

International Journal of Scientific Research in Biological Sciences Vol.6, Issue.3, pp.01-13, June (2019) DOI: https://doi.org/10.26438/ijsrbs/v6i3.113

Phytosociological study of coastal flora of Devbhoomi Dwarka district and its islands in the Gulf of Kachchh, Gujarat

L. Das^{1*}, H. Salvi², R. D. Kamboj ³

^{1,3}Gujarat Ecological Education and Research Foundation, Gandhinagar, Gujarat, India ²Department of Botany, Songadh Government Science College, Tapi, Gujarat, India

*Corresponding Author: lopa.das1@gmail.com; Tel.: +91-7573020436

Available online at: www.isroset.org

Received: 16/May/2019, Accepted: 02/Jun/2019, Online: 30/Jun/2019

Abstract- The study described the diversity and phytosociological attributes of plant species (trees, shrubs and herbs) in coastal areas of Devbhoomi Dwarka District and its islands in the Gulf of Kachchh. A random sampling method was employed in this study. A total of 243 plant species were recorded of which trees and shrubs represented with 30 specieseach. Grasses & sedges were also represented by 30 species and 29 species were climbers. Among the tree and shrub species, *Prosopis juliflora* showed the highest density (373.51 ind. /ha), frequency (63.50.67%), relative density (30.19.7%), relative frequency (24.41%) and relative abundance (7.68%).Regarding herb species, *Aristida redacta* represented the highest density (3.97ind./sq.m) and frequency (39.02%). Moreover, the highest importance value index was measured in *Prosopis juliflora* (62.28) among trees & shrubs and *Aristida redacta* (31.51) among herbs. The Abundance/Frequency ratio of trees, shrubs and herb species showed contagious distribution pattern within the study area. The present study also includes α diversity (Shannon diversity index, Simpson's Index, species richness, evenness index) of the coastal terrestrial plants.

Keywords: Phytosociological, Abundance/Frequency, a diversity, Devbhoomi Dwarka, Gulf of Kachchh.

I. Introduction

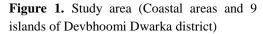
Coastal landscapes and their typical ecosystems are highly dynamic and fragile which are characterized by steep environmental gradients and controlled by geomorphological, physical and biological processes. Despite several constraints, coastal areas are highly diversified offering a wide range of floral diversity. Apparently, the coastal flora is more influenced by the geological setting and climate of the region. Specificity of the flora along the coastline is attributed to the presence of sand dunes, rocky coasts, mud flats, marshlands and intertidal and tidal zone areas. In addition, coastal areas form a unique ecosystem owing to combined influence of both fresh and saline water. This interaction causes the coastal landforms to support large diversity of flora and fauna which are crucial to the ecosystem. Coastal vegetation provides habitats, food and fodder for fauna as well as protection from the wave action. Coastal sand is continually being eroded and deposited on the shore by wave action. Therefore, the role of vegetation in dune fixation is critical since, they serve as wind trappers, sand binders and dune stabilizers [1, 2]. Apart from natural events, coastal areas are subjected to constant anthropogenic pressure which disturbs the coastal ecosystem. Therefore, it is a subject of prime importance to study the coastal areas in their natural state.

II. Related Work

With variant geological setting, the coastline of Devbhoomi Dwarka District and its islands in the Gulf of Kachchh (GoK) harbour different types of vegetation which include mangrove and their associates, scrub jungles, grassland, aquatic, and sand dune vegetation. In past, different aspects of Coastal flora have been studied by many researchers [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 and 17].

Though several reports on coastal flora are available but the entire floristic composition and quantification has not been alone. The species diversity may change with time and locations due to many existing factors. Therefore seasonal assessment is essential. The present study aims to generate such information of coastal terrestrial flora of Devbhoomi Dwarka District and its islands in GoK.

III. METHODOLOGY


Study area

Devbhoomi Dwarka district of India is located on the southern coast of the GoK, in Gujarat state. It extends between 21.42° to 22.58°N Latitude and 68.58° to 70.40° E Longitude [18]. Coastal areas of the district are distributed in three Talukas which are Okhamandal, Kalyanpur and Khambhaliya. Nine Islands *viz.*, Ajad, Beyt Dwarka, Bhaidar, Dabdaba, Dhani, Gadu, Leffa, Kalubhar and Panero have been covered in this district. The soil of Devbhoomi Dwarka district is calcareous and alkaline in nature with grain size varying from silty loam to clay [19]. The district receives average rainfall of 596 mm [20].

Field Data collection

The present work is based on the survey of vegetation occurring in coastal areas and its 9 islands of Devbhoomi Dwarka district during 2011-2015. The area was surveyed on foot and random sampling method was followed. In the coastal area, line transects of 500 m were laid perpendicular to HTL (High Tide Line to landward side) by using 5km×5km grid laid over land use/land cover maps. Distance of 5 km between two subsequent line intersects was maintained using Global Positioning System (GPS). Within each transect, quadrates were laid at an interval of 20 m, $5m \times 5m$ for trees and shrubs and $1m \times 1m$ for herbs, grasses and climbers [21, 22, 23]. However, to enrich the species inventory the opportunistic coastal area at each site (areas falling out side of the quadrates) were also explored and monsoon data for herbaceous plants were also recorded in the same sampling plots. The coastal areas of Devbhoomi Dwarka District and its Islands were explored by laying a total of 46 transacts comprising of 915 quadrates (1m×1m size) and 589 quadrates (5m×5m size), respectively. Within

each sampling plot the number and name of all the trees, shrubs and herbs were counted and recorded. The plants were collected in the flowering and fruiting stages and were identified by using different available floristic keys [24, 25, 26, 27, 28]. Documentation was done in the form of photographs as well as plant specimen were preserved by preparing herbarium and deposited in the GEER Foundation, Gandhinagar, Gujarat for future reference.

Data Analysis:

Phytosociological characters like Density (D), relative density (RD), frequency (F), relative frequency (RF), abundance (A), relative abundance (RA) and Importance Value Index (IVI) were calculated by using different formulas [29] and abundance frequency ratio (A/F) for Tree, shrub and herb species were also calculated through distribution patterns of Whitford [30]. Plant biodiversity was calculated by using different standard equations such as Shannon-Wiener diversity index [31], Simpson's index [32], Evenness index [33] and Species richness index [34].

RESULTS AND DISCUSSION

Qualitative analysis

The coastal areas and 9 islands of Devbhoomi Dwarka district were found predominantly covered with shrubby and herbaceous species including grasses. A total 242 Angiosperm and 1 Gymnosperm species belonging to 177 Genera and 61 Families were recorded (Table 1, Annexure 1). Angiosperm plant diversity includes 202 Dicot and 40 Monocot species. The ratio of Monocots to Dicots was 1:9.0 Families, 1: 5 Genera and 1:5.1 Species. The ratio of Family to Genera and Species was 1: 2.9: 4.

IV.

Table 1. Floral richness in Coastal areas of Devbhoomi Dwarka District

	Family	Genera	Species
A. Angiosperm			
Dicotyledons	54	144	202
Monocotyledons	6	32	40
B. Gymnosperm	1	1	1
Total	61	177	243

Among 202 dicot species sub-class Polypetalae exhibited the highest no of species (97 species), followed by Gamopetalae (74 species) and Monochlamydeae (31 species). Within Polypetalae, Calyciflorae group was represented with the maximum number of species (52), followed by Thalamiflorae and Disciflorae. Ratio of subclasses, Polypetalae to Gamopetalae to Monochlamydae was 1:0.8:0.3 and in the subclass Polypetalae, ratio of groups Thalamiflorae to Disciflorae to Calyciflorae was 1:0.45:1.58 (Figure 2).

During study, it was revealed that Poaceae was the largest family in Monocotyledons represented by 23 species and 20 Genera, whereas Fabaceae was the largest family among Dicotyledons represented by 20 species and 12 Genera. Out of 61 families, only 11 families were represented with more than half of the species recorded and 22 families were represented with single species. The genera *Ipomoea* had the highest number of species *i.e.* 8 followed by *Cassia* and *Euphorbia* genera both represented with 6 species. Among recorded 177 genera, 28 genera were represented by two species and 137 genera were represented with a single species (Annexure 1).

Habit wise distribution of angiosperms is illustrated in Figure 2. Among 243 recorded species, herbs were represented by the highest number of species (124), followed by trees, shrubs and grasses & sedges represented with 30 species each and climber (29 species).

Among 3 talukas, the highest species diversity was found in Khambaliya taluka (207 species) followed by Okhamandal (192 species) and Kalyanpur (169 species). Among islands, Beyt Dwarka showed the maximum species diversity (166 species) followed by Azad (120 species) and Gadu (118 species). The lowest species diversity was found in Kalubhar island with 24 species (Figure 4). High floral diversity in Beyt Dwarka may be due to its proximity to coast and human interference due to tourist influx as well as fishermen. It was observed that, the islands near to the coast have high floral diversity, which is similar to the adjoining coastal area. Human beings, winds and water current help to disperse the seeds of various species in such islands and after that great struggle for survival of the plant species acclimate to island conditions ensues. Other islands were with less floral diversity and one of the reasons may be isolation and distance from coastal area. It was reported that a total of 127 vascular plants and a species of Gymnosperm recorded from Beyt Dwarka Island [16]. In that study, the dicotyledonous plant included 45 families, 91 genera and 113 species, and the monocotyledonous plant included 3 families, 11 genera and 13 species [16].

Vol. 6(3), Jun 2019, ISSN: 2347-7520

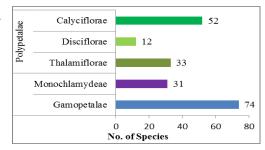


Figure 2. Distribution of classes and groups within dicotyledons

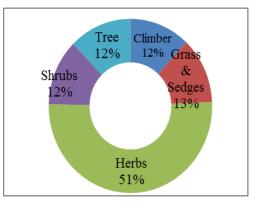


Figure 3. Habit Distribution

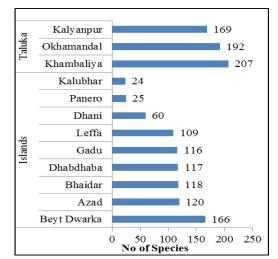


Figure 4. Taluka and Island wise species richness of Devbhoomi Dwarka District.

Quantitative analysis of trees and Shrubs:

During the quadrate sampling, a total of 17 species of trees and shrub were recorded. Among the 17 species, *Prosopis juliflora*ex habited the highest density (373.51 ind./ha), followed by *Capparis decidua* (135.82 ind./ha), *Zizyphus nummularia* (112.73 ind./ha) and *Salvadora persica* (112.73 ind./ha). On the other hand, the lowest density (3.40 ind/ha) was observed in *Acacia senegal*. The highest frequency (63.50%) was measured in *Prosopis juliflora* followed by *Zizyphus nummularia* (32.94%) and *Capparis decidua* (26.99%). The lowest frequency was recorded in *Acacia senegal* (0.85%). (Table 2)

Distribution of species is one of the important aspects of ecological studies, which has previously attracted attention of a number of ecologists [30, 35, 36, 37]. A value of abundance and frequency ratio below 0.025 was considered as regular distribution, between 0.025 to 0.050 as random and more than 0.050 as contagious distribution pattern [38]. In the present study, A/F values for different tree and shrub species revealed that all the species had contagious distribution pattern in the district (Table 2). It has been stated that the A/F ratio as a measure of contagiousness among plant population was widely accepted [30].

Important Value Index determines the extent of dominance of a species in the structure of a forest stand [39]. It is said that species with the greatest importance value are the leading dominant of the particular vegetation. Accordingly the leading dominant tree and shrub species of coastal areas of Devbhoomi Dwarka district was *Prosopis juliflora* (62.28) followed by *Capparis deciduas* (27.93) and *Zizyphus nummularia* (26.24). On the other hand, the least dominant species was *Acacia Senegal* (5.82) (Table 2).

No.	Botanical name	D (ind./ha)	F (%)	Α	A/F	RD (%)	RF (%)	RA (%)	IVI
1	Prosopis juliflora	373.51	63.50	588.24	9.26	30.19	24.41	7.68	62.28
2	Capparis decidua	135.82	26.99	503.14	18.64	10.98	10.38	6.57	27.93
3	Zizyphus nummularia	112.73	32.94	342.27	10.39	9.11	12.66	4.47	26.24
4	Salvadora persica	112.73	16.13	698.95	43.33	9.11	6.20	9.13	24.44
5	Euphorbia nivulia	83.53	26.32	317.42	12.06	6.75	10.12	4.15	21.01
6	Acacia nilotica	83.53	18.85	443.24	23.52	6.75	7.25	5.79	19.79
7	Grewia tanex	80.14	18.68	429.09	22.98	6.48	7.18	5.60	19.26
8	Grewia villosa	76.06	16.81	452.53	26.92	6.15	6.46	5.91	18.52
9	Commiphora wightii	59.08	13.58	435.00	32.03	4.77	5.22	5.68	15.68
10	Cassia auriculata	58.40	12.56	464.86	37.00	4.72	4.83	6.07	15.62
11	Calotropis procera	19.02	3.90	486.96	124.70	1.54	1.50	6.36	9.40
12	Salvadora oleoides	17.66	3.57	495.24	138.90	1.43	1.37	6.47	9.27
13	prosopis cineraria	8.15	2.04	400.00	196.33	0.66	0.78	5.22	6.67
14	Cadaba fruiticosa	5.43	1.36	400.00	294.50	0.44	0.52	5.22	6.19
15	Ephedra foliata	4.07	1.02	400.00	392.67	0.33	0.39	5.22	5.94
16	Mimosa hamata	4.07	1.02	400.00	392.67	0.33	0.39	5.22	5.94
17	Acacia senegal	3.40	0.85	400.00	471.20	0.27	0.33	5.22	5.82
		•				100.0	100.0	100.0	300.0

Table 2. Phytosociological attributes of tree and shrub species in coastal areas and its islands of Devbhoomi Dwarka district in

D (ind./ha)= Density (Individual/hector), F (%)= Frequency (Percent); A= Abundance, A/F= Abundance/Frequency, RD (%)= Relative Density (Percent), RF(%)= Relative Frequency (Percent), RA (%)= Relative Abundance (Percent), IVI= Important Value Index.

Quantitative analysis of Herbs:

With respect to the herb species, a total of 93 species were enumerated during quadrate study. The highest density was measured in *Aristida redacta* (3.97 ind./sq.m.), followed by *Aeluropus lagopoides* (3.81 ind./sq.m.) and *Halopyrum mucronatum* (2.43 ind./sq.m.). On the other hand, the lowest density (0.001 ind./sq. m.) was calculated in *Vigna radiate,Striga gesneriodes, Ruellia tuberosa,Peristrophe bicalyculata, Leucas cephalotes,Indigofera linnaei, Glinus lotoides* and *Aristolochia bracteolata*. However, the highest frequency was measured in *Aristida redacta* (39.02%), followed by *Aeluropus lagopoides* (35.96%) and *Sporobolus maderaspatana* (33.77%). The lowest frequency 0.11% was measured in *Vigna radiata, Striga gesneriodes, Ruellia tuberosa, Peristrophe bicalyculata, Leucas cephalotes, Indigofera linnaei, Glinus lotoides* and *Aristolochia bracteolata, Grangea maderaspatana* and *Tinospora cordifolia* (Table 3).

The A/F ratio of herb species in the coastal areas of Devbhoomi Dwarka district and its islands indicated contagious distribution pattern as ratio is higher than 0.05 (Table 3). A similar observation was found for herb species of a deforested area

in Bangladesh which showed contagious distribution [40]. The present work reveals that, the study area was not completely uniform because several species showed contagious distribution [41] (Table 3). As a general rule, higher frequency and lower abundance indicates regular distribution pattern whereas the reverse indicates the contagious distribution. In general, regular distribution occurs where severe competition exists between individuals; random distribution is found in very uniform environment and contagious distribution is common in nature [41]. Contagious distribution depends on local habitat, seasonal weather changes and reproductive processes.

Based on IVI, Aristida redacta was the most dominant species followed by Aeluropus lagopoides, Halopyrum mucronatum, Sporobolus maderaspatana, Salicornia brachiata, Cyperus conglomeratus. On the other hand, the least dominant species were Vigna radiata ,Striga gesneriodes, Ruellia tuberosa, Peristrophe bicalyculata, Leucas cephalotes, Indigofera linnaei, Glinus lotoides and Aristolochia bracteolata (Table 3).

No.	Botanical name	D (ind./m ²)	F (%)	Α	A/F	RD (%)	RF (%)	RA (%)	IVI
1	Aristida redacta	3.97	39.02	10.18	0.26	18.75	9.07	3.69	31.51
2	Aeluropus lagopoides	3.81	35.96	10.60	0.29	18.00	8.36	3.85	30.21
3	Halopyrum mucronatum	2.43	14.43	16.83	1.17	11.47	3.35	6.11	20.93
4	Sporobolus maderaspatana	1.94	33.77	5.75	0.17	9.17	7.85	2.09	19.11
5	Cyperus conglomeratus	1.04	17.60	5.94	0.34	4.93	4.09	2.16	11.18
6	Salicornia brachiata	1.00	5.79	17.26	2.98	4.72	1.35	6.27	12.34
7	Indigofera cordifolia	0.76	20.87	3.65	0.17	3.60	4.85	1.32	9.77
8	Pulicaria wightiana	0.71	16.72	4.27	0.26	3.37	3.89	1.55	8.81
9	Goniogyna hirta	0.44	15.30	2.89	0.19	2.09	3.56	1.05	6.70
10	Cressa cretica	0.42	11.37	3.73	0.33	2.00	2.64	1.35	6.00
11	Lepidagathis trinervis	0.39	16.28	2.41	0.15	1.85	3.79	0.87	6.51
12	Boerhavia chinensis	0.39	18.36	2.10	0.11	1.82	4.27	0.76	6.85
13	Barleria prionitis	0.35	16.07	2.16	0.13	1.64	3.73	0.79	6.16
14	Aerva lanata	0.31	13.33	2.34	0.18	1.48	3.10	0.85	5.43
15	Cyperus pangorei	0.31	10.27	2.99	0.29	1.45	2.39	1.09	4.92
16	Abutilon glaucum	0.29	12.46	2.32	0.19	1.36	2.90	0.84	5.10
17	Fimbristylis cymosa	0.28	9.29	3.01	0.32	1.32	2.16	1.09	4.57
18	Achyranthes aspera	0.24	10.16	2.41	0.24	1.16	2.36	0.87	4.39
19	Aloe barbadensis	0.15	7.21	2.03	0.28	0.69	1.68	0.74	3.11
20	Juncus maritimus	0.12	5.14	2.26	0.44	0.55	1.19	0.82	2.56
21	Apluda mutica	0.11	0.55	20.40	37.33	0.53	0.13	7.41	8.06
22	Boerhavia diffusa	0.10	6.12	1.68	0.27	0.49	1.42	0.61	2.52
23	Celosia argentea	0.10	5.57	1.84	0.33	0.49	1.30	0.67	2.45
24	Alysicarpus longifolius	0.09	0.66	13.50	20.59	0.42	0.15	4.90	5.47
25	Clitoria ternatea	0.09	5.90	1.50	0.25	0.42	1.37	0.54	2.33
26	Asparagus recemosus	0.09	7.65	1.14	0.15	0.41	1.78	0.41	2.61
27	Echinops echinatus	0.07	3.83	1.94	0.51	0.35	0.89	0.71	1.95
28	Suaeda fruticosa	0.07	0.66	10.33	15.76	0.32	0.15	3.75	4.22
29	Launaea procumbens	0.07	4.48	1.49	0.33	0.31	1.04	0.54	1.90
30	Sida cordifolia	0.07	5.14	1.30	0.25	0.31	1.19	0.47	1.98
31	Fagonia cretica	0.06	4.04	1.38	0.34	0.26	0.94	0.50	1.70
32	Argemone maxicana	0.05	3.72	1.44	0.39	0.25	0.86	0.52	1.64
33	Heliotropium curassivicum	0.05	3.06	1.68	0.55	0.24	0.71	0.61	1.56
34	Cleome viscosa	0.05	3.93	1.25	0.32	0.23	0.91	0.45	1.60
35	Commelina benghalensis	0.05	1.86	2.53	1.36	0.22	0.43	0.92	1.57
36	Enicostema hyssopifolium	0.04	2.51	1.78	0.71	0.21	0.58	0.65	1.44
37	Acanthospermum hispidum	0.04	0.87	4.63	5.29	0.19	0.20	1.68	2.07
38	Coculus hirsutus	0.04	2.51	1.43	0.57	0.17	0.58	0.52	1.28
39	Polycarpaea corymbosa	0.04	0.22	16.50	75.49	0.17	0.05	5.99	6.21

Table 3. Phytosociological attributes of herb species in coastal areas and its islands of Devbhoomi Dwarka district in GoK

© 2019, IJSRBS All Rights Reserved

No.	Botanical name	D (ind./m ²)	F (%)	Α	A/F	RD (%)	RF (%)	RA (%)	IVI
40	Solanum indicum	0.03	2.62	1.33	0.51	0.17	0.61	0.48	1.26
41	Tridax procumbens	0.03	0.77	4.57	5.98	0.17	0.18	1.66	2.00
42	Cucumis propheratum	0.03	3.06	1.04	0.34	0.15	0.71	0.38	1.24
43	Coldenia procumbens	0.03	2.30	1.33	0.58	0.14	0.53	0.48	1.16
44	Convolvulus microphyllus	0.03	1.97	1.44	0.73	0.13	0.46	0.52	1.12
45	Coccinia grandis	0.03	1.64	1.53	0.94	0.12	0.38	0.56	1.06
46	Solanum surattense	0.02	1.97	1.22	0.62	0.11	0.46	0.44	1.01
47	Justisia procumbens	0.02	0.66	3.50	5.34	0.11	0.15	1.27	1.53
48	Heliotropium ovalifolium	0.02	1.42	1.54	1.08	0.10	0.33	0.56	0.99
49	Limonium stocksii	0.02	1.09	1.60	1.46	0.08	0.25	0.58	0.92
50	Pentatropis spiralis	0.02	1.31	1.33	1.02	0.08	0.30	0.48	0.87
51	Dactyloctenium aegyptium	0.02	0.22	7.50	34.31	0.08	0.05	2.72	2.85
52	Euphorbia hirta	0.02	1.20	1.27	1.06	0.07	0.28	0.46	0.81
53	Sericostoma pauciflorum	0.02	0.98	1.56	1.58	0.07	0.23	0.56	0.87
54	Citrullus colocynthis	0.01	0.77	1.71	2.24	0.06	0.18	0.62	0.86
55	Ipomoea obscura	0.01	0.87	1.50	1.72	0.06	0.20	0.54	0.81
56	Rhynchosia minima	0.01	0.87	1.50	1.72	0.06	0.20	0.54	0.81
57	Ipomoea eriocarpa	0.01	1.09	1.10	1.01	0.06	0.25	0.40	0.71
58	Cucumis callosus	0.01	1.09	1.00	0.92	0.05	0.25	0.36	0.67
59	Sesuvium portulacastrum	0.01	0.87	1.13	1.29	0.05	0.20	0.41	0.66
60	Cistanche tubulosa	0.01	0.66	1.33	2.03	0.04	0.15	0.48	0.68
61	Vernonia cinerea	0.01	0.77	1.14	1.49	0.04	0.18	0.41	0.63
62	Cardiospermum	0.01	0.44	1.75	4.00	0.04	0.10	0.64	0.77
	halicacabum								
63	Ipomoea pes-carpae	0.01	0.55	1.40	2.56	0.04	0.13	0.51	0.67
64	Pedalium murex	0.01	0.55	1.20	2.20	0.03	0.13	0.44	0.59
65	Physalis minima	0.01	0.33	2.00	6.10	0.03	0.08	0.73	0.83
66	Abutilon indicum	0.01	0.55	1.00	1.83	0.03	0.13	0.36	0.52
67	Cassia pumila	0.01	0.33	1.67	5.08	0.03	0.08	0.61	0.71
68	Commelina forskalaei	0.01	0.33	1.67	5.08	0.03	0.08	0.61	0.71
69	Corchorus depressus	0.01	0.55	1.00	1.83	0.03	0.13	0.36	0.52
70	Dactyloctenium sindicum	0.01	0.55	1.00	1.83	0.03	0.13	0.36	0.52
71	Eclipta prostrata	0.01	0.22	2.50	11.44	0.03	0.05	0.91	0.98
72	Rungia repens	0.01	0.55	1.00	1.83	0.03	0.13	0.36	0.52
73	Desmostachya bipinnata	0.004	0.33	1.33	4.07	0.02	0.08	0.48	0.58
74	Leucas aspera	0.004	0.33	1.33	4.07	0.02	0.08	0.48	0.58
75	Polygala erioptera	0.004	0.44	1.00	2.29	0.02	0.10	0.36	0.49
76	Alysicarpus procumbens	0.003	0.22	1.50	6.86	0.02	0.05	0.54	0.61
77	Ipomoea coptica	0.003	0.33	1.00	3.05	0.02	0.08	0.36	0.45
78	Ocimum basilicum	0.003	0.33	1.00	3.05	0.02	0.08	0.36	0.45
79	Pergularia daemia	0.003	0.33	1.00	3.05	0.02	0.08	0.36	0.45
80	Polycarpaea spicata	0.003	0.33	1.00	3.05	0.02	0.08	0.36	0.45
81	Tinospora cordifolia	0.003	0.11	3.00	27.45	0.02	0.03	1.09	1.13
82	Aerva ljavanica	0.002	0.22	1.00	4.58	0.01	0.05	0.36	0.42
83	Amberboa ramosa	0.002	0.22	1.00	4.58	0.01	0.05	0.36	0.42
84	Chrozophora rottleri	0.002	0.22	1.00	4.58	0.01	0.05	0.36	0.42
85	Grangea maderaspatana	0.002	0.11	2.00	18.30	0.01	0.03	0.73	0.76
86	Aristolochia bracteolata	0.001	0.11	1.00	9.15	0.01	0.03	0.36	0.39
87	Glinus lotoides	0.001	0.11	1.00	9.15	0.01	0.03	0.36	0.39
88	Indigofera linnaei	0.001	0.11	1.00	9.15	0.01	0.03	0.36	0.39
89	Leucas cephalotes	0.001	0.11	1.00	9.15	0.01	0.03	0.36	0.39

Vol. 6(3), Jun 2019, ISSN: 2347-7520

No.	Botanical name	$D (ind./m^2)$	F (%)	Α	A/F	RD (%)	RF (%)	RA (%)	IVI
91	Ruellia tuberosa	0.001	0.11	1.00	9.15	0.01	0.03	0.36	0.39
92	Striga gesneriodes	0.001	0.11	1.00	9.15	0.01	0.03	0.36	0.39
93	Vigna radiata	0.001	0.11	1.00	9.15	0.01	0.03	0.36	0.39
						100.0	100.0	100.0	300.0

D (ind./m²)= Density (Individual/Square meter), F (%)= Frequency (Percent); A= Abundance, A/F= Abundance/Frequency, RD (%)= Relative Density (Percent), RF(%)= Relative Frequency (Percent), RA (%)= Relative Abundance (Percent), IVI= Important Value Index.

Plant Species Diversity:

Measurement of biodiversity concentrates on the species level and species diversity is one of the most important indices which are used for the evaluation of ecosystems at different scales [42]. The Shannon-Wiener Index (H') and Simpson's index (c) were used to determine which community is more diverse. A large value of H'Index indicates rich ecosystem with high species diversity, whereas a low value of H'Index represents an ecosystem with little diversity [43]. An ecosystem with H' value greater than 2 has been regarded as medium to high diverse in terms of species [44]. The probability that two individuals chosen at random will be the same species is measured by The Simpson's Index. Because of this, the range for the Simpson's Index (c) is from Zero to One. Zero is the least diverse and one is the highest level of diversity attainable with this index [43]. In the present study Shannon-Wiener diversity (H') index and Simpson's index (c) was 3.113 and 0.916, respectively. Thus the coastal area of Devbhoomi Dwarka District and its islands has rationally high species diversity.

The study came with index of dominance of 1.190 for the coastal area of Devbhoomi Dwarka District and its islands. The greater value of index of dominance exhibits the lower species diversity and vice versa in the scale of 0 to 1 [45].

Species richness and evenness are the two separate ideas of heterogeneity– it is only natural to try to measure the evenness component separately. In 1964, Lloyd and Ghelardi [46] were the first who came with idea to measure the evenness component of diversity separately [47]. Evenness describes how equally individuals are distributed amongst the species. Pielou's evenness index (e) was 0.794 and Margalef species richness index (d) was 10.87 in the study area.

V. CONCLUSION

Floristic diversity assessment at local and regional levels is required to understand the present status and to make effective management strategies for conservation. The results in the present study clearly show that, the Coastal areas of Devbhoomi Dwarka district and its islands are rich in phytodiversity. A record of 243 species during the study period reflects that the coastal areas of Devbhoomi Dwarka district and its islands have the potential to harbour rich species diversity with various ecological services. The present finding provides an assessment on floral diversity, density, frequency and important value index which will be helpful for preparing a sustainable management plan. Moreover the study results will serve as a primary input towards monitoring and sustaining the phytodiversity of the coastal areas of Devbhoomi Dwarka district and its islands in the Gulf of Kachchh.

ACKNOWLEDGEMENTS

The authors are highly grateful to the World Bank, Ministry of Environment and Forest & Climate Change (MoEF & CC), National Project Management Unit- Society of Integrated Coastal Management (NPMU-SICOM), and State Project Management Unit- Gujarat Ecology Commission (SPMU-GEC) for providing the financial assistance for this work under the Integrated Coastal Zone Management Project. Thanks are also due to Gujarat Forests Department and Marine National Park & Sanctuary (MNP&S) for providing the permission to carry out this research. Authors would also like to thank Gujarat Ecological Education and research (GEER) Foundation and its staff for giving the platform to carry out the research work, collection of field data and laboratory analysis.

REFERENCES

[1]. R.H. Wagner, "The Ecology of dunes - strand habitat of North Carolina. Ecological Monogarphs", Vol. 34, pp. 79-96, 1964.

[3]. W. Burns, "A Study of the sea shore vegetation", J. Bombey Nat. Hist. Soc. Vol. 20, pp. 47-49, 1910.

^{[2].} J. Dahm, G. Jenks and D. Bergin, "Community-based dune management for the mitigation of coastal hazards and climate change effects: A guide for local authorities." Electronic database available at www.envbop.govt.nz/Reports/ClimateChange-0505- coastal hazards and climate Report, Pdf, Technical report, New Zealand, 2005.

^{[4].} T. A. Rao, and B. Safui, "Some rare plants along Saurashtra coast and neighbouring islands", Proc. Indian Acad. Sci. Vol. 58, Issue B, pp. 362-366, 1963.

- [5]. V.J. Chapman, "Coastal Vegetation", Pergamon Press, London, pp.1-245, 1964.
- [6]. T.A. Rao, K.R. Aggrawal, "An Ecological studies of Saurastra coast and neighbouring islands. III. –Okhamandal point to Diu coastal areas", UNESCO, Proc. Symp. Prob. Indian Arid Zone, Jodhpur. pp. 31-42, 1964.
- [7]. T.A., Rao, K.R. Aggrawal, "An Ecological studies of Saurastra coast and neighbouring islands. II. Beyt island", Bull. Bot. Surv. India. Vol. 8, pp. 16-24. 1966.
- [8]. T.A., Rao, K.R. Aggrawal, and A. K. Mukherjee, "An Ecological studies of Saurastra coast and neighbouring islands. IV. Piram Island", Bull. Bot. Surv. India, Vol. 8, pp. 60-67, 1966.
- [9]. S. K. Jain, "The vegetation and succession of plant communities in Kutch, Gujarat", Proceedings of the Symposium on Recent Advances in Tropical Ecology, pp.426-437, 1968.
- [10]. R.K. Arora, and K. R. Aggrawal, "Observation on the vegetation of Malpe coast and neighbouring Islands", J. Indian Bot. Soc., Vol. 44, Issue 3, pp. 314-325, 1965.
- [11]. T.A. Rao, "Distributional resume on the maritime strand flora of India", Bull. Bot. Surv. India. Vol. 13, Issue 3-4, pp.192-202, 1971.
- [12]. N.P. Balakrishanan, "Andaman Islands- Vegetation & Florastics" In Saldanha, C.J. (ed.). Oxford & IBH Publishing Co. Pvt. Ltd., New Delhi, 1989.
- [13]. L. K. Banerjee, "Conservation of coastal plant communities in India", Bull. Bot. Surv. India Vol. 36(1-4), pp.160-165, 1994.
- [14]. L.K. Banerjee, "Coastal Wetland Plant Communities of India", Manual of marine Coastal pollution and its Abatement. Central Pollution Control Board, E.Zone, Calcutta, pp.120-127, 2000.
- [15]. L.K. Banerjee, "Diversity of Coastal Plant Communities in India", ENVIS-EMCB, Botanical Survey of India, Ministry and Forests, Kolkata, 2002.
- [16]. B.P. Khokhariya, M. S. Mali, and Y. B. Dabgar, "Diversity Of Habitat And Biological Spectrum Of Bet Dwarka Island, Gujarat, India" Life Sciences Leaflets, Vol. 50, pp.11-18, 2014.
- [17]. Gujarat Ecological Commission, "Ecological Profile for Coastal talukas of GOK Overview Report", Gandhinagar, Gujarat, 2014.
- [18]. http://dcmsme.gov.in/dips/2016 17/Dev% 20Bhumi% 20Dwarka-% 202016-17.pdf
- [19]. http://www.icmam.gov.in/ GOK.PDF
- [20]. http://www.gsdma.org/rainfall. Aspx
- [21]. K. A. Kershaw, "Quantitative and Dynamic plant ecology", 2nd Edn, Edward Arnold, London, pp.308, 1973.
- [22]. R. Mishra, "Ecology Work Book", Oxford and IBH publishing Co., Calcutta, 1968.
- [23]. C. D. Bonham, "Measurements for terrestrial Vegetation", John Wiley & Sons, New York, N.Y. pp. 338. (1989).
- [24]. T. Cooke, "The Flora of the Presidency of Bombay", Taylon & Francis, London. (1901-1908).
- [25]. H. Santapau, "The flora of Saurashtra, Part I. Rannunculaceae to Rubiaceae", Saurashtra Research Society, Rajkot, Vol-1, 1962.
- [26]. H. Santapau, and K. P. Janardhanan, "Provided the flora of Saurashtra; check list", Bull. Bot. Surv. India Vol. 8 (supplement 1), pp. 1-58, 1966.
- [27]. P. V. Bole, and J. M. Pathak, "Flora of Saurashtra", Part 2 & 3, Director, Botanical Survey of India, Kolkata, 1988.
- [28]. G. L. Shah, "Flora of Gujarat State", Vol. I & II. Sardar Patel University Press, Vallabh Vidyanagar, 1978.
- [29]. R.S., Shukla and P.S Chandel, "Plant Ecology and Soil Science", 9th.Ed. S. Chand & Company Limited, Ramnagor, New Delhi, 2000.
- [30]. P.B. Whitford, "Distribution of woodland plants in relation to succession and clonal growth", Ecology, Vol. 30, pp.199–208, 1948.
- [31]. P. Michael, "Ecological methods for field and laboratory investigation", Tata Mc Graw Hill Publishing Co. Ltd., New Delhi, pp. 404, 1990.
- [32]. E. H. Simpson, "Measurement of diversity", Nature, Vol. 163, pp. 688, 1949.
- [33]. E. C. Pielou, "The measurement of diversity in different types of biological collections" J. Theoret. Biol., Vol. 13, pp. 131-144, 1966.
- [34]. R. Margalef, "Temporal succession and spatial heterogeneity in phytoplankton", In: Perspectives in Marine biology, Buzzati-Traverso (ed.), Univ. Calif. Press, Berkeley, pp. 323-347, 1958.
- [35]. S.B. Frackler, and H.A. Brischle, "Measuring the local distribution of Ribes", Ecology, Vol. 25, pp. 283-303, 1944.
- [36]. L.M.C. Cole, "A theory for analysing contagiously distributed population, Ecology", Vol. 2, pp. 329-341, 1946.
- [37]. E. Ashby, "Statistical Ecology: A re-assessment", Bot. Rev., Vol. 14, pp. 222-224, 1948.
- [38]. J. T. Curtis and G. Cottam, "Plant Ecology Work Book Laboratory Field Reference Manual", Burgress Publication Company, Minneapolis, Minnesota, pp. 193. 1956.
- [39]. J. T., Curtis. And R. P. McIntosh, "An Upland continuum in the Praine Forest Border region of Wisconsin, Ecology", Vol.32, pp. 476-496, 1951.
- [40]. M.Al-Amin, M. Alamgir, and M. R. A. Patwary, "Composition and Status of Undergrowth of a Deforested Area in Bangladesh", Asian Journal of Plant Sciences, Vol. 3, pp. 651-654, 2004.
- [41]. E. P. Odum, "Fundametals of ecology", Saunders Compny Philadelphia, USA, 1971.
- [42]. M. R. Ardakani, "Ecology", Tehran University Press, pp. 340, 2004.
- [43]. S Robertson, "Biodiversity in a Florida Sandhill Ecosystem", Undergraduate Journal of Mathematical Modeling: One + Two, Vol. 2, Issue 1, pp. 6, 2009.
- [44]. M. Barbour, J. H. Burk, W. D. Pitts, F. S. Gillians, M. W. Schwartz, "Terrestrial Ecology", Chicago, Illinois: Addson Wesley Longman, Inc, pp. 69-85, 1999.
- [45]. K. C. Misra, "Manual of Plant Ecology", 3rd Edition, Oxford and IBH Publishing Co. Pvt. Ltd. New Delhi , 1989.
- [46]. M. Lloyd, and R. J. Ghelardi, "A table for calculating the "equitability" component of species diversity", Journal of Animal Ecology, Vol. 33, pp. 217-225, 1964.
- [47]. C. J. Krebs, "Ecologocal methodology" Harper & Row, New York, pp. 1-471, 1989.

AUTHORS PROFILE

Dr. Lopamudra Das is Research Associate working on Coastal and Marine Flora in Gujarat Ecological Education and Research (GEER) Foundation, Gandhinagar. She has completed her Doctor of Philosophy in the field of Botany from the RTM Nagpur University, Maharashtra. She has been actively involved in ecological study of Coastal Plants, Seaweeds and Mangroves diversity for last 8 years. Dr.

© 2019, IJSRBS All Rights Reserved

Lopamudra Das has published ten research papers in International and National Journals and also contributed in publication of many technical reports and books published by GEER Foundation. She has also been contributing in various ecological awareness activities at GEER Foundation.

Dr. Harshad Salvi, has done his Ph.D. from HNGU, Patan, was actively involved in a number of biodiversity of Protected Areas (Pas) at Gujarat State related to plant diversity as well as pollination biology & reproductive ecology of rare mangrove species studies as scientist in GEER Foundation. He has over 18 years of research experience in coastal, corals, grassland and forest ecosystems of Gujarat State and has published 12 research Papers. Presently he is serving as Assistant professor and Head, Botany Department, Government Science College, Songadh, Tapi, Gujarat.

Mr. R. D. Kamboj is an Indian Forest Services Officer of Gujarat cadre (1986 batch) of the rank of Additional Principal Chief Conservator of Forests. He holds post graduate degree in Agriculture from Haryana Agriculture University, Hisar & in Forestry from Indira Gandhi National Forest Academy, Dehradun. He has served in various positions in Gujarat Forest Department for last 32 years. He has published more than 70 research papers and has written Working Plans/ Management Plans for various forest divisions including Gir National Park & Sanctuary. Presently he is serving as Director, Gujarat Ecological Education and Research (GEER) Foundation, Gandhinagar.

Annexure 1. Checklist of Coastal Ter	rrestrial Plants of Devbhoomi	Dwarka District and its islands
--------------------------------------	-------------------------------	---------------------------------

No	Botanical Name	Family	Habit	No.	Botanical Name	Family	Habit
1	Abelmoschus moschatus Medic.	Malvaceae	Herb	123	Haloxylon salicornicum (Moq.) Bunge ex Boiss.	Chenopodiacea e	Shrub
2	Abrus precatorius L.	Fabaceae	Herb	124	Helichrysum cutchicum (C.B.Clarke) R.S.Rao & Deshp.	Asteraceae	Herb
3	Abutilon glaucum (Cav.) Cav.	Malvaceae	Herb	125	Heliotropium curassavica L.	Boraginaceae	Herb
4	Abutilon indicum (L.) Sweet	Malvaceae	Herb	126	<i>Heliotropium ovalifolium</i> Fors sk	Boraginaceae	Herb
5	Acacia ferruginea DC.	Mimosaceae	Tree	127	Heliotropium strigosum Willd.	Boraginaceae	Herb
6	<i>Acacia leucophloea</i> (Roxb.) Willd.	Mimosaceae	Tree	128	<i>Hewittia sublobata</i> (L. f.) Kuntze	Convolvulacea e	Herb
7	Acacia nilotica (L.) Delile	Mimosaceae	Tree	129	<i>Hibiscus ovalifolius</i> (Forssk.) Vahl	Malvaceae	Herb
8	Acacia senegal (L.) Willd	Mimosaceae	Tree	130	Hibiscus palmatus Forssk.	Malvaceae	Herb
9	Acanthospermum hispidum DC.	Asteraceae	Herb	131	<i>Hyphaene dichotoma</i> (White) Furtado	Arecaceae	Tree
10	Achyranthes aspera L.	Amaranthaceae	Herb	132	Hyptis suaveolens (L.) Poit.	Lamiaceae	Herb
11	<i>Aegiceras corniculatum</i> (L.) Blanco	Myrsinaceae	Tree	133	Indigofera linifolia var. linifolia Retz.	Fabaceae	Herb
12	Aegle marmelos (L.) Corrêa	Rutaceae	Tree	134	Indigofera linnaei Ali	Fabaceae	Climbe r
13	<i>Aeluropus lagopoides</i> (L.) Thwaites	Poaceae	Grass	135	Indigofera cordifolia Roth	Fabaceae	Herbs
14	<i>Aerva javanica</i> (Burm.f.) Juss. ex Schult	Amaranthaceae	Herb	136	<i>Ipomoea coptica</i> (L.) Roth ex Roem. & Schult	Convolvulacea e	Climbe r
15	Aerva lanata (L.) Juss.	Amaranthaceae	Herb	137	Ipomoea sepiaria var. sepiaria	Convolvulacea e	Climbe r
16	Aloe barbadensis Mill	Liliaceae	Shrub	138	Ipomoea aquatica Forssk.	Convolvulacea e	Climbe r
17	Alternanthera sessilis (L.) R.Br. ex DC	Amaranthaceae	Herbs	139	Ipomoea eriocarpa R. Br	Convolvulacea e	Climbe r
18	Alysicarpus longifolius (Spreng.) Wight & Arn.	Fabaceae	Herb	140	<i>Ipomoea fistulosa</i> Mart. ex Choisy	Convolvulacea e	Shrub
19	Alysicarpus monilifer (L.) DC.	Fabaceae	Herb	141	<i>Ipomoea obscura</i> (L.) Ker Gawl	Convolvulacea e	Climbe r
20	Alysicarpus procumbens (Roxb.) Schindl.	Fabaceae	Herb	142	<i>Ipomoea pes-caprae</i> (L.) R. Br.	Convolvulacea e	Climbe r
21	Alysicarpus vaginalis (L.) DC.	Fabaceae	Herb	143	Ipomoea pes-tigridis L	Convolvulacea e	Climbe r
22	Amaranthus spinosus L.	Amaranthaceae	Herb	144	Isache dispar Trin. Sp.	Poaceae	Grass
23	Amberboa ramosa (Roxb.) Jafri.	Asteraceae	Herb	145	Juncus meritimus Lam.	Juncaceae	Herb
24	Apluda mutica L.	Poaceae	Grass	146	Justicia procumbens L.	Acanthaceae	Herb
25	Argemone mexicana L	Papaveraceae	Herb	147	<i>Kickxia ramossissima</i> (Wall.) Janch.	Scrophulariace ae	Herb
26	Aristida redacta Stapf.	Poaceae	Grass	148	Laggera aurita Sch. Bip.	Asteraceae	Herb
27	Aristolochia bracteolata Lam.	Aristolochiacea e	Herb	149	Launaea procumbens (Roxb.) Ramayya & Rajagopal	Asteraceae	Herb
28	Asparagus racemosus Willd	Liliaceae	Climber	150	Launaea resedifolia Druce	Asteraceae	Herb
29	Avicennia marina (Forssk.) Vierh.	Avicenniaceae	Tree	151	Lepidagathis trinervis Nees	Acanthaceae	Herb
30	Azadirachta indica A.Juss.	Meliaceae	Tree	152	<i>Leucaena leucocephala</i> (Lam.) de Wit	Mimosaceae	Tree
31	Balanites aegyptiaca (L.) Delile	Balanitaceae	Shrub	153	Leucas aspera (Willd.) Link	Lamiaceae	Herb
32	Barleria prionitis L.	Acanthaceae	Herb	154	Leucas cephalotes (Roth) Spreng	Lamiaceae	Herb
33	<i>Bergia suffruticosa</i> (Delile) Fenzl	Elatinaceae	Herb	155	Limonia acidissima Groff	Rutaceae	Tree

No	Botanical Name	Family	Habit	No.	Botanical Name	Family	Habit
34	Bidens biternata (Lour.) Merr. & Sherff	Asteraceae	Herb	156	Limonium stocksii Kuntze	Plumbaginacea e	Herb
35	Boerhavia chinensis (L.) Rottb.	Nyctaginaceae	Herb	157	<i>Luffa acutangula</i> var. <i>amara</i> (Lam.)Cl.	Cucurbitaceae	Climbe r
36	Boerhavia diffusa L.	Nyctaginaceae	Herb	158	<i>Maerua oblongifolia</i> (Forssk.) A.Rich.	Capparaceae	Shrub
37	Boerhavia verticillata Poir.	Nyctaginaceae	Herb	159	<i>Manilkara hexandra</i> (Roxb.) Dubard	Sapotaceae	Tree
38	<i>Bolboschoenus maritimus</i> (L.) Palla	Cyperaceae	Sedge	160	Maytenus emarginata (Willd.) Ding Hou	Celastraceae	Shrub
39	Borreria articularis (L.f.) F. N.	Rubiaceae	Herb	161	Melanocenchris jacquemontii Jaub. & Spach	Poaceae	Grass
40	Borreria stricta (L.f.) Schum	Rubiaceae	Herb	162	Melia azedarach L.	Meliaceae	Tree
41	Cadaba fruticosa (L.) Druce	Capparaceae	Shrub	163	Mimosa hamata Willd.	Mimosaceae	Herb
42	Calotropis gigantea (L.) Dryand.	Asclepiadaceae	Shrub	164	Mollugo pentaphylla L.	Molluginaceae	Herb
43	Calotropis procera (Aiton) Dryand.	Asclepiadaceae	Shrub	165	Momordica charantia L.	Cucurbitaceae	Climbe r
44	Canavalia cathartica Thouars	Fabaceae	Climber	166	Mucuna prurita Hk. F.	Fabaceae	Herb
45	Capparis cartilaginea Decne	Capparaceae	Shrub	167	Mukia maderaspatana (L.) M.Roem.	Cucurbitaceae	Climbe r
46	<i>Capparis decidua</i> (Forssk.) Edgew.	Capparaceae	Shrub	168	Nerium indicum Mill.	Apocynaceae	Shrub
47	Cardiospermum halicacabum L.	Sapindaceae	Climber	169	Ocimum basilicum L.	Lamiaceae	Herb
48	Cassia sophera L.var. sophera	Caesalpiniacea e	Shrub	170	<i>Opuntia elatior</i> Mill.	Cactaceae	Shrub
49	Cassia auriculata L.	Caesalpiniacea e	Shrub	171	Panicum psilopodium Trin Var. Psilopodium	Poaceae	Grass
50	Cassia italica (Mill.) Spreng.	Caesalpiniacea e	Herb	172	Parkinsonia aculeata L.	Caesalpiniacea e	Tree
51	Cassia occidentalis L	Caesalpiniacea e	Herb	173	Parthenium hysterophorus L.	Asteraceae	Herb
52	Cassia pumila Lam.	Caesalpiniacea e	Herb	174	Pavonia arabica Steud.	Malvaceae	Herb
53	Cassia tora L.	Caesalpiniacea e	Herb	175	Pavonia zeylanica Cav.	Malvaceae	Herb
54	Casuarina equisetifolia L.	Casuarinaceae	Tree	176	Pedalium murex L.	Pedaliaceae	Herb
55	Catharanthus roseus (L.) G.Don.	Apocynaceae	Herb	177	<i>Peltophorum pterocarpum</i> (D C.) K.Heyne	Caesalpiniacea e	Tree
56	<i>Cayratia carnosa</i> (Lam.) Gagnep.	Vitaceae	Climber	178	<i>Pentatropis spiralis</i> (Forssk.) Decne.	Asclepiadaceae	Climbe r
57	Celosia argentea L.	Amaranthaceae	Herb	179	<i>Pergularia daemia</i> (Forssk.) Chiov.	Asclepiadaceae	Climbe r
58	Cenchrus ciliaris L	Poaceae	Grass	180	<i>Peristrophe bicalyculata</i> (Retz .) Nees	Acanthaceae	Herb
59	Ceriops tagal (Perr.) C.B.Rob.	Rhizophoracea e	Shrub	181	Phoenix sylvestris (L.) Roxb.	Arecaceae	Tree
60	Chenopodium album L.	Chenopodiacea e	Herb	182	Phyla nodiflora (L.) Greene	Verbenaceae	Herb
61	Chloris barbata Sw.	Poaceae	Grass	183	<i>Phyllanthus fraternus</i> G.L.We bster	Euphorbiaceae	Herb
62	<i>Chrozophora rottleri</i> (Geis.) Juss.	Euphorbiaceae	Herb	184	Phyllanthus maderaspatensis L.	Euphorbiaceae	Herb
63	Cistanche tubulosa (Schenk) Wight	Orobanchaceae	Herb	185	Physalis minima L.	Solanaceae	Herb
64	Cleome viscosa L.	Capparaceae	Herb	186	Pluchea arguta Boiss.	Asteraceae	Herb
65	<i>Clerodendrum inerme</i> (L.) Gaertn.	Verbenaceae	Shrub	187	Polycarpaea corymbosa (L.) Lam.	Caryophyllacea e	Herb
66	Clerodendrum multiflorum (Bur	Verbenaceae	Shrub	188	Polycarpaea spicata Wight ex	Caryophyllacea	Herb

No	Botanical Name	Family	Habit	No.	Botanical Name	Family	Habit
	m.f.) Kuntze				Arn.	e	
67	Clitora ternatea L.	Fabaceae	Climber	189	Polygala erioptera DC.	Polygalaceae	Herb
68	Coccinia grandis (L.) Voigt	Cucurbitaceae	Climber	190	Portulaca oleraceaL.	portulacaceae	Herb
69	Cocculus hirsutus (L.) Diels	Menispermace ae	Climber	191	Premna resinosa (Hochst.) Schauer	Verbenaceae	Shrub
70	Cocos nucifera L.	Arecaceae	Tree	192	Prosopis cineraria (L.) Druce	Mimosaceae	Tree
71	Coldenia procumbens L.	Boraginaceae	Herb	193	Prosopis juliflora (Sw.) DC.	Mimosaceae	Tree
72	Commelina benghalensis L.	Commelinacea e	Herb	194	Pulicaria wightiana (DC) C. B. Clark	Asteraceae	Herb
73	Commelina erecta L.	Commelinacea e	Herb	195	Pupalia lappacea (L.) Juss.	Amaranthaceae	Herb
74	Commelina forskalaei Vahl.	Commelinacea e	Herb	196	Rhizophora mucronata Lam.	Rhizophoracea e	Tree
75	Commiphora wightii (Arn.) Bhandari	Burseraceae	Shrub	197	Rhynchosia minima (L.) DC. var minima	Fabaceae	Climbe r
76	Convolvulus rottlerianus Choisy var.rottlerianus	Convolvulacea e	Herb	198	Rhynchosia minima var. laxiflora (Cambess.) Baker	Fabaceae	Climbe r
77	<i>Convolvulus microphyllus</i> Sieber ex Spreng.	Convolvulacea e	Herb	199	Ruellia tuberosa L.	Acanthaceae	Herb
78	Corchorus aestuans L.	Tiliaceae	Herb	200	Rungia repens (L.) Nees	Acanthaceae	Herb
79	Corchorus tridens L.	Tiliaceae	Herb	201	Salicornia brachiata Miq.	Chenopodiacea e	Shrub
80	Corchorus trilocularis L.	Tiliaceae	Herb	202	Salvadora oleoides Decne.	Salvadoraceae	Tree
81	Cordia gharaf Ehrenb. ex Asch.	Boraginaceae	Tree	203	Salvadora persica L.	Salvadoraceae	Tree
82	Cressa cretica L.	Convolvulacea e	Herb	204	Salvia santolinifolia Boiss.	Lamiaceae	Herb
83	Croton bonplandianum Baill.	Euphorbiaceae	Herb	205	Schoenoplectiella articulata (L.) Lye	Cyperaceae	Sedge
84	<i>Cucumis callosus</i> (Rottler) Cogn.	Cucurbitaceae	Climber	206	Senra incana Cav.	Malvaceae	Herb
85	Cucumis prophetarum L.	Cucurbitaceae	Climber	207	Sesuvium portulacastrum (L.) L.	Aizoaceae	Herb
86	<i>Cymbopogon schoenanthus</i> (L.) Spreng.	Poaceae	Grass	208	<i>Setaria verticillata</i> (L.) P.Beauv.	Poaceae	Grass
87	Cynodon dactylon (L.) Pers.	Poaceae	Grass	209	Seteria glauca (L.) P. Beauv.	Poaceae	Grass
88	<i>Cyperus pangori</i> Rottb.	Cyperaceae	Sedge	210	Sida cordifolia L.	Malvaceae	Herb
89	Cyperus bulbosus Vahl	Cyperaceae	Sedge	211	Sida spinosa L.	Malvaceae	Herb
90	Cyperus conglomeratus Rottb.	Cyperaceae	Sedge	212	Solanum indicum L.	Solanaceae	Herb
91	Cyperus rotundus L.	Cyperaceae	Sedge	213	Solanum surattense Burm. f.	Solanaceae	Herb
92	Dactyloctenium aegyptium (L.) Willd.	Poaceae	Grass	214	Sonchus brachyotus DC.	Asteraceae	Herb
93	Dactyloctenium scindicum Boiss	Poaceae	Grass	215	Sporobolus coromandelianus (Retz.) Kunth	Poaceae	Grass
94	Dalechampia scandens L.	Euphorbiaceae	Climber	216	Sporobolus maderaspatanus B or	Poaceae	Grass
95	Datura metel L.	Solanaceae	Herb	217	<i>Striga gesnerioides</i> (Willd.) Vatke.	Scrophulariace ae	Herb
96	Desmostachya bipinnata (L.) Stapf	Poaceae	Grass	218	<i>Suaeda fruticosa</i> Forssk. ex J.F.Gmel.	Chenopodiacea e	Shrub
97	Dichanthium annulatum (Forssk.) Stapf	Poaceae	Grass	219	Suaeda nudiflora Moq.	Chenopodiacea e	Herb
98	Digera muricata (L.) Mart.	Amaranthaceae	Herb	220	Tamarindus indica L.	Caesalpiniacea e	Tree
99	<i>Digitaria longiflora</i> (Retzius) Persoon	Poaceae	Grass	221	Tamarix dioica Roxb.	Tamaricaceae	Tree
10 0	Dimeria orinthopodaTrin.	Poaceae	Grass	222	Tamarix ericoides Rottler & Willd.	Tamaricaceae	Shrub
10	Echinops echinatus Roxb.	Asteraceae	Herb	223	Taverniera cuneifolia (Roth)	Fabaceae	Shrub
-	<i>r</i>				(

No	Botanical Name	Family	Habit	No.	Botanical Name	Family	Habit
1				1	Ali		
10 2	Enicostema hyssopifolium(Willd.) Verd	Gentianaceae	Herb	224	<i>Tephrosia purpurea</i> (L.) Pers.	Fabaceae	Herb
10 3	Ephedra foliata Boiss. ex C.A.Mey.	Ephedraceae	Woody Climber	225	<i>Tephrosia strigosa</i> (Dalzell) Santapau & Maheshw.	Fabaceae	Herb
10 4	Eragrostis ciliaris (L.) R.Br.	Poaceae	Grass	226	Terminalia catappa L.	Combretaceae	Tree
10 5	Euphorbia dracunculoides Lam.	Euphorbiaceae	Herb	227	<i>Thespesia populnea</i> (L.) Sol. ex Corrêa	Malvaceae	Tree
10 6	Euphorbia hirta L.	Euphorbiaceae	Herb	228	<i>Tinospora cordifolia</i> (Willd.) Miers	Menispermacea e	Climbe r
10 7	<i>Euphorbia microphylla</i> B.Heyne ex Roth	Euphorbiaceae	Herb	229	Trianthema portulacastrum L.	Aizoaceae	Herb
10 8	Euphorbia nivulia BuchHam.	Euphorbiaceae	Shrub	230	<i>Trianthema triquetra</i> Rottler & Willd.	Aizoaceae	Herb
10 9	Euphorbia parviflora L.	Euphorbiaceae	Herb	231	Tribulus terrestris L.	Zygophyllacea e	Herb
11 0	Euphurbia tirucalli L.	Euphorbiaceae	Shrub	232	<i>Trichodesma indicum</i> (L.) Lehm.	Boraginaceae	Herb
11 1	Evolvulus alsinoides (L.) L.	Convolvulacea e	Herb	233	Tridax procumbens (L.) L.	Asteraceae	Herb
11 2	Fagonia cretica L.	Zygophyllacea e	Herb	234	Triumfetta rotundifolia Lam.	Tiliaceae	Herb
11 3	Ficus benghalensis L.	Moraceae	Tree	235	Urgenia indica L.	Liliaceae	Herb
11 4	Ficus religiosa L.	Moraceae	Tree	236	Urochondra setulosa (Trin.) C.E.Hubb.	Poaceae	Grass
11 5	Fimbristylis cymosa R.Br.	Cyperaceae	Sedge	237	Vernonia cinerea (L.) Less.	Asteraceae	Herb
11 6	Glinus lotoides L.	Molluginaceae	Herb	238	Vicoa indica (L.) DC.	Asteraceae	Herb
11 7	Goniogyna hirta (Willd.) Ali	Fabaceae	Herb	239	Vigna radita (L.)Wilezek	Fabaceae	Climbe r
11 8	<i>Grangea maderaspatana</i> (L.) Poir.	Asteraceae	Herb	240	<i>Vigna unguiculata</i> (L.) Walp. sub sp. <i>Ungniculata</i>	Fabaceae	Climbe r
11 9	Grewia damine Gaertn.	Tiliaceae	Shrub	241	Xanthium strumarium L.	Asteraceae	Herb
12 0	Grewia tenax (Forssk.) Fiori	Tiliaceae	Shrub	242	<i>Ziziphus nummularia</i> (Burm. f.) Wight & Arn.	Rhamnaceae	Shrub
12 1	Grewia villosa Willd.	Tiliaceae	Shrub	243	Zornia gibbosa Span.	Fabaceae	Herb
12 2	<i>Halopyrum mucronatum</i> (L.) Stapf	Poaceae	Grass		1	1	I