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Abstract—Calculating square roots of positive real numbers play a vital role in scientific and engineering computing. From 

the daily-life used calculators to the computer software used as a calculator often use the square root function. However, 

finding the real roots of algebraic and transcendental equations is one of the most exciting topics in numerical computation. 

There are several methods, such as the Bisection, Secant, Iteration, and Newton-Raphson’s methods, to do that. The 

speciality of the Bisection method is its robustness and needs no stability criterion. Although it convergences slowly, it 

always convergences. In this study, we assessed the numerical accuracy through the root mean square error (RMSE) value 

for this method by applying it to finding square roots of some positive real numbers. Also, we calculated the computational 

time and number of iterations to convergence to an exact root with the error tolerance of 0.000001 for assessing the 

method’s efficiency. The method’s RMSE value obtained in our study is of order 10
-7

, indicating its reasonably acceptable 

accuracy level. We got this accuracy within 23 iterations in each case, and the computational time is a tiny fraction of a 

millisecond; these indicate the excellent efficiency level of the method. Our inquiry has found the method reasonably 

acceptable, efficient, and robust. 
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I. INTRODUCTION  

Numerical analysis is the combination of theoretical and 

computational inquiry into computer solutions to 

mathematical problems [1]. It is the study of numerical 

data computation techniques [1]. In many cases, this 

requires constructing a series of approximations[2-5]; 

hence, the issues include the pace of convergence, the 

accuracy of the response, and the efficacy of the numerical 

methods [6]. The primary areas of theoretical interest in 

numerical analysis are global or local error bounds and 

methods’ stability and convergence rates [5, 6]. The 

purpose of numerical analysis is to develop effective 

numerical methods for approximating solutions to many 

mathematical problems and examining their accuracy and 

stability characteristics [1]. Thus, numerical analysis is 

essential in every discipline of research and engineering. 

Numerical methods have been used in electrical 

engineerings, such as system theory, automatic control, 

and electrical equipment design. Numerical methods are 

important to solve complicated heat transfer problems. It is 

important to Data Scientists. In complicated geometry of 

structural engineering problems, numerical methods give 

the most acceptable solution to design the figure. These 

methods are useful for determining the adequate 

population size and locating and computing periodic orbits 

in the molecular system. One can refer to [7-15]. 

It should be mentioned that calculating the square roots of 

positive real numbers is essential in scientific and 

engineering computing and many other fields. The square 

root function is often used in various applications, ranging 

from everyday calculators to computer software used as a 

calculator. Finding real roots of algebraic and 

transcendental equations, on the other hand, is one of the 

fascinating issues in numerical computing. There are a 

variety of methods for doing this, including the Bisection, 

Secant, Iteration, and Newton-Raphson’s methods [16, 17]. 

The Bisection method is distinguished by its robustness, 

which eliminates the requirement for a stability condition. 

Also, the method might serve as a baseline for other 

methods like Newton-Raphson’s method. 

In addition, the Bisection method has been used in various 

fields of mathematical, statistical, and engineering 

sciences. Alpaslam Ersoz and Mehmet Kurban [7] used 

bisection method successfully to implement on an 

electrical circuit element. Shengwen Xu, Xuefeng Wang 

and Lei Wang [8] propose the use of the bisection method 

to get the efficiency of the Dynamic-Capability analysis, 

which is expected to be improved. Vishai V Mehte and 

Durgesh Chandrakar [9] also suggested implying the 

bisection method in electrical circuits. The author in [12] 

implemented the method to solve the multidimensional 

problem in a fashion extending the typical case. Some 

more studies can be found in [18-25]. 

http://www.isroset.org/
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However, it can be noted that the Bisection method always 

convergences although the method is sluggish to 

convergence. Besides convergency, accuracy is also an 

important property for a numerical method [1]. 

In this study, therefore, we examined the numerical 

accuracy of the Bisection method by calculating the root 

mean square error (RMSE) value when it was used to 

determine the square roots of certain positive real numbers. 

Additionally, we determined the computing time and the 

number of iterations necessary to reach an exact root in 

order to evaluate the method's efficiency. Our investigation 

found the method reasonably acceptable, efficient, and 

robust. 

The rest of the paper is organized as follows. Section II 

discusses the Bisection method and its features. Section III 

presents the Algorithm of the Bisection method. Then, 

Section IV deals with the simulation outcomes. Finally, the 

conclusion and future scope are presented in Section V. 

II. THE BISECTION METHOD AND ITS FEATURES  

The Bisection method [16, 17] requires repetitive halves of 

subintervals of ],[ ba  and identifies the subinterval that 

contains the root at each step. This method is most 

effective when we have merely an interval containing the 

root. It also works when there are several roots in the 

interval. However, we consider that the root of this 

problem is unique. 

The Bisection method is based on the following theorem: 

“If a function )(xf  is continuous between a  and b , and 

0)().( bfaf  then there exist at least one root between a  

and b .” 

Let, 0)().( bfaf . Then, the first approximation is 

2/)(0 bax  . In this case, we have the following two 

possibilities: (i) 0)( 0 xf  and (ii) 0)( 0 xf . 

Now, if case (i) occurs, then 0x  is the root at the equation 

0)( xf , and the process is terminated. If case (ii) occurs, 

then the root either lies between 0x  and a  or between 0x  

and b  according to as 0)()( 0 afxf  or 0)()( 0 bfxf . 

So, we have the second approximation, 

2

0
1

ax
x


  or 

2

0
1

bx
x


 . 

Similarly, the process of the Bisection method is repeated 

until the root is obtained with the desired accuracy. 

There are two significant benefits to this method. The first 

is its extreme robustness. In a certain number of iterations, 

it is guaranteed to obtain an approximated root within a 

specified level of accuracy. It should be noted that, the 

solution falls inside an interval of size ab at the 

beginning of the process. If the solution is not found, in the 

second step, it falls inside an interval of size 2/)( ab  . 

Finally, the solution must fall inside an interval of size 

1)()( 2/)(  nnn abab  at the n
th

 iteration. Thus, if 

the tolerance for inaccuracy is  , then we can ensure that 

  1/)(log2  abn  iterations will fall under the 

tolerance. The method’s avoidance of dependency on the 

function’s derivatives is another significant advantage. As 

a result, it may be used to locate the roots of functions that 

are not smooth. While an advantage in certain 

circumstances, the Bisection method is slower than other 

methods that employ the function’s curvature to find the 

root. 

III. ALGORITHM 

The Bisection method’s algorithm is offered for use in 

developing a computer program in a suitable programming 

language. The following is the algorithm: 

Algorithm 1: The algorithm for the Bisection method is 

given below. 

Step 1   INPUT:: interval's endpoints a, b; 

tolerance tol.  

Step 2 IF (f(a) == 0) THEN OUTPUT ("The 

root is a") & STOP. 

IF (f(b) == 0) THEN OUTPUT ("The 

root is b") & STOP. 

IF (f(a)*f(b) < 0) THEN GO TO Step 3. 

IF (f(a)*f(b) > 0) THEN OUTPUT 

("There is no real root in the interval [a, 

b]") & STOP. 

Step 3 set i = 1; 

  ar(i) = (a + b)/2; %ar is approximated root 

  IF (f(ar(i)) == 0) THEN GO TO Step 9. 

  IF (f(ar(i))*f(a) < 0) THEN a = ar(i); 

ELSE SET b = ar(i). 

Step 4 SET i = i + 1; 

  ar(i) = (a + b)/2; 

  IF (f(ar(i)) == 0) THEN GO TO Step 9. 

Step 5 WHILE (|ar(i) – ar(i – 1)| > tol) DO 

Steps 6-8. 

Step 6 IF(f(ar(i))*f(a) < 0) THEN a = 

ar(i); 

    ELSE SET b = ar(i). 

  Step 7 SET i = i + 1; 

   ar(i) = (a + b)/2; 

Step 8 IF (f(ar(i) == 0) THEN GO TO 

Step 9. 

Step 9 OUTPUT ("The root is ar(i)"); 

  STOP. 

We have developed a MATLAB program using the given 

algorithm for computer implementation. Then, the program 

was implemented to obtain the approximated square roots 

of some positive real numbers to test their accuracy and the 

method’s efficiency. In the next section, the process of 

implementation of the MATLAB program is detailed. 
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IV. RESULTS AND DISCUSSION 

The simulation was run using the MATLAB software on a 

computer with the Windows 8.1 Pro 64-bit operating 

system with eight gigabytes RAM and the Intel Core i5-

4570 CPU @ 3.20 GHz hardware configuration. We have 

considered the following function for implementing the 

MATLAB program to test the accuracy of the 

approximated real square roots of the positive real numbers 

1, 4, 9, 16, and 25, obtained by the Bisection method. 

nxxf  2)( ,   (1) 

where ,16,9,4,1n  and 25. The methods efficiency was 

tested by the computing time and the number of iterations 

necessary to reach the corresponding exact root of the 

following equation. 

02  nx ,   (2) 

where ,16,9,4,1n  and 25. 

We considered the interval [0, 7] because the square roots 

of the adopted numbers are in the interval. Also, the 

approximated roots were calculated with the error 

tolerance of 0.000001. The values of the square roots of 

the adopted numbers obtained by the Bisection method 

after each iteration have been shown in Figs. 1-5. 

 

 
Figure 1. Estimated values of the square root of 1 after each iteration. 

 

 
Figure 2. Estimated values of the square root of 4 after each iteration. 
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Figure 3. Estimated values of the square root of 9 after each iteration. 

 

 
Figure 4. Estimated values of the square root of 16 after each iteration. 

 

 
Figure 5. Estimated values of the square root of 25 after each iteration. 
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Figures 1-5 show that the Bisection method requires 23 

iterations for estimating the square root with the desired 

error tolerance in each case. Table 1 presents the exact and 

approximated values of the roots, errors between them, and 

elapsed time in calculating the square roots of 1, 4, 9, 16, 

and 25 by the Bisection method. 

 
Table 1. The exact and approximated values, errors between 

them, and elapsed time in calculation of the square roots of 1, 4, 

9, 16, and 25 by the Bisection method 

Equation 

The exact 

value of 

the root 

Approximated 

value of the 

root 

Error Time (ms) 

012 x  1 1.0000003576 -3.5763e-07 0.0055 

042 x  2 1.9999998808 1.1921e-07 0.0019 

092 x  3 2.9999994040 5.9605e-07 0.0013 

0162 x  4 4.0000005960 -5.9605e-07 0.0013 

0252 x  5 5.0000001192 -1.1921e-07 0.0016 

 

The last column of Table 1 presents the elapsed time given 

in milliseconds to calculate the square roots of the 

mentioned numbers. It is found that the elapsed times are 

minimal, which can be neglected. Thus, the efficiency of 

the Bisection method can be considered very high in terms 

of the elapsed time and number of iterations that need 

convergence to an exact root. 

 

Moreover, the RMSE value is calculated, following [1], 

with the errors presented in the second last column of 

Table 1. It is to be noted here that the accuracy of the 

approximated solutions obtained by any numerical method 

is inversely proportional to the RMSE value [1]. The 

calculated RMSE value for the Bisection method to 

compute the square roots of 1, 4, 9, 16, and 25 with six 

decimal places accuracy is ,108522534.16380147 -7  

which is of order 10
-7

. The small order of the RMSE value 

indicates the Bisection method's accuracy level, which is 

acceptable in scientific computing. 

 

In this work, we have tested the accuracy and efficiency, 

two essential criteria for studying numerical methods, of 

the Bisection method in finding square roots of positive 

real numbers. The method is found effective in calculating 

square roots of positive real numbers. 

 

V. CONCLUSION AND FUTURE SCOPE  
 

The robustness, efficiency, and numerical accuracy of the 

Bisection method, the simplest and common one among the 

existing root-finding methods, in finding square roots of 

positive real numbers have been examined. We assessed the 

numerical accuracy through the RMSE value for the 

method. Also, we calculated the computational time and 

number of iterations to convergence to an exact root with 

the error tolerance of 0.000001 for assessing the method’s 

efficiency. The found RMSE value indicates the method’s 

fairly acceptable accuracy level. In addition, the iteration 

numbers and the elapsed time indicate the excellent 

efficiency level of the method. Our inquiry has found the 

method fairly acceptable, efficient, and robust. 

 

Further, the robustness, efficiency, and numerical accuracy 

of the Bisection method can be tested in finding real n
th
 

roots of positive real numbers because these n
th
 root finding 

functions are used less or more in scientific and engineering 

computing. 
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