

 Parser Generator for DSL and other Languages.

 DNA analysis.

 Implementation of Regular Expression and their

Search.

 Natural and computer virus scanning.

 Virus Searching.

 Code parser.

 Processing XML Streams
[4]

 Optimizing linked list techniques
[5]

 Word/code completion

http://www.isroset.org/

 Int. J. Sci. Res. in Computer Science and Engineering Vol.6(4), Aug 2018, E-ISSN: 2320-7639

© 2018, IJSRCSE All Rights Reserved 42

IV. LITERATURE SURVEY

A. Different DFAS AND DFA MINIMIZATION

ALGORITHMS AND TECHNIQUES:

A number of algorithms for the construction of minimal
acyclic deterministic finite automata (MADFAs) are shown
in paper [2]; most of which are originally derived /
designed.

These automata work on finite languages and have
confirmed helpful in functions such as spell checking, text
indexing and virus searching, just because of their acyclic
nature. The automata rise up to billions of states in many
scenarios which makes their storage complicated without
using several compression techniques.

The most significant technique is minimization technique.
Previous results confirm that minimization produces a
unique automaton (for a given language), subsequent
results show that minimization of acyclic automata could be
possible in linear time in the number of states. These two
results are functional for a rich area of algorithmic research.

The paper [2] depicts both incremental and non-incremental
algorithms. The un-minimized acyclic deterministic finite
automaton (ADFA) is made first and after that it is
minimized in non-incremental techniques,.

The un-minimized ADFA can be quite large indeed; even if
it is too large to accommodate within the computer‘s virtual
memory space. As a result, an incremental method for
minimization i.e. the ADFA is minimized throughout its
construction. Incremental algorithms often have a few
overhead, if the un-minimized ADFA effortlessly fits in
physical memory, then it may still be faster to implement
non-incremental techniques than incremental techniques.

B. The TABLE DRIVEN-DFAs

Paper [1] shows examination of Table Driven DFA (TD
DFA) based string processing algorithms from a variety of

vantage points. A number of strategies are well-known to

execute such algorithms in a cache efficient manner.

It is shown in paper [1] that the connotation semantics of
Table Driven algorithms are wrapped in a function. The
number of arguments of this function is associated with each
implementation approach. These implementation
approaches recommend twelve different algorithms, each
coming together the implementation techniques in a
specific way.

The paper [1] depicts three implementation strategies linked
with the table driven algorithm in order to minimize the
whole latency of a recognizer. In each case, the revised
algorithm performs better than the TD algorithm for an
appropriate class of input strings.

The primary strategy, known as the dynamic state
allocation (DSA) approach, has already been recommended.
This strategy has proven to perform better than TD when a
large scale finite automaton is used to process and
recognize very large strings expected to repeatedly visit the
similar set of states.

The second strategy, known as the State pre-ordering
(SPO) strategy, depends on a degree of earlier knowledge
about the pattern in which states are likely to be visited at
runtime. It is already proven that the linked algorithm
performs better than its TD counterpart no matter what
type of string is being processed.

The paper [1] also examined several ways to enhance the
performance of the traditional TD algorithm by using
several implementation strategies. A 6-argument function
offers the connotation semantics of several TDFA based
string recognizers. Another instantiations of these
arguments correspond to new TDFA based algorithms.
The algorithms were thereafter implemented and their
performance got recorded.

The algorithms were examined on artificially produced data
(strings and automata). Hence in accordance to the
upcoming work, several experiments will be carried out on
real life data such as genetic sequences, microsatellites for
network intrusion detection and tandem repeat detection.

C. DFA in REGULAR EXPRESSION MATCHING

Paper [3] depicts that there is a huge requirement in recent
network devices to carry out deep packet examination at
high speed for security and function specific services.
Finite Automata (FAs) are used for executing regular
expressions matching in their work; however, they
require a large amount of memory. To tackle this issue
several recent works has been proposed.

The paper [3] explains a new demonstration for
deterministic automata (orthogonal to earlier solutions),
called Delta Finite Automata, which extensively reduces
states and transitions. It needs a transition per character
only in order to allow it for fast matching. Furthermore, a
new state encoding method is also proposed and the
complete algorithm is then tested for use in the packet
classification area. Several imperative services in current
networks are based on payload examination along with
headers processing. Prevention Systems, Intrusion
Detection and traffic monitoring and layer filtering
requires an exact study of packet content in search of
matching of predefined set of data patterns.

This kind of patterns illustrates particular classes of
applications, regularly updated viruses or protocol
definitions. Traditionally, the datasets consists of a variety
of signatures to be searched along with the assist of string
matching algorithms, but nowadays, regular expressions
are being used because of their improved expressiveness
and ability to explain a broad variety of payload
signatures.

They are accepted by familiar tools, like Snort and Bro,
also in firewalls and devices utilized by various vendors
like Cisco etc.

Normally, finite automata are implemented for regular
expression matching. NFAs are illustrations which need
more state transitions per character, therefore having a time
complexity of O(m) for lookup, where ‗m‘ is the quantity of
states in the NFA. Alternatively, NFAs are very space
efficient structures.

 Int. J. Sci. Res. in Computer Science and Engineering Vol.6(4), Aug 2018, E-ISSN: 2320-7639

© 2018, IJSRCSE All Rights Reserved 43

Deterministic FAs (DFAs) involve only one state transition
per character, however, the current regular expression sets
involves a great amount of memory. Because of these
reasons, this kind of solutions are not appropriate for
execution in real deep packet inspection devices, that
requires to carry out on line packet processing at a very
high speed. Consequently, various works have been just
carried out with the objective of memory minimization for
DFAs, by utilizing the imperative redundancy in regular
expression sets [9],[10].

D. PATTERN MATCHING

Pattern matching [7], [8] seems a very complicated task in
numerous network services such as intrusion detection. A
DFA is however a simple language recognition device, also
it can be viewed as machine that recognizes a given input
strings. The major setback of string matching seems to be
the area efficiency and memory optimization. Minimized
DFA for pattern matching decreases the memory area
requirement and also eases in optimization of area.

1) State minimization Algorithm [7]:
Algorithm for reducing Number of States in DFA:

 Eradicate the non-reachable state.

 Create a group of all non-final states

as identical.

 Create a group of all final states as identical.

 Reiterate until no more states are differentiable.

 Apply symbol to a group, then split group if states

are differentiable.

A state s1∈ Q is said to be inaccessible or unreachable if

There exists no string w in Σ* such that δ(s, w) =s1 (s1 ∉
(s2|w ∈ Σ*, δ (s1, w) =s2})

Two states s1 and s2 are indistinguishable if for all w
∈Σ* δ (s2, w) ∈ F) ⇒ δ*(s1,w) ∈ F

δ* (s1,w) ∉ F) ⇒ (s2,w) ∉ F

E. Proposed methodology
In this proposed method, the minimization of states of DFA
is achieved by using a tree structure. The concept of
partition algorithm will be used in the root node to split the
set of all states of given DFA into two partitions. One
partition will hold the set of final states and other partition
will hold the set of all other states i.e. Non-final states.
Subsequently, the child nodes of final and non-final states
node will hold the input character of the DFA machine.
Now since the terminals will hold multiple states then the
linked list will be used for the leave nodes or the terminals
of the tree. The transition of one state to another after taking
an input character from a string is a major step in DFA;
hence the inorder traversal of terminal nodes will determine
the transition of one state to another.

Algorithm:

Step 1: The set of all states of DFA will be at the root node
of the tree.

Step 2: Split the states into subset of final and non-final
states.

Step 3: Create the child nodes of root node as the set of
final and non –final state.

Step 4: Create the child node of final and non-final states
node as the input characters to the DFA as shown in
fig 1.

Step 5: Create the terminals as the multivalued linked list to
hold the states taking the character from parent
node as an input.

Step 6: The inorder traversal of the terminal nodes will
provide the transition of the DFA.

Step 7: States with same input and same output will be
group together.

Step 8: Repeat step 6 and step 7 until all the groups or sets
have indistinguishable states.

Step 9: Mark the set of indistinguishable states as a new
symbol.

Step 10: Modify the terminal nodes with new symbol and a
minimized DFA will be formed.

F. MINIMAL DFA
Finite state automata (FSA)[11] are being used ubiquitously
in computer science. There are generally two most
significant algorithms for FSA processing. One is the
translation of a non- deterministic finite automaton (NFA)
to a deterministic finite automaton (DFA), and the other one
is the generation of the exclusive minimal DFA for the
original NFA. There is also a parallel disk-based technique
[11] which employs a cluster of 29 commodity workstations
to generate a transitional DFA with approximately two
billion states and afterward continues by generating the
corresponding unique minimal deterministic finite automata
(DFA) with less than 800,000 states. This paper [11]
depicts the requirement for efficient and scalable algorithms
for finite state automata (FSA), by concerning that they are
basically the most computationally tractable structure in
which to examine the regular languages. This study
involves efficient algorithms for both translation of NFA to
DFA and minimization of DFA.

TABLE I: PERFORMANCE COMPARISON OF DFA AND
MINIMIZED DFA.

Analysis DFA Minimized
DFA

Min clock period 15.50ns 9 ns

Max clock frequency 64.15Mz 111.11Mz

Clock to setup 15.50 ns 9 ns

CPU time to completion for
same string

4.39sec 3.10 sec

Memory Usage for same
string

17236
KB

17186 KB

 Int. J. Sci. Res. in Computer Science and Engineering Vol.6(4), Aug 2018, E-ISSN: 2320-7639

© 2018, IJSRCSE All Rights Reserved 44

Figure.1 Flowchart of the algorithm described in section E.

G. PERFORMANCE OF DFA-BASED STRING PROCESSORS

In paper [1], the performances of a few of the several
algorithms investigated earlier are presented. To test a
string processing algorithm against various data related to
definite problem domains such as computer virus
scanning, network intrusion detection systems, spell
checking, DNA analysis, etc. can be potential strategy to
calculate their performance.

The major intention of this work was to examine
implementation techniques for DFA based string
processing, resulting not just to the creation of a taxonomy
graph, but also for the design of a toolkit to implement for
string matching purpose.

Establishing these conditions would need that a
comprehensive and methodical series of benchmarking tests
to be carried out on the several algorithms.

Such an examination comprises a whole and sound research
theme on its own and cannot be carried out in the

framework of this current work.

This paper enlightens the numerous experiments
implemented on artificially produced data and also presents
methods used for the measurement of performance, data

collection and hardware and software support structure as
well on which we depend to conduct the experiments.

H. OPTIMAL Linked list
Optimal linked list [5] schemes minimize the total number
of memory access which is required to create and access a
linked list. With optimal linked list and generating function,
we can associate the states of DFA to a linked list. With a
multilevel linked list scheme we can accomplish optimal
performance and can access huge amount of data at a high
speed as well.

V. CONCLUSION

Every finite state machine has to follow a "path", which is

basically a string at a given time, in order that adding a

sentence or a word gets recognized by the machine

automatically. One of the major difficulties is minimizing a

NFA to a DFA; Minimization of NFA to DFA can be done

using DFA Minimization algorithms. Minimized DFA is

implemented for the purpose of pattern matching which

enhance the various results like minimized area, enhanced

performance, and minimum number of resources. The

general DFA may call for up to 2n states, on other hand,

the equivalent minimized DFA require only ‗n‘ states.

Amount of resources also deducted up to 40%.The

minimized DFA is quite efficient than the original DFA.

This paper presents algorithms and methods used in

transforming NFA to minimal DFA.

VI. FUTURE WORK

Numerous algorithms have been designed over the years for
the minimization of DFA. Nearly all of them utilize the
arrays for storage of patterns. Although the use of arrays
significantly simplifies the implementation process, linear
arrays underperform in comparison to further generic data
structures for instance, doubly linked list. Relying on the
performance in searching the linked list can be used to
significantly improve the running time of a DFA.

Since in arrays, searches are very much slower than a

linked list, but a linked list is incredibly fast for the same

purpose. If we create a DFA using linked list scheme we

can accomplish optimal performance and can access huge

amount of data comparatively at a very high speed. In

imminent future, we would like to design a modified

algorithm for the minimization of DFAs.

REFERENCES

[1] Ernest ketcha am, derrick g. kourie, and brucngasse w.

watson,―On Implementation and Performance of Table-

Driven DFA-Based String Processors‖. Int. J. Found.

Comput. Sci. 19, 53 (2008).

[2] Bruce William Watson, ―Constructing Minimal Acyclic

Deterministic Finite Automata‖. FASTAR Research Group.

[3] Domenico Ficara, Stefano Giordano, Gregorio Procissi, Fabio

Vitucci, Gianni Antichi, and Andrea Di Pietro.. ―An improved

DFA for fast regular expression matching‖, SIGCOMM

Comput. Commun. Rev. 38, September 2008.

[4] Todd J. Green, Ashish Gupta, Gerome Miklau, Makoto

Onizuka, and Dan Suciu. ―Processing XML streams with

 Int. J. Sci. Res. in Computer Science and Engineering Vol.6(4), Aug 2018, E-ISSN: 2320-7639

© 2018, IJSRCSE All Rights Reserved 45

deterministic automata and stream indexes‖, ACM Trans.

Database Syst. 29, 4 (December 2004)

[5] Isaac Keslassy, David Hay, Yossi Kanizo, Isaac Keslassy,

David Hay, Yossi Kanizo. ―Optimal Fast Hashing‖,

Technical Report Tr08-05, Comnet, Technion, Israel.

[6] Aho, Alfred V.; Hopcroft, John E.; Ullman, Jeffrey D. (1974),

4.13 Partitioning, ―The Design and Analysis of Computer

Algorithms‖, Addison-Wesley, pp. 157–162.

[7] Aakanksha Pandey, Dr. Nilay Khare and Akhtar

Rasool― Efficient Design and Implementation of DFA Based

Pattern Matching on Hardware‖, IJCSI March 2012.

[8] B. L. Hutchings and R. Franklin and D. Carver ―Scalable

Hardware Implementation on Finite Automata‖ Department of

Electrical and Computer Engineering

[9] S. Kumar, S. Dharmapurikar, F. Yu, P. Crowley, and J.

Turner . ― Algorithms to accelerate multiple regular

expressions matching for deep packet inspection‖, In Proc.

of SIGCOMM '06, pages 339-350. ACM.

[10] R. Smith, C. Estan, and S. Jha. Xfa, ―Faster signature

matching with extended automata‖, In IEEE Symposium on

Security and Privacy, May 2008.

[11] Vlad Slavici, Daniel Kunkle, Gene Cooperman and Stephen

Linton, ―Finding the Minimal DFA of Very Large Finite State

Automata with an Application to Token Passing Networks‖

Northeastern University, 29 March 2011.

Authors Profile

Mr. Yogesh Pant pursed Diploma, B. Tech. and M.Tech, from GPD

Dehradun, UTU and GBPEC respectively in 2010, 2013 & 2016. He is

currently working as Assistant Professor in Department of Computer
information and Sciences from HSET, SRHU since 2017. His main

research work focuses on wireless sensor network, Artificial intelligence

and quantum computing. He has 3 years of teaching experience.

