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Abstract- The effect of cosmological parameter on rotation of boson star oscillations is studied. The study 

found that the amplitude of rotation of boson star ground state and excited state decreased under the 

correction of cosmological constant in the Lagrangian density of Boson star. 
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1. Introduction 

In recent years, scientists have discovered that the expansion rate of the Universe is increasing rather than 

decreasing [1, 2]. The cosmic acceleration leads to an additional term in Einstein’s field equation which is 

known as the cosmological constant. The cosmological constant, the value of the energy density of the 

vacuum of space, is the simplest form of dark energy and it provides a good fit to many cosmological 

observations. A positive vacuum energy density resulting from a positive cosmological constant 

(implying a negative) pressure gives an accelerated expansion of the Universe consistent with the 

observations. Albert Einstein originally introduced this term in 1916 as a modification of his field 

equation to achieve a stationary Universe [3], but quickly abandoned the concept after Hubble’s discovery 

of the Universe expanding [4]. The work explores the consequences of a non-vanishing cosmological 

constant for spherically symmetric mass distributions of compact stars such as quark or neutron stars. 

Neutron stars (NSs) and black holes (BHs) are among the most exotic objects produced in nature. They 

are formed in the core collapse of massive stars like supernova and, in many cases, their formation is 

associated with powerful astrophysical transients such as supernovae and gammaray bursts. The first 

calculations of neutron star models were performed by Oppenheimer and his collaborators [6], who 

assumed neutron star matter to be composed of an ideal gas of free neutrons at high density. By studying 

the masses of these objects we can better understand their formation process and associated explosions. In 

addition, accurate measurements of masses of NSs and BHs provide essential input to our understanding 

of a wide range of astrophysical phenomena produced by these objects, from gravitational waves formed 

in compact object mergers to X-ray binaries. Therefore the studies of neutron stars in Einstein-Λ gravity 

and the effect of cosmological constant effect are taken into account in the study of giant objects [9]. The 

paper explores these different solutions, in particular the consequences of a non-vanishing cosmological 

constant for compact objects specifically boson star. Studying these implications can yield great insight 

into the evolution of compact objects. The boson stars are very fascinating objects as their self gravity is 

not balanced by the degeneracy pressure like the other compact stars such as a white dwarf or a neutron 

star, but the Heisenberg uncertainty principle plays a crucial role in their stability [8]. Boson stars and 

boson shells are hypothetical astronomical objects consisting of bosons. They could possibly be detected 

by gravitational radiation emitted, for example, by a pair of co- orbiting boson stars [5, 11], and could 

possibly have been formed through gravitational collapse during the primordial stages of the big bang [7]. 

The investigation of these objects coupled to gauge field and gravity determine its theoretical existence 

[29]. 
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They have also been proposed as dark matter candidates [12] and to predict the high density

nature of universe expansion. Further, just like super-massive black holes, they could even exist

in the center of galaxies [13] and could possibly explain many of the observed properties of the

active galactic core [14].The study of boson shells and boson stars in scalar electrodynamics

with a self-interacting complex scalar field Φ coupled to Einstein gravity in three-space one-

time dimensions is of very wide ranging interest [17–23]. Kleihaus, Kunz, Laemmerzahl and

List [15, 16] have recently studied boson shells harboring black holes and boson stars in scalar

electrodynamics coupled to Einstein gravity in three-space one-time dimensions in a V-shaped

scalar potential V (ΦΦ∗) ≡ V (|Φ|) = λ|Φ| (where λ is a constant) [15, 16]. They found that

the boson stars come in two types, with either ball-like or shell-like charge density [15, 16].

They also studied the properties of these solutions and determined their domains of existence

[15, 16]. So to predict such properties and their domain of existence, we study the rotation of

boson star in Newtonian approximation from which we can indirectly predict the existence and

formation of these objects in our present universe[24]. To enhance the evidence many investi-

gations are under process under the same gravity limit.The study indicates the oscillations of

boson stars with different potential in [25, 26, 30]. In this paper the effect of vacuum energy

density on oscillations of boson star is investigated.

2 Newtonian Treatment for Boson Stars

BS is considered to be a complex scalar field coupled to gravity [28]. The action principle of

such system is discussed in detail under weak field approximation. The Lagrangian density of

the BS with cosmological constant Λ is given by

£ =
R− 2Λ

16πG
+ gµν∂µΦ

∗∂νΦ−M2Φ∗Φ (1)

The metric gµν is expanded as follows gµν = ηµν + hµν with | hµν ≪ 1 | and ηµν =
diag(1,−1,−r2,−r2sinθ2). Solving for Φ through Euler Lagrange equation of motion gives

the equation of motion (EOM) of Φ as follows

✷Φ +M2Φ = 0 (2)

This is one EOM obtained from the Lagrangian density £. Further solving for Φ, it is obtained

as stationary solution for φ, as dependence on t and r only. So the solution is given as

Φ(~r, t) = φ(r, θ)eiωteimϕ (3)

The another equation of motion is given as

✷hµν = −16πGSµν − Λgµν (4)

where Sµν = Tµν − 1

2
ηµνT

Tµν = ∂µΦ
∗∂νΦ + ∂νΦ

∗∂µΦ− ηµν [η
αβ∂αΦ

∗∂βΦ− (M2)Φ∗Φ] (5)

Using the weak field approximation of general relativity [27], and knowing the only relevant

component of hµν it is found that hoo = 2V (r, θ), in which V (r, θ) is Newtonian potential.

In non relativistic limit, the gravitational binding energy E per particle must be much smaller

than M. However the scalar field frequency can be written as w = E + M with |E| << M .
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Considering all these arguments, the addition of cosmological constant to Lagrangian density

finally leads to following equations for V and φ as

−1

2M
~∇2φ+MV φ = Eφ (6)

~∇2V = 8πGM2φ− Λ (7)

The gauge in-variance of complex scalar field implies the conservation of the conserved current

such as jµ = i(∂µφφ∗−φ∂µφ∗) with conserved particle number: N = 2M
∫
φ2r2sin(θ)drdθdϕ.

The stationary solutions of the above equations with non vanishing angular momentum can be

obtained by using associated Legendre function and orthogonality relation of Pm
l (θ). So the

general solutions for the above equations are obtained as below:

φ(r, θ) =
1√
4π

∞∑

l=m

Rl(r)P
m
l (θ) (8)

V (r, θ) =
∞∑

l=0

V l(r)P l(θ), (9)

Looking the solution it can be written as coupled equation of radial as well as angular solution.

Then from the eqn.9 in which the potential function V (r, θ) is also a couple equation of Vl(r)
and Pl(θ). The potential Vl(r) can be taken as Vold(r) for the sake of convenience as taken

in our earlier paper. The most generalized form of equations for V and R using associated

Legendre polynomials are solved as follows,

V l0
′′ +

2

r
V l0

′ − l0(l0+1)

r2
V l0 = GM2(2l0 + 1)

∑

ll′

All′ l0RlRl′ − Λ (10)

1

2M
(Rl0

′′+
2

r
Rl0

′− l0(l0+1)

r2
Rl0)+2MERl0 = M

(2l0 + 1)(l0 −m)!

2(l0 +m)!

∞∑

l=m

∞∑

l′=m′

All′ l0RlV l′

(11)

where prime denotes derivative with respect to r and

All′ l0 =

∫
dxPm

l (x)P
m
l′ (x)P l0 .

The expressions are tidy to solve for the present scale. So to make the expression easy we re-

scale as required for the solutions. The re-scaling is done in the such way that it exactly follows

the ref [10]. The typical value of cosmological parameter Λ is taken around 0.020. Then the

corresponding mass of mini BS is found to be 30 GeV. Finally this also can be re-scaled in

terms of parameters of followings:

r̂ = rN̂M,

V̂ (r̂, θ) =
V (r, θ)

N̂2

R̂(r̂) =
R(r)(2G)1/2

N̂2
,
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Ê =
E

MN̂2
,

N̂ = GM2N
(2l + 1)(l −m)!

(l +m)!

Λ̂ =
Λ

M2N2
(12)

In terms of the above parameters the set of differential equations are obtained for ground and

excited states. To solve easily the above equations we take the normalization condition as:

∫
R2

l0
(r)r2dr = 1 (13)

For ground state l = 0 and m = 0 the equations for potential and radial functions are given

depending on the perturbation of potential function. It is obtained as:

V̂ 0
′′ +

2

r̂
V̂ 0

′ = R̂0
2 − Λ̂,

1

2
[R̂0

′′ +
2

r̂
R̂0

′] + R̂0Ê0 = R̂0V̂0. (14)

The first excited state has obtained a degeneracy. The degeneracy state having l = 1, m = 0
gives the equations for potential and radial functions as:

V̂ 0
′′ +

2

r̂
V̂ 0

′ =
2

3
R̂1

2 − Λ̂

V̂ 2
′′ +

2

r̂
V̂ 2

′ − 6

r̂2
V̂ 2 =

2

3
R̂1

2

1

2
[R̂1

′′ +
2

r̂
R̂1

′ − 2

r̂2
R̂1] + R̂0Ê10 = R̂1Ŵ10 (15)

where Ŵ10 = V̂0 +
2

5
V̂2.

Again the first excited state having l = 1,m = 1 the degeneracy equations are obtained for

potential and radial wave function as:

V̂ 0
′′ +

2

r̂
V̂ 0

′ =
2

3
R̂1

2 − Λ̂

V̂ 2
′′ +

2

r̂
V̂ 2

′ − 6

r̂2
V̂ 2 = −2

3
R̂1

2 − Λ̂

1

2
[R̂1

′′ +
2

r̂
R̂1

′ − 2

r̂2
R̂1] + R̂0Ê11 = R̂1Ŵ11 (16)

where Ŵ11 = V̂0 − 1

5
V̂2.

Again the second excited state having l = 2,m = 0 the degeneracy equations are similarly

obtained as:

V̂ 0
′′ +

2

r̂
V̂ 0

′ =
1

5
R̂2

2 − Λ̂

V̂ 2
′′ +

2

r̂
V̂ 2

′ − 6

r̂2
V̂ 2 −

−6V (r̂)

r̂2
=

2

7
R̂2

2 − Λ̂
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V̂ 4
′′ +

2

r̂
V̂ 4

′ − 20

r̂2
V̂ 4 −

20V (r̂)

r̂2
=

18

35
R̂2

2 − Λ̂

1

2
[R̂2

′′ +
2

r̂
R̂2

′ − 6

r̂2
R̂2] + R̂2

ˆ̃
E20 = R̂2Ŵ20 +

11

7
V (r̂)R̂2 (17)

where Ŵ20 = V̂0+
2

7
V̂2+

2

7
V̂4. These types of equations can be obtained for remaining degener-

acy values m = 1 , 2 . They can also be expressed as differential equations in terms of potential

and radial functions.

3 Result and discussion

The plots for ground, first excited and second excited state are shown in figures. The Fig.1

shows the potential presentation after introducing the cosmological constant Λ in Lagrangian

density. The potential after introducing the cosmological constant attains a sudden increase

like the potential without cosmological parameter for early initial displacement and attains a

constant potential for increasing displacement. The behavior is same and differs only in the

strength of the potential with and without cosmological constant. The decrease in the strength

of potential may be considered as due to the presence of unknown objects in the cosmological

parameter which may absorb the energy of the boson star. Its maximum value is 0.00996.
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Figure 1: Potential V with and without cosmological parameter

Fig.2 shows the radial wave function of ground state. The plot which has larger amplitude

is radial wave without the cosmological constant whereas the other plot with lower amplitude

is with the incarnation of cosmological constant Λ. The figure is of similar type of declining

amplitude with respect to radial wave function R without Λ. The value of Λ used is 0.020.

In Fig.3 it shows the first excited state radial wave function of two degeneracy factor of

m = 0 and 1 after the introduction of cosmological constant in Lagrangian density. Even

though they have same energy , their radial wave functions have different amplitude where

m = 0 and l = 1 has higher amplitude than m = 1 and l = 1. The degeneracy state i.e.

l = 1,m = 0 has higher amplitude than degeneracy state i.e. l = 1,m = 1.
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Figure 2: Radial wave function R of ground state with and without cosmological parameter
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Figure 3: Effect of cosmological constant on radial wave function R of first excited state
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Figure 4: Radial wave function R of first excited state without and with cosmological constant

for l=1 and m=0
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Figure 5: Radial wave function R of first excited state without and with cosmological constant

for l=1 and m=1
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Figure 6: Radial wave function R of second excited state with cosmological constant for l=2,

m=0,1,2
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Figure 7: Radial wave function R of second excited state without and with cosmological con-

stant for l=2,m=0
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Figure 8: Radial wave function R of second excited state without and with cosmological con-

stant for l=2, m=1
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Figure 9: Radial wave function R of second excited state without and with cosmological con-

stant for l=2, m=2
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The next two figures 4 and 5 show the comparison of radial functions of first excited state

with the inclusion of Λ and without Λ. Similar pattern is obtained for radial wave function

of first excited state in terms of decrease in the amplitude of cosmologically affected radial

wave function. In Fig.4 the radial wave function of degeneracy state l=1 and m=0 attains

maximum value around 0.0058 without the cosmological constant whereas radial wave function

has maximum value at 0.0054 with cosmological constant Λ. It indicates that all this graphs

show the decrease in amplitude of oscillation of radial wave R and potential functions while

it has the Λ value. Similarly in Fig. 5 the radial wave function has depressed amplitude with

cosmological parameter and it is found that the degeneracy m=0 and l=1 has higher amplitude

than degeneracy m=1 and l=1 for both radial and potential functions.

In Fig.6 it has compared the amplitudes of second excited states with the effect of cos-

mological constant on radial wave function. The amplitude behavior of second excited state

follows the same pattern as that of first excited state. This implies that for all degeneracy m, the

amplitude corresponding to cosmological constant have the lower value in comparison with the

amplitude of all degeneracy m corresponding to the amplitude without the cosmological con-

stant. Now in Fig.7, 8 and 9 we plot the graphs for different degeneracy m = 0, 1, 2 with and

without cosmological constant Λ. The similar behaviours are obtained in these degeneracies of

second excited states also. The degeneracy state i.e. l = 2,m = 0 has higher amplitude than

the degeneracy state i.e. l = 2,m = 1, 2. It manifest exactly the comparative presentations of

lower and higher degeneracy of second excited state with the inclusion of Λ in Lagrangian den-

sity. This type of similar pattern is obtained for radial wave function as well as potential which

is probably done by the presence of unknown objects like dark matter and other astronomical

objects in the present universe. So studying the rotation of BS shows the indication that in the

present universe, thus a formation of quark matter during the time of universe evolution.

The value of cosmological constant Λ use is equal to 0.020. The ground state energy is

found to be 0.19 while for first excited state it is 0.0078 and for second excited state is found

to be 0.0019. For both ground and excited states the values of energies is found to be increased

after the introduction of Λ in the Lagrangian density.
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