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Abstract— This research work was purely on conformal mapping method. Existence of Schwarz-Christoffel transformation was 

briefly discussed and a lightning conductor was modelled as an illustration by the boundary-value problem in which the 

potential u is equal to zero at x = 0 which satisfies Laplace’s equation in the half-space x > 0 and u to be bounded at infinity and 

the solution is bounded at . Another illustration which showed, the cross section of two metallic conductors the lower 

conductor is of infinite extent which lies on the real axis and at infinity . The other conductor is semi-infinite in length and 

extends from . We also find the streamlines and equipotentials for this situation and obtained the voltage 

everywhere in space and we plot the equipotentials and electric flux lines, in which the charge tends to be concentrated at the 

edge of the upper plate. Furthermore, all the results were visualized with the aid of MATLAB, electric field is then directed 

downward, from the higher to the lower potential, and has magnitude equal to the voltage difference between the plates. 

 

Keywords— conformal map, Schwarz-Christoffel transformation, Boundary value problem, laplace equation,  stream lines, 

equipotentials, electric flux lines, lightning conductor. 

 
 

1. Introduction  
 

The Schwarz-Christoffel transformation is a mapping that 

maps a polygon to an the upper halfplane is termed Schwarz-

Christoffel transformation. It  is an integral that can be apply 

to elliptic integrals; the general case is usually considered 

unsolvable, since it cannot be expressed in terms of well-

known functions. The advancement in computers that has 

made finite difference and finite element solutions possible 

can now be used to find the analytical solutions. A few 

centuries ago Analytical methods dominated in the solution of 

physical problems from the beginning of analysis. analytical 

functions were developed, resulting in numerous special 

functions due to a lot of researches. The Schwarz-Christoffel 

transformation was a popular analytic tool in fluid problems 

with polygon boundaries, in free streamline problems, and in 

plane elastic systems. Interest in the analytic solution of the 

Schwarz-Christoffel transformation stopped around 1960's, 

when analytical methods were overtaken by purely numerical 

methods in the solution of partial differential equations. 

Computer has also been used to handle analytical methods in 

what are called symbolic computer languages. Yet these still 

rely on classic well-known analytic functions. Since the 

1970's, numerical methods have solved the  Schwarz-

Christoffel transformation successfully [8, 9]. Trefethen [10] 

developed One of the best known and popular methods, 

particularly well explained, also discussed and advocated  by 

Henrici [6]. That method is developed as a computer package, 

called SCPACK, which is freely available from its author. 

Variations and improvements of the numerical solution 

continue to appear [3, 5, 1, 2]. An improvement for elongated 

regions, using Trefethen's numerical integration, is given in 

Howell & Trefethen [7]. An application package with 

unlimited scope for MATLAB I is given in Driscoll [4]. The 

result is that the Schwarz-Christoffel transformation is used 

more frequently. 

  

2. Experimental Method 
 

We know that we can not prove Schwarz christoffel 

transformation without talking of its existence. Now, let us 

quickly see existence of Schwarz christoffel transformation. 

 

2.1 EXISTENCE OF A MAPPING FUNCTION ON 

SCHWARZ–CHRISTOFFEL TRANSFORMATION  

http://www.isroset.org/
https://orcid.org/0009-0001-6160-6095
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Fig. 1: Brown & Churchil [12] 

 

From the proof of Wiam et al. [11]:   

(z) = 

 

 for the derivative of a function that is to map the real axis 

onto a polygon, let the factors  

 (j = 1, 2,...,n − 1) represent branches of power 

functions with branch cuts extending below the real axis. To 

be specific, write 

= exp[−  log(z −  )] = exp[−  (ln |z −  | 

+ iθj )]  

   and then 

  = exp(−i  )  

, 

where  = arg(  ) and j = 1, 2,...,n − 1. This makes 

(z) analytic everywhere in the half plane y ≥ 0 except at the 

n − 1 branch points  . If  is a point in that region of 

analyticity,  denoted here by R, then the function 

    

 f(z)=     (1)  

 

is single-valued and analytic throughout the same region, 

where the path of integration from  to z is any contour 

lying within R. Moreover, (z) = (z)  

To define the function F at the point z =  so that it is 

continuous there, we note that (z − )
−k1

 is the only factor in 

expression  that is not analytic at . Hence if φ(z) denotes 

the product of the rest of the factors in that expression, φ(z) is 

analytic at the point  and is represented throughout an open 

disk |z − | <  by its Taylor series about . So we can 

write 

 
or 

 (z) = φ( )  + ψ(z)       (2) 

where ψ is analytic and therefore continuous throughout the 

entire open disk. Since 1 − > 0, the last term on the right in 

equation (2) thus represents a continuous function of z 

throughout ,y,the upper half of the disk, where Im z ≥ 0, if we 

assign it the value zero at z = . It follows that the integral 

 
of that last term along a contour from  to z, where  and 

the contour lie in the half disk, is a continuous function of z at 

z = . The integra 

] 

along the same path also represents a continuous function of z 

at x1 if we define the value of the integral there as its limit as 

z approaches  in the half disk. The integral of the function  

along the stated path from  to z is, then, continuous at z = 

; and the same is true of integral (1) since it can be written 

as an integral along a contour in R from z0 to  plus the 

integral from  to z. The above argument applies at each of 

the n − 1 points  to make F continuous throughout the 

region y ≥ 0. From equation (1), we can show that for a 

sufficiently large positive number R, a positive constant M 

exists such that if Im z ≥ 0, then 

| | (3) 

Since 2 − > 1, this order property of the integrand in 

equation (1) ensures the existence of the limit of the integral 

there as z tends to infinity; that is, a number  exists such 

that  

 
Our mapping function, whose derivative is given by equation 

(1), can be written  

f (z) = F (z) + B, where B is a complex constant. The 

resulting transformation,  

w = A   (5) 

is the Schwarz–Christoffel transformation, named in honor of 

the two German mathematicians H. A. Schwarz (1843–1921) 

and E. B. Christoffel (1829–1900) who discovered it 

independently. Transformation (5) is continuous throughout 

the half plane y ≥ 0 and is conformal there except for the 

points  . We have assumed that the numbers  satisfy 

conditions (3). In addition, we suppose that the constants  

and  are such that the sides of the polygon do not cross, so 

that the polygon is a simple closed contour. Then, as the point 

z describes the x axis in the positive direction, its image w 

describes the polygon P in the positive sense; and there is a 

one to one correspondence between points on that axis and 

points on P. According to condition (4), the image  of the 

point z =  exists and  =  + B.  

 

If z is an interior point of the upper half plane y ≥ 0 and  is 

any point on the x axis other than one of the , then the 

angle from the vector t at  up to the line segment joining 

 and z is positive and less than π (Fig. 1). At the image  

of , the corresponding angle from the vector τ to the image 

of the line segment joining  and z has that same value. 

Thus, the images of interior points in the half plane lie to the 

left of the sides of the polygon, taken counterclockwise.  
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Given a specific polygon P, let us examine the number of 

constants in the Schwarz–Christoffel transformation that must 

be determined in order to map the x axis onto P. For this 

purpose, we may write  = 0, A = 1, and B = 0 and simply 

require that the x axis be mapped onto some polygon  

similar to P. The size and position of  can then be adjusted 

to match those of P by introducing the appropriate constants 

A and B.  

 

The numbers  are all determined from the exterior angles at 

the vertices of P. The n − 1 constants  remain to be chosen. 

The image of the x axis is some polygon  that has the same 

angles as P. But if P’ is to be similar to P, then n − 2 

connected sides must have a common ratio to the 

corresponding sides of P; this condition is expressed by 

means of n − 3 equations in the n − 1 real unknowns . Thus 

two of the numbers  , or two relations between them, can 

be chosen arbitrarily, provided those n − 3 equations in the 

remaining n − 3 unknowns have real-valued solutions.  

When a finite point z =  on the x axis, instead of the point 

at infinity, represents the point whose image is the vertex , 

it follows that the Schwarz–Christoffel transformation takes 

the form:    

w= A   (6) 

where  +  +···+  = 2. The exponents  are 

determined from the exterior angles of the polygon. But, in 

this case, there are n real constants  that must satisfy the n 

− 3 equations noted above. Thus three of the numbers , or 

three conditions on those n numbers, can be chosen arbitrarily 

when transformation (6) is used to map the x axis onto a 

given polygon. 

 

3. Results and Discussion 
 

In what follows we now consider some illustrations to 

appreciate the use of Schwarz Chrisoffel Transformation in 

practice. 

Illustration 1 

A lightning conductor is modelled by the boundary-value 

problem illustrated in Figure 2. The potential u is equal to 

zero at x = 0 and satisfies Laplace’s equation in the half-space 

x > 0, except on the line y  0, x > 1, where u = 1. We also 

require u to be bounded at infinity. 

Solution.  

The domain D is the image of the strip , 

 under the map z  sinZ. In the Z-plane we 

have  with U  0 at X  0 and U  1 at X  π/2, 

as shown in Figure 41. The solution in the Z-plane is U  Re 

W Re(2 ), and therefore 

 

 

 
Figure 2: A model for a lightning conductor.  

 
Figure 3: The problem from Figure 2 transformed by the map 

 

 

And it follows that  at the tip of the 

spike. 

This example could also have solved by using Schwarz-

Christoffel mapping to map the upper half Z-plane to D. The 

vertices marked A, B, C in figure 2 have the exterior angles  

 
we can choose to map 

 
and because of symmetry, we are also free to map 

  Then the Schwarz- Christoffel formula 

gives   

 
The problem in the Z-plane is shown in figure 42. The 

solution bounded at  is simply  
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Figure 4: The problem from Figure 40 transformed by the 

map  

 

and by inverting the conformal map we find 

 
which is equivalent to (7). 

 

Illustration  2 
Imagine that the above shows the cross section of two 

metallic conductors. The lower conductor is of infinite 

extent, lies along  and goes from  . 

The other conductor is semi-infinite in length and extends 

from . The second conductor is 1 unit above 

the first and is maintained at a potential of 1 volt while the 

lower one is at ground (zero) potential. Our problem is to 

find the streamlines and equipotentials for this situation and 

find the voltage everywhere in space. We will apply the 

Schwarz-Christoffel transformation to the configuration 

shown below in Figure 43b and then let the angle  tend to 

zero to achieve the configuration shown above which will be 

mapped onto the real axis in the w plane with the exterior of 

the above figure mapped into the upper half of the w plane. 

 

 
Figure 5 a 

 
Figure 5 b 

 

Following the notation of figure 1 we have that 

  The point  will get 

mapped into  will get mapped into 

. Notice that , which is at infinity, will map  

into . We can explain that   and  which  

both lie at infinity get mapped into different locations in the 

w-plane. We imagine that  and  lie on different sides of 

a branch cut of  where  is  

the right side of eq. (6). notice for example that the function 

 evaluated along the lines   

have different limits as  and they differ in sign. In 

this case, the inverse transformation is  

which has a branch cut. The  

above configuration in the figure is to be mapped into that 

shown in Figue 6 below. Notice too, for the above  

figure, that we have moved along the polygon  

(from  to  etc.) in such a way that the region above and 

outside the above broken line, which is to be  

mapped into the upper half of the w plane is on our  

left. We thus have from Eq.(6) . 

 
Passing to the limit  we have 

 
If we take the lower limit as , then we have 

that  has image  as required. The 

integration is easy and we have 

 

 

 
Suppose wemove the negative real axis in the w-plane toward 

We are approaching 

 from the 
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left. Due to the logarithm, if A were complex then the 

imaginery part of this expression would become unbounded 

as . But we want the imaginery part to be bounded 

, as we see from figure 43. Thus, A is real. 

 

The Schwarz Christoffel transformation maps the domain 

exterior to the broken line in the above figure into the upper 

half of the w plane with the boundary in the figure mapped 

into the real axis in the w plane. If that is the case, in the 

present problem, as we proceed along the line 

 using the transformation 

 the image points in the z-plane must lie on the line  

. Since  is known to be real, the expression  

, where w is positive 

real and is real if  Thus finally: 

 
 

There is no way to solve for w as a function of z. However, 

as before in this situation, we can plot the equipotentials and 

electric flux lines. Note that the configuration of Figures 5 a 

and b, is mapped, in the limit, by Eq.(15) into the w plane as 

show below. 

 

Table 1. 

Plates (w) Values Volts 

1 
 

1 

2 
 

1 

3 0 1 

4 1 0 

5 2 0 

. 

. 

. 

50 

. 

. 

. 

47 

. 

. 

. 

0 

 

 
Figure 6 

Observe that potential  on the line 

 is given by 

and 

. We can find the  

potential in the upper half space from the poisson  

integral formula as well . The 

 is interpreted as the imaginary part of  

Log w (the principal branch). In this way we obtained 

in the upper half of the w-plane.  

Thus, it should be apparent that  the complex  

potential in the w-plane is  

 

 
The equipotentials in the w-plane are lying on the surfaces 

for which  so that  

 
 

These are of course straight lines(rays) leaving the origin in 

the upper half of the  plane. 

Note that as   we have  for any finite . On 

the equipotentials we have 

 
We can substitute this expression into Eq.(15) to find the 

image of each equipotential in the z plane. We must be 

careful to use this expression in such a way that  

because it is this region that forms the image of the domain 

whose boundary is shown in Figures 5 (a)and(b). 

Thus, if  we have that  

and in using Eq. (152) we are restricted to . 

Conversely, if  we have   

andwe are restricted to .  

 

 
Figure 7 
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The streamlines for the above configuration are at each point 

tangent to the electric field and electric flux density vector. 

The streamlines are the lines along which the stream function 

 assumes constant values. For the present problem 

we have from Eq.(18) that the stream function in the w plane 

is 

 
We can set this equal to a number of real values and plot the 

locus in the z plane for each value. By using uniformly 

spaced values of  we can see how tightly or sparsely spaced 

these loci are in the z plane. The more tightly spaced they are 

at the boundaries (the plates in the above figures) the higher 

the concentration of charge. The charge is positive at each 

point on the plate at the  

higher potential, and negative at the  

plate of lower potential . Let  be a 

value of . We have Eq.(19) that  

These are circles of radius  , 

centered at the origin in the w-plane. These circles are valid 

only in the space . We now map circles, 

corresponding to uniformly spaced values of 

 . The radii of the circles are not uniformly  

spaced because they are equal to  which is not a linear 

function. The mapping is made from w-plane  

into the z-plane so asto produce the streamlines (flux lines) 

for the above figure. Notice this expression 

. If we wish to obtain values 

of z for the region between plates, which is where 

we will require that, 

. Also a necessary but not 

sufficient condition is that  as can be 

 seen from study of Eq.(15) from the resulting plot  

we have taken the increments of  as .  The reader might 

wish to experiment with other values. 

 

 
Streamlines 

Figure  8 

We see that charge tends to be concentrated at the edge of the 

upper plate. As we move to the left, between the plates, the 

field becomes uniform and has the behavior appropriate to an 

infinite parallel plate capacitor with no fringe field. The 

electric field is then directed downward, from the higher to 

the lower potential, and has a magnitude equal to the voltage 

difference between the plates divided by their separation, i.e. 

1 . The field as a vector is simply - . 

Ofcourse we can obtain electric field at any point of interest. 

Since, electric field   We have  

also that   thus, using Eq.(15)  

and (16) we have 

 
For every value of z of interest, we must find the 

corresponding value of w by using Eq. (15) 

Notice that at , which is between the  

plates, the electric field is downward directed with a 

magnitude of roughly 1 and points very slightly to the right 

(as predicted by Fig. 46). At , which  

is not between the plates, and is referred to as the  

region of “fringe field”, the field has weakened in the 

downward direction from the previous value and  

shows fringing toward the right, while at the third location 

we are close to the upper edge where the  

field is quite strong, points downward but has an even 

stronger component toward the right. Of  

the three values of electric field we have considered  

the third is strongest owing to the singularity in field strength 

at the point . 

 

3.1 Results Discussion 
Schwarz-Christoffel Transformation was efficiently used as a 

conformal map on physical system. Which was later 

illustrated as shown above and was visualized with the aid of 

MATLAB. Illustration 1 shows how a lightning conductor is 

modelled by the boundary-value problem illustrated in Figure 

2. The potential u is equal to zero at x = 0 and satisfies 

Laplace’s equation in the half-space x > 0, except on the line 

y  0, x > 1, where u = 1. We also showed that u to be 

bounded at infinity. Furthermore, The problem in the Z-plane 

is shown in figure 4. The solution bounded at  is 

simply shown in equation  and by inverting the 

conformal map we obtained 

which is equivalent to (7).  

Illustration 2 shows the cross section of two metallic 

conductors as shown in figure 5a.  The lower conductor is of 

infinite extent, lies along  and goes from 

 . The other conductor is semi-infinite in 

length and extends from . The second 

conductor is 1 unit above the first and is maintained at a 

potential of 1 volt while the lower one is at ground (zero) 

potential. In which our problem is to find the streamlines and 

equipotentials for this situation and find the voltage 

everywhere in space. We then apply the Schwarz-Christoffel 

transformation to the configuration shown below in Figure 5b 
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and then let the angle  tend to zero to achieve the 

configuration shown above which will be mapped onto the 

real axis in the w plane with the exterior of the above figure 

mapped into the upper half of the w plane. We were able to 

plot the equipotentials and electric flux lines as shown in 

figure 7. We see that the charge tends to be concentrated at 

the edge of the upper plate. As we move to the left, between 

the plates, the field becomes uniform and has the behavior 

appropriate to an infinite parallel plate capacitor with no 

fringe field. The electric field is then directed downward, 

from the higher to the lower potential, and has a magnitude 

equal to the voltage difference between the plates divided by 

their separation, i.e. The field as a vector is simply  as 

shown in figure 8. 

 

4. Conclusion and Future Scope  
 

Our work was based purely on conformal mapping method. 

This study dealt with the application of Schwarz christoffel 

transformation on physical system which is an extension of 

wiam et al [11] and Calixto et. al, [13] respectively. Thus, the 

following recommendations are hereby presented :  

[1] Since the study dealt with application on physical system 

an attempt should be made in applying Swartz Christoffel 

Transformation in other sectors of the economy such as in 

transport and finance. 

 [2] It is recommended that, numerical techniques should be 

used in the study of conformal maps on physical system. 
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