
© 2020, IJSRCSE All Rights Reserved 37

International Journal of Scientific Research in ___________________________ Research Paper .
Computer Science and Engineering

Vol.8, Issue.1, pp.37-44, February (2020) E-ISSN: 2320-7639

Analysis of Huffman Coding and Lempel–Ziv–Welch (LZW) Coding as

Data Compression Techniques

Gajendra Sharma

Kathmandu University, School of Engineering, Department of Computer Science and Engineering, Dhulikhel, Kavre,

Nepal

Author’s Mail id: gajendra.sharma@ku.edu.np

Available online at: www.isroset.org

Received: 10/Jan/2020, Accepted: 22/Jan/2020, Online: 28/Feb/2020

Abstract- Huffman Coding is a statistical data compression providing to reduce code length that is used to represent the

symbols of an alphabet. This is a standard technique for the creation of Minimum-Redundancy Codes. LZW is a dictionary

based compression tool which is widely popular. This implies that instead of tabulating character counts and building trees

LZW encodes data by referencing a dictionary. Compared to any adaptive and dynamic compression method, the concept

is to initiate with an initial model, read data and update the framework and data encoding. In this paper, we investigated the

following question: Which coding, LZW or Huffman, is more suitable compared to each other? The implemented results

show that LZW requires no prior information about the input data stream, and also LZW can compress the input stream in

one single pass allowing fast execution. LZW coding is more feasible when the high compression ratio and less

compression-decompression time are needed.

Keywords- Digital data, input symbols, compression, minimum-redundancy, LZ Wcoding, Huffman coding.

I. INTRODUCTION

Data compression is a procedure by which different files

such as text, audio, and video can be transformed to

another file, so that the original file is fully recovered from

the original file without any loss of original information.

This process is significant if it is needed to save the

storage space. Compression is significant as it reduces

resources required to disseminate and store data.

Computational resources are broadly used in the

compression process in the reversal of the decompression

process. Data compression is space–time complexity trade-

off. The design of data compression schemes includes

trade-offs among various components, involving the level

of compression, the quantity of distortion as well as the

computational resources required to compress and

decompress data. To evaluate coding performance,

monochrome images are encoded by the baseline JPEG

algorithm using Huffman coding [12, 14] and compressed

by the offered model and lossless re-encoding

mechanisms. StuffIt is data compression software

introduced by Smith Micro and its recent version that

provides an ability to compress JPEG files [1, 4, 13].

A. Types of Data Compression

Two fundamental data compression techniques are used

widely: (1) lossy data compression technique, used to

compress image data files and (2) lossless data

compression technique used to transmit or store binary

files. The two types of data compression mechanism are

lossy compression and lossless Compression. The data

compression is the phenomena of encoding information

http://www.isroset.org/

 Int. J. Sci. Res. in Computer Science and Engineering Vol.8, Issue.1, Feb 2020

© 2020, IJSRCSE All Rights Reserved 38

using fewer bits than an unencoded representation, through

implication of encoding schemes. Compressions rely on

two major strategies: Eliminating redundant information

and getting rid of irrelevant [2, 8].

B. Lossy Data Compression

The data retrieves after decompression that is not identical

as the original data, but it is close to be useful for precise

purpose. It uses lossy data compression to a message and

the message can not be recovered. It will not provide back

the initial message when the compressed message is

decoded. Data was lost in this case as lossy compression

cannot be decoded to facilitate the exact original message,

for example, text data. It is useful for Digitally Sampled

Analog Data (DSAD). DSAD includes sound, video,

graphics and pictures. The sound file has very high and

very low frequencies.

C. Lossless Data Compression

Lossless data compression is a technique to use data

compression algorithms to compress the text data and

permitting the original data to be re-structured from the

compressed data. The ZIP file is used to compress data

files. This is the use of lossless data compression. Lossless

compression is used when the original data and

decompressed data are analogous. Lossless text data

compression algorithms use statistical redundancy to

characterize the sender's data concisely without loss of

information.

JPEG uses lossy compression whose strategy is based on

the characteristics of human visual insight. JPEG is

optimized for tone images and photographs including

different colors [3, 6, 15]. People easily differentiate

brightness than color, JPEG focuses compression on the

color information.

II. HUFFMAN CODING

A complicated and lossless compression technique is

called Huffman coding. The characters in a data file are

converted to a binary code, where the common characters

in the file have shortest binary codes. To observe Huffman

coding function, a text file should be compressed, and the

characters in the file have following frequencies:

Table 1. Huffman Coding Table

Symbols frequencies

A 8

B 10

E 32

G 12

K 9

M 66

Step 1: Arranging in the ascending order A:8 K:9 B:10 G:12 E:32 M:66

Step 2: making tree of lowest two 17 B:10 G:12 E:32 M:66

A:8 K:9

Step 3: Arranging in the ascending order B:10 G:12 17 E:32 M:66

A:8 K:9

Step 4: making tree of lowest two 22 17 E:32 M:66

B:10 G:12 A:8 K:9

 Int. J. Sci. Res. in Computer Science and Engineering Vol.8, Issue.1, Feb 2020

© 2020, IJSRCSE All Rights Reserved 39

Step 5: making tree of lowest two 39

 22 17 E:32 M:66

 B:10 G:12A:8 K:9

Step 6: making tree of lowest two 71

E:32 39

 22 17 M:66

 B:10 G:12 A:8 K:9

Step 7: making tree of lowest two 137

M:66 71

 E:32 39

 22 17

 B:10 G:12 A:8 K:9

Step 8: Assigning bit to the tree 137

 0 1

M:66 71

 0 1

 E:32 39

 0 1

22 17

 0 1 0 1

B:10 G:12 A:8 K:9

Step 9: Fill bit to the table

 Int. J. Sci. Res. in Computer Science and Engineering Vol.8, Issue.1, Feb 2020

© 2020, IJSRCSE All Rights Reserved 40

Table 2. Huffman Coding Table

Symbols frequencies Bit

A 8 1110

B 10 1100

E 32 10

G 12 1101

K 9 1111

M 66 0

The original message had 18-bit string of letters. It was

shrunk the number down completely with a binary tree.

Two points can be made to shorten the structure of the

binary tree:

(1) The shortest frequency symbol is assigned the longest

code length. Higher frequency symbols have shorter binary

code lengths. (2) There are two longest length codes as

binary tree made of two leaves adding to formulate a tree.

A complete image sequence is coded with a single code in

coding technique. As such the correlation on pixels is

exploited. Arithmetic coding is based on the following

principles [5, 10]:

• Finite symbol alphabet

• Symbols sequences with fixed length

• Infinite sequences

• The number of real numbers in the interval [0, 1] is

infinite which can assign a subinterval for input

A. Lempel–Ziv–Welch (LZW) Coding

The LZW is popularly used compression technique which

is used in GIF and in TIFF as well as PDF. LZW is

important technique for data compression owing to its

flexibility and simplicity. It facilitates to increase the

capacity of hard drive twice.

LZW functions by reading symbols, grouping the symbols

into strings, and converting the strings into codes. Some

features of LZW are as follows:

 LZW compression uses code table, with 4096

common choices. Codes 0-255 in the code table is

assigned to represent single bytes from input.

 When encoding starts the code table having only the

first 256 entries, with the remainder of the table

being blanks. Compression is received by using

codes 256 through 4095.

 LZW signifies repeated sequences in the data and

adds them to the code table.

 Decoding is performed by taking each code from

the compressed file and translating it through the

code table to locate characters.

Run-length encoding performs lossless data compression

suitable to palette-based iconic images [4, 11] .

B. LZW Compression

Concept of the compression algorithm: As the input data

is processed, a dictionary maintains a communication

between the longest words and codes. The words are

replaced by subsequent codes and thus the input file is

compressed. The effectiveness of the algorithm increases

as the number of long words increases.

PSEUDOCODE

 Initialize table with single character strings

 P = first input character

 WHILE not end of input stream

 C = next input character

 IF P + C is in the string table

 P = P + C

 ELSE

 output the code for P

 add P + C to the string table

 P = C

 END WHILE

 output code for P

Run-Length encoding (RLE) is image compression

consisting of similar symbols by a pair containing the

symbol and the run length [7]. In RLE, runs of data are

stored as a single data and count, rather than initial run.

This is useful as it contains several runs: for example,

graphic images such as icons and animations. It is not

 Int. J. Sci. Res. in Computer Science and Engineering Vol.8, Issue.1, Feb 2020

© 2020, IJSRCSE All Rights Reserved 41

feasible with files which do not include a number of runs

as it could increase the file size twice. Run-length

encoding performs lossless data compression and feasible

to palette-based iconic images [3, 11, 9].

C. LZW Decompression

During decompression the LZW decompressor produces

the identical string. It initiates with the first 256 table

entries starting to single characters. The string table is

updated for character in the input stream, except the first

one. Decoding is received by reading codes and translating

throughout the code table.

 PSEUDOCODE

 Initialize table with single character strings

 OLD = first input code

 output translation of OLD

 WHILE not end of input stream

 NEW = next input code

 IF NEW is not in the string table

 S = translation of OLD

 S = S + C

 ELSE

 S = translation of NEW

 output S

 C = first character of S

 OLD + C to the string table

 OLD = NEW

 END WHILE

III. METHODOLOGY

In order to compare between Huffman coding and LZW

coding a code for both Huffman and LZW coding using

above mentioned algorithm was written using python 3.6

as a programming language. In order to obtain the data, the

text size was determined first and then test were carried

out accordingly in the Huffman python source code and

LZW python source code. Compression time and the

decompression time on both the coding techniques were

noted for different input text size. Compression ratio in the

LZW coding was calculated by the initial text size and the

compressed text size for all the input text size. Whereas

the compression ratio for the Huffman coding is little

different compared to the LZW coding. The initial text was

changed into the ASCII format and calculated the total

length of the changed text. Then the generated Huffman

Code is applied to the initial text now the total compressed

text length is divided by the length of the ASCII changed

code and multiplied by hundred, hence we get the

compression ratio for the Huffman coding.

IV. RESULTS

The results of the algorithms, Huffman and LZW

compression time and decompression time are highlighted

in Table 3.

Performance Parameters: Performance evaluation of the

compression algorithm is performed by using

Compression Ratio, Compression Time and

Decompression Time.

 Compression ratio: The ratio of size of

the input text to the size of the

compressed text.

Compression ratio= (C2/C1) *100%

 Compression Time: The total time

taken to run the compression algorithm.

 Decompression Time: The total time

taken to execute the decompression

algorithm

C1= Size of input text before compression

C2= Size after text after compression

 Int. J. Sci. Res. in Computer Science and Engineering Vol.8, Issue.1, Feb 2020

© 2020, IJSRCSE All Rights Reserved 42

Table 3. Compression Table

 Huffman Coding Lempel–Ziv–Welch (LZW) Coding

Input text

size

Compression

Ratio(%)

Compression

Time

Decompression

Time

Compression

Ratio (%)

Compression

Time

Decompression

Time

2.2 KB 54.20 0.0 0.0156 105.56 0.0 0.0

6.7 KB 54.20 0.0 0.069 84.46 0.0 0.0

33.2 KB 54.205 0.015 0.231 49.94 0.0156 0.0156

198.8 KB 54.204 0.0625 1.402 24.219 0.052 0.0159

994.1 KB 54.203 0.601 7.076 12.458 0.284 0.115

3.9 MB 54.203 8.574 30.029 6.319 1.622 1.624

7.8 MB 54.203 34.266 55.879 5.062 3.224 6.852

15.5 MB 54.203 123.664 115.858 3.604 8.560 29.734

31.1 MB 54.203 548.473 237.528 2.566 17.352 103.317

62.1 MB 54.203 1945.389 470.933 1.827 53.198 469.634

Figure 1. Compression Ratio chart

Figure 2. Compression Time chart

 Int. J. Sci. Res. in Computer Science and Engineering Vol.8, Issue.1, Feb 2020

© 2020, IJSRCSE All Rights Reserved 43

Figure 3. Decompression Time chart

Outcome 1

From the Figure 1 – we can observe that if the size of the

input text is small than the compression ratio of the LZW

coding is very high comparing to the Huffman coding,

whereas when the size of the file is very high than the

compression ratio of the LZW coding is very low which

suggest that for smaller text size Huffman Coding is

appropriate and when the input text size is high than the

LZW coding is appropriate.

Outcome 2

From the Figure 2- Compression Time chart, we can get

that for the small input text size the time taken for the

compression for the both algorithm is same whereas if the

input text size is high than the compression time for the

Huffman coding is very high, hence LZW coding is

appropriate for the big size of text.

Outcome 3

From the Figure 3- Decompression Time chart, we can get

that for the small input text size the time taken for the

compression for the LZW algorithm is small whereas if the

input text size is high than the compression time for both

the algorithm is almost same, hence LZW coding is

appropriate for the decompression for small size text

where as both algorithm perform well for big text size.

V. DISCUSSION

A Huffman encoder accepts input characters

with limited length and establishes output bits. It is a

fixed-to-variable length code producing a optimal prefix

codes O(nlogn). Lempel-Zi is a variable-to-fixed length

code. The architecture of the Huffman code is suitable for

fixed block length. The Lempel-Ziv code is not suitable

for specific source but for a large sources. The Lempel-Ziv

algorithm acts as if it was designed for that particular

source. Owing to this reason, the Lempel-Ziv code is the

used for lossless compression.

LZ compression replaces the repeated patterns. The larger

the dictionary size, the greater the bits which are

mandatory for the references. The most favorable size of

the dictionary changes for different categories of data. As

such the more changeable the data, the smaller the optimal

size of the directory.

 Int. J. Sci. Res. in Computer Science and Engineering Vol.8, Issue.1, Feb 2020

© 2020, IJSRCSE All Rights Reserved 44

VI. CONCLUSION

Compression is significant technique in multimedia. The

data size can be reduced, as such transmitting and storing

the reduced data are cheaper and faster. A number of

images and video compression such as JPEG, JPEG 2000,

and MPEG-2, and MPEG-4 are implemented. In this

study, we have focused on these algorithms to clarify

differences such as compression ratio, compression time

and decompression time. Huffman coding is well-situated

than LZW coding. LZW coding facilitates more

compression ratio than Huffman algorithm. Huffman

coding requires more execution time than the LZW. In

some cases time is not important as Huffman coding can

be used to obtain high compression ratio. Whereas for

some applications the time is important for real-time

applications and LZW coding.

REFERENCES

[1] https://en.wikipedia.org/wiki/Huffman_coding

[2] http://www.geeks3.forgeeks.org/lzw-lempel-ziv-welch-

compression-technique/

[3] https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/node210.ht

ml

[4] https://www.researchgate.net/publication/220114874_A_Memo

ry-Efficient_and_Fast_Huffman_Decoding_Algorithm

[5] https://www.researchgate.net/publication/4140913_A_Memory

efficient_Huffman_Decoding_Algorithm

[6] “Introduction to Data Compression”, by Guy E. Blelloch,

Carnegie Mellon University, (October 16, 2001).

[7] M. Rabbani, and P. W. Jones, “Digital Image Compression

Techniques”, (Edition-4), p. 51, 1991.

[8] S. Saha, “Image Compression – from DCT to Wavelets: A

Review”, Unpublished.

[9] http://www/acm/org/crossroads/xrds6-3/sahaimgcoding.html.

[10] J.J. Rissanen and Langdon G. G. Jr., “Arithmetic Coding”

(PDF), IBM Journal of Research and Development, Vol. 23,

issue 2, pp. 149-162., 1979

[11] http://researchweb.watson.ibm.com/journal/rd/232/ibmrd2302G

.pdf. Retrieved 2007-09-22

[12] S. Kajihara, “On Combining Pinpoint Test Set Relaxation and

Run-Length Codes for Reducing Test Data Volume,” In

Proceedings of the 21
st
 International Conference on Computer

Design (ICCD ’03) , San Jose, Calif, USA, 2003.

[13] ITU-T Rec. T.81 ISO/IEC 10918-1, “Information Technology

— Digital Compression and Coding of Continuous-Tone Still

Images: Requirements and Guidelines,” 1994

[14] http://my.smithmicro.com/win/index.html

[15] http://www.wfu.edu

http://www.geeks3.forgeeks.org/lzw-lempel-ziv-welch-compression-technique/
http://www.geeks3.forgeeks.org/lzw-lempel-ziv-welch-compression-technique/
https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/node210.html
https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/node210.html
https://www.researchgate.net/publication/220114874_A_Memory-
https://www.researchgate.net/publication/220114874_A_Memory-

