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Abstract— Nonclassicality of optical fields are the key resources in quantum information processing. Recently, Agarwal [New 

J. Phys., 13, 073008(2011)] proposed a method for engineering of a two-mode vortex state, a non-Gaussian state, by 

subtracting a photon from a two-mode squeezed state produced by down-converter from idler mode via a beam splitter with 

low reflectivity and detection of one photon by the avalanche photo diode (APD), or even better by a single-photon detector. 

We study the nonclassicalities of this state in terms of squeezing, antibunching, photon number correlation and distribution of 

photon number. In addition, we study higher-order nonclassical properties, viz., sum squeezing. We find that the non-Gaussian 

state shows strong nonclassical effects. 
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I.  INTRODUCTION  

The discovery of photoelectric effect in 1905 by Einstein may 

be regarded as the birth of quantum optics but Hanbury-

Brown and Twiss experiment, in the 1950s, on intensity 

correlations in stellar interferometry established the quantum 

optics as a separate subject. Discovery of new magical source 

of light, called the laser, motivated theoreticians to establish a 

general framework for the description of states of radiation. 

Sudarshan and Glauber, independently, introduced phase 

space distributions and formulated that the averages of 

normal-ordered products of field operators to be computed as 

integrals of the corresponding c-number functions. This 

formal correspondence between the quantum-mechanical and 

classical statistical descriptions of optical coherence functions 

is the essence of the optical equivalence theorem.   

Observation of squeezing, antibunching, and the 

associated (but inequivalent) sub-Poissonian photon statistics 

laid the foundation of the study of  “non-classical light”, i. e, 

light with properties that essentially results from the quantum 

nature of light and cannot be described classically. These 

nonclassical light features are the key resources in quantum 

information processing

Quantized single-mode electric field of frequency   

can be written as )eâeâ(E)t(Ê ti†ti
0

  , where 0E  is a 

constant and â  is annihilation operator of the radiation. 

Defining two Hermitian operators 1X̂  and 2X̂  by 

)ââ(X̂ †

2
1

1   and )ââ(X̂ †

i2
1

2  , with 
2
i

21 ]X̂,X̂[  , 

we can write )tsinX̂tcosX̂(E)t(Ê 210  . According to 

the Heisenberg uncertainty relation we must 

have
16
12

2
2

1 )X̂()X̂(  , where 
2

i
2

i X̂)X̂(  

2

iX̂ , (i=1, 2).   For an optical field in a coherent state,  , 

we have
4
12

2
2

1 )X̂()X̂(  , i. e., coherent state is a 

minimum uncertainty state. But, squeezed states have 

fluctuation below the minimum quantum fluctuations for one 

component of the radiation field, 
4
12

i )X̂(  , (i=1 or 2).                                                                                  

 Correlation function )2(G , measure of the 

correlation of light intensities at two space-time points, of the 

field in the state   is defined by 

  )t(Ê)t(Ê)t(Ê)t(Ê)t,t(G )2( (1)                                      

and the normalized correlation function, measure of 

conditional probability of detecting a photon at time t , 

given that a photon was detected at time t is 

2

)2(

)t(E)t(Ê

)t(Ê)t(Ê)t(Ê)t(Ê
)t,t(g










.     (2)                           
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Correlation function of the field at the same time point is 

defined by 

2†††)2()2( ââââââ)0(g)t,t(g  .                (3)                                  

Mandel Q-parameter is defined as, 

]1)0(g[nn]n)N̂([Q )2(2  .                          (4)                  

The photon statistics is Poissonian if Q = 0, super-

Poissonian if Q > 0, and the sub-Poissonian if 1Q0  . For 

example, a number state n  exhibits sub-Poissonian photon 

statistics: 0)N̂( 2  , nN̂   and hence Q = -1. 

Obviously, Q = 0 for a coherent state.                    

Density operator, ̂ , of any quantum state of single-

mode radiation field can be written as,   2d)(Pˆ , 

where )(P  is the Sudarshan-Glauber diagonal coherent state 

P-representation termed as “P-function”. A quantum state is 

said to be non-classical if the P-function “is less well behaved 

than a probability density”, e.g., takes on negative values or 

becomes more singular than a delta function. For the normal 

ordering (annihilation operators to the right, creation 

operators to the left), one has, for a single-mode field: 

  2nm*nm†nm† d)(P)(]â)â(ˆ[Trâ)â( .         (5)                             

For a coherent state, 00ˆ  , so 

that n
0

m*
0

nm† )(]â)â(ˆ[Tr  , which corresponds to 

)()(P 0
)2(   in the above integral. Thus, the P-

function of a coherent state may be taken as a delta function. 

In this sense, the coherent states lie “on the border” of the set 

of “classical” states because delta function is the most 

singular distribution admissible in the classical theory. 

Now, we can write 

1ââ2ââ[)ââ()ââ()X̂( ††22

4
1

2
†2†

4
12

1 

                   ])ââ(
2

† ,                                                    (6)   

i. e.,                  

}]))[((Pd1{)X̂(
2

*2*2

4
12

1       (7)                

and then squeezing can occur 
4
12

1)X̂(  , only if )(P   is 

not positive definite and, therefore, squeezed states are non-

classical in nature.  

Again, if the state of the radiation field is described 

by the P-function, we can write 

 







 222

2
2)2( )()(Pd)1(1)0(g ,           (8) 

and this shows that, for classical fields, with 0)(P  , one 

should have 0)0(g )2(  . Therefore, the property 1)0(g )2(  , 

i.e., n)N̂( 2   is the characteristic of nonclassical light 

which is called sub-Poissonian photon statistics. It is 

important to note that the condition for sub-Poissonian photon 

statistics, 1)0(g )2(  , implies the occurrence of photon 

antibunching )0(g)t,t(g )2()2(   but the converse is not 

true.  

In the present paper, Section I contains the 

introduction of nonclassicalities of optical fields. Section II 

contains the related work of the two-mode quantum vortex 

state. Section III contains the different nonclassical 

properties of optical fields to be exhibited by the two-mode 

quantum vortex state. Section IV contains the results and 

their discussions, and Section V contains the conclusions of 

the research work and reflects future directions.  

  

II. RELATED WORK  

Two-mode squeezed vacuum state is defined by 

0,0)bâbâexp( *††  ,  ire ,          (9) 

where   is a complex parameter, a and b represent two 

modes of the field with commutation relations 

1]b̂,b̂[]â,â[ ††  , 0]b̂,â[ †  , etc. The most fundamental 

process by which we study the interaction of matter with 

light is the addition or subtraction of a single photon from the 

radiation field. The ability to achieve this level of control in 

experiments has been used to produce novel non-classical 

states of light by the well-known process of 

“degaussification” and in a direct demonstration of the 

commutation relation between the annihilation and creation 

operators. Agarwal [2] proposed a novel method for 

engineering of a two-mode vortex state by subtracting [3] a 

photon from a two-mode squeezed state produced by down 

converter from idler mode b via a beam splitter with low 

reflectivity and detection of one photon by the avalanche 

photo diode (APD), or even better by a single-photon 

detector. The beam splitter has reflectivity of the order of a 

few per cent so that the probability of finding two photons is 

of the order of 
410

. Several successful experiments have 

been done for the subtraction procedure upto nearly 100% 

accuracy. The resulting two-mode vortex state of the output 

field is  

)r(coshâe0,0)b̂âb̂âexp(b̂N †i*††)s(
 

, (10) 

where, rsinh1b̂b̂N
21† 


. Its Wigner function is 

[2] 
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
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
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


222

2

)s( ~~2exp1~4
4

),(W ,         (11) 

where ~  and 
~

 are given by 
 i* ersinhrcosh~ , rcoshersinh

~ *i*   . 

III. NONCLASSICAL PROPERTIES OF TWO-

MODE QUANTUM VORTEX STATE 

In discrete variables, the nonclassicality can be 

characterised in terms of coherence and entanglement. The 

difficulty of creating a quantum superposition of states in 

some designated classical basis (such as energy eigenstates) 

is termed as the coherence, whereas the entanglement 

characterises the difficulty of expressing the state of 

combined system as the product of the states of two 

individual systems. Whereas, in continuous variables, 

coherent states of light are the most classical pure states and 

because of which it is relatively easy synthesise these states. 

Coherent states are not mutually orthogonal, and represent a 

superposition of different energies. A state is termed as a 

nonclassical state when it is not a probabilistic mixture of 

coherent states. For Gaussian states, the calculations and 

analysis of nonclassicalities are relatively easy since the 

Gaussian states can defined in terms of the first and second 

moment. But, this is not so easy for the case of non-Gaussian 

state, for example, the two-mode quantum vortex state in the 

present paper. There are a number of nonclassical properties 

of optical fields. But, here we will focus to investigate the 

squeezing, antibunching, photon number correlation and 

distribution of photon number and the sum squeezing, as an 

example of the higher-order squeezing, of the two-mode 

quantum vortex state.  

A. Squeezing Properties: 

Because of the correlations between the modes, the 

squeezing of quantum fluctuations is not in the individual 

modes but rather in a superposition of the two-modes. We 

define the superposition quadrature operators as follows: 

)X̂X̂()b̂b̂ââ(
2

1
X̂ b

1
a
12

1††

23

ab
1

 ,       (12) 

)X̂X̂()b̂b̂ââ(
i2

1
X̂ b

2
a
22

1††

23

ab
2

 .       (13) 

The operators satisfy the same commutation relations, 

2i]X̂,X̂[ ab
2

ab
1

  , and thus squeezing exists in the 

superposition quadratures if the conditions 41)X̂( 2ab
1

 , 

or 41)X̂( 2ab
2

  is satisfied. Here, 

2
ab
i

2ab
i

2ab
i

X̂)X̂()X̂(  .  

 

B. Photon number correlation and distribution of photon 

number 

In order to quantify the quantum correlation 

between the two modes, we must examine operators acting 

on both systems. Here we take combination photon number 

operators BA n̂n̂M̂   and examine the variances 

)n̂,n̂(Cov2)n̂()n̂()M̂( BA
2

B
2

A
2   ,  (14) 

where, the covariance of the photon numbers is defined as 

BABABA n̂n̂n̂n̂)n̂,n̂(Cov  .                             (15) 

According to classical probability theory, the Covariance of 

any two random variables, X and Y,  is 

YXXY)Y,X(Cov  .                                            (16) 

So, Covariance of any two observables X̂  and Ŷ is  

ŶX̂ŶX̂)Ŷ,X̂(Cov  .                                           (17) 

Again from classical probability theory given two random 

variables, we define the linear correlation function 

]1,0[)Y()X()Y,X(Cov)Y,X(J
2

1
2

1
22  .     (18) 

Then, the linear correlation coefficient is 

2
1

2
1

2
A

2
ABABA )n̂()n̂()n̂,n̂(Cov)n̂,n̂(J  .  (19) 

When 1)n̂,n̂(J BA  , the maximal value indicating strong 

inter mode correlations. The joint probability of finding 1n  

photons in mode A and 2n  photons in mode B, 
21nnP : 

2
)s(

21nn n,nP
21

 .                                                   (20) 

C. Antibunching effect: 

The criterion for existence of antibunching in two-

mode radiation is given by [4]  

01b̂b̂ââ2b̂b̂ââR ††2†22†2
ab 





  .               (21) 

D. Sum Squeezing:  

Defining the sum quadrature operator for the two 

modes as  

)b̂âeb̂âe(
2

1
X̂ ††ii 
  ,        (22) 

the sum squeezing [5] condition becomes 

2
2 ]X̂,X̂[

2

1
X̂

2
  = 1N̂N̂

4

1
21  . 

                            (23) 

We will look at the effect of correlations between different 

modes on sum squeezing. For a generalized quadrature, 

)âeâe(
2

1
X̂ †ii 
  , the variance can be expressed as  

 
 )ââ(e)ââ(e[

4

1

4

1
X̂

22i2
2

††2i22

 )]ââââ(2 ††   .                                                 (24) 
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A state is squeezed if the bracketed term becomes negative, 

to attain the smallest value one must 

have  2)ââarg(
22 , this gives 

)ââân̂(
2

1

4

1
X̂

2222   .                       (25) 

The squeezing criterion is then identical to the following 

inequality 

222
ââân̂  .                                               (26) 

Analogously, it can be shown that for sum squeezing one 

must have 

2
22

2

ba b̂âb̂âb̂ân̂n̂  .                    (27) 

Now, we will look at the effect of correlations between the 

constituent modes on sum squeezing. If the modes are 

uncorrelated, the sum squeezing condition (27) reduces to 

2222
2

ba b̂âb̂âb̂ân̂n̂  .                (28) 

For the case where none of the individual modes is squeezed, 

we have from (26), 

222

a ââân̂  , 

2
2

2

b b̂b̂b̂n̂  .                                           (29) 

Now to look at the sum squeezing between the two modes 

2222 b̂âb̂â   
2

ba b̂ân̂n̂  ,               (30) 

which shows on comparison with (27) that the state is not 

sum-squeezed. 

 

IV. RESULTS AND DISCUSSION 

We find that the quantum vortex state under investigation 

exhibit strong nonclassicalities as defined in Sections 3(A) to 

3(D). For example, for the squeezing condition defined in 

section 3(A), we plot the 41)X̂(X 2ab
1ab   as function 

of   for different values of squeezing parameter r. We can 

see from the plot (Fig. 1) that for the smaller values of r (= 

0.1, 0.2), there is no modal squeezing for any value of   . 

 

Fig. 1. Effect of squeezing on modal squeezing 

As we increase the values of r, we find stronger modal 

squeezing but not for all values of  . As we increase  , the 

modal squeezing diminishes, and again modal squeezing 

appears for specific values of  . Similarly, we see other 

nonclassical properties, discussed in Section 4, are exhibited 

by the quantum vortex state dependent on the squeezing 

parameter r and the angle  . This study shows the 

importance of two-mode quantum vortex state for possible 

application in quantum information processing where the 

nonclassicality is exploited as a resource. 

V. CONCLUSION AND FUTURE SCOPE  

We considered a non-Gaussian quantum two-mode vortex 

state and we studied its nonclassical properties in terms of 

squeezing, antibunching, photon number correlation and 

distribution of photon number. In addition, we studied higher-

order nonclassical properties, viz., sum squeezing. We find 

that this non-Gaussian state shows strong nonclassical effects. 

It is our strong hope that the state under investigation here 

will be investigated under realistic conditions in near future. 
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