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I. INTRODUCTION 

In this section, we give a short survey of the study of 

finding weaker forms of commutativity to have a 

common fixed point. In fact, this problem seems to be of 

vital interest and was initiated by Jungck [5] with thein 

troduction of the concept of commuting maps. In 1982, 

Sessa [11] introduced the notion of  weakly 

commutativity as a generalization of commutativity and 

this was a turning point in the development of Fixed 

Point Theory and its 

applications in various branches of mathematical 

sciences. To be precise, Sessa [11] defined the concept of 

weakly commuting by calling self maps maps A and B of 

a metric space(X, d) a weakly commuting pair if and 

only if 

                          d (ABx, BAx ) ≤ d( Ax, Bx ), 

for all x Є X .Further to this other authers gave some 

common fixed point theorems for weakly commuting 

maps   [1,3, 4]. Note that commuting maps are weakly 

commuting, but the converse is not true . 

In 1986, Jungck [5] introduced the new notion of 

compatibility of maps as a generalization of weak 

commutativity.Thereafter, a flood of common fixed point 

theorems was produced by using the improved notion of 

compatibility of maps. Later on, Jungck [5]   introduced 

the concept of compatible maps of type (A) or of type 

(α), Pathak et al.[2] introduced the  compatible  maps of 

type (B) or of type (ß), type (C) and type (P) in metric 

spaces and using these concepts, several researchers and 

mathematicians have proved common fixed point 

theorems. Recently, Cho et.al, [1] introduced the notion 

of compatible maps of type (A) in non-Archimedean 

Menger PM-spaces and proved some interesting results. 

In this direction, a weaker notion of compatible maps, 

called semi-compatible maps, was introduced in fuzzy 

metric spaces by Singh et. al. [12,13]. In particular, they 

proved that the concept of semi-compatible maps is 

equivalent to the concept of compatible maps and 

compatible maps of type (a) and of type (ß) under some 

conditions on the maps. 

In this paper, attempts have been made to introduce 

weak-compatible and reciprocally continuous maps in 

weak non-Archimedean Menger PM-spaces Here, we 

also present the concepts of compatible maps of type (A 

- 1) and (A-2)    Afterwards, Jain et. al. [6,7] proved the 

fixed point theorem using the concept of weak compatible 

maps in Menger space. 

II. PRELIMINARIES 

Definition 1.  A distribution function is a fction ,F: [ – 

∞,∞ ] → [0,1] which is left continuous on R, non 

decreasing and F(–∞) = 0, F(+∞) = 1.If X is non empty 

set, F: X × X → ∆ is called a probabilistic distance on X 

and F(x,y) is usually denoted by Fxy .   

 

Definition 2.  Let X be a non-empty set and D be the set 

of all left-continuous distribution functions.  An ordered 

pair (X, F) is called a  non-Archimedean probabilistic 

metric space (shortly a   N.A. PM-space) if F is a 

mapping from X×X×X into D satisfying the following 

conditions (the distribution function F(u,v,w) is denoted 

by Fu,v,w for all u, v,w  X) : 

(PM-1 ) Fu,v,w(x) = 1,  for all x >0,  if and only if at 

least two of the         three points are equal; 
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(PM-2) Fu,v,w = Fu,w,v  = Fw,v,u; 

(PM-3) Fu,v,w (0) = 0 ; 

(PM-4)  If  Fu,v,s (x1) = 1, Fu,s,w(x2)   

                     = 1  and Fs,v,w(x3) = 1  

 then Fu,v,w (max{x1, x2, x3}) = 1 

for all  u, v, w, s  X  and    x1, x2, x3 ≥ 0.  

 

Definition 3. A t-norm is a function ∆  : [0,1]×[0,1]×[0,1] 

→[0,1] which is associative, commutative, non-

decreasing in each coordinate and  ∆(a,1,1) = a  for every  

a   [0,1]. 

 

Definition 4. A  N.A. Menger PM-space is an ordered 

triple (X, F,∆), where   (X, F) is a non-Archimedean PM-

space and ∆ is a t-norm satisfying the following 

condition: 

(PM-5)  Fu,v,w (max{x,y,z})  ≥  ∆ (Fu,v,s (x),   

                                       Fu,s,w(y)),  Fs,v,w(y) 

               For all u,v,w,s  X  and x,y,z ≥ 0                                                      

If the triangular inequality (PM-5) is replaced by the 

following 

(WNA) Fu,v,w  (x) = max{Fu,v,s (x) , Fu,s,w  (x/2) * 

Fu,s,w  (x)  Fs,v,w 

(x/2) *     Fs,v,w  (x), Fu,v,s ,  (x/2)},                        for 

all x, y, z   X and t > 0, 

then the triple (X, F, *) is called a weak non-

Archimedean Menger probabilistic metric space (shortly 

Menger WNAPM-space). Obviously every Menger 

NAPM-space is itself a Menger WNA-space (see Vetro 

for the same concept in fuzzy metric spaces). 

Remark 1. Condition (WNA) does not imply that     

Fu,v,w (x)     is nondecreasing  and thus a Menger 

WNAPM- space is not necessarily a Menger PM-space. 

If F u,v,w(x) is nondecreasing, then a Menger WNA-

space is a    Menger PM-space. 

Remark 2. Recall that a Menger space is also a fuzzy 

metric space, for more details see Hadzic [14]. 

Example 1.  Let X = [0, + ∞), a * b = ab for every a, b 

 [0, 1]. Define Fx,y(t) by: Fx,y (0) = 0,  Fx,x (t) = 1  

for all  t > 0, Fx, y (t) = t for x ≠ y  and  0 <  t ≤ 1, Fx,y 

(t) = t/2 for x ≠  y and 1 < t ≤ 2, Fx,y (t) = 1 for  x ≠ y 

and t > 2. 

Then (X, F , *) is a Menger WNAPM-space, but it is not 

a PM-space. 

We recall that the concept of neighborhood in Menger 

PM-spaces was introduced by Schweizer and Sklar [10] 

as follows; 

If x  X,  ε > 0 and   (0, 1), then an (ε , )-

neighborhood of x, Ux (ε , ) is defined by 

Ux ( ε,  ) = {y X : Fx,y ( ε) > 1 - }. 

If the t-norm * is continuous and strictly increasing, then 

(X, F , *) is a Hausdorff  space in the topology induced 

by the family {Ux (ε, ) : x    X,   ε > 0,   (0, 1)} 

of neighborhoods.  

Let  Ω = g{ such that : [0, 1]  → [0, + ∞) is continuous, 

strictly decreasing, g(1) = 0 and g(0) < + ∞}. 

 

Definition 5.  A  Menger WNAPM-space (X, F, ∆) is 

said to be of type (C)g if there exists a g  Ω such that 

g(Fx,y,z(t))  ≤  g(Fx, y, a(t)) + g(Fx, a,    

                    z(t)) + g(Fa, y, z(t)) 

for all x, y, z, a  X and t  ≥ 0, where Ω = {g | g : [0,1] → 

(0,∞) is continuous, strictly decreasing, g(1) = 0 and g(0) 

< ∞ }. 

 

Definition 6.  A  Menger WNAPM-space (X, F, * ) is 

said to be type (D)g if there exists a g  Ω such that 

g(∆(t1* t2* t3) ≤   g(t1) + g(t2) + g(t3) 

for all t1, t2, t3  [0,1]. 

Remark 3. 

1. If a weak  WNA Menger PM-space (X, F, *) is 

of type (D)g then  

(X, F, ∆) is of type (C)g.On the other hand if (X, 

F, *) is a WNAPM-space such  that a * b  ≥ 

max[a+ b – 1,0] for all a,b [0,1], then (X, F, *) is 

of type (D)g For g Ω defined by g(t) = 1- t , t ≥ 0 

Throughout this paper, even when not specified (X, F, *) 

will be a complete   Menger WNAPM-space of type (D)g 

with a continuous strictly increasing t-norm ∆. 

Let    : [0, +∞) → [0, ∞)  be a function satisfied the 

condition (Φ) : 

(Φ)  is upper-semicontinuous from the right and 

(t) < t   for all   t > 0. 
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Lemma 1.  If a function  : [0,+ ∞) →  [0,+∞) satisfies 

the condition (Φ), then we have 

(1) For all t ≥ 0,   
n
lim

→∞  
n(t)  =  0,   n(t) is n-th 

iteration of (t). 

(2) If {tn}  is a non-decreasing sequence of real 

numbers and tn+1 ≤  (tn),   n = 1, 2, … then 
n
lim

→∞

 tn = 

0. 

In particular, if t ≤  (t) for all t > 0, then t = 0. 

 

Definition 7.  Let A, S : X →  X be mappings.  A and S 

are said to be compatible if 

g(FASx
n
, SAx

n

(t))  = 0 for all t > 0 ,   a   X, whenever 

{xn} is a sequence in X such that 

Axn =  Sxn  = z for some z in X . 

The notion of reciprocal continuity was defined by Pant 

[15] in ordinary metric space. Now, following the same 

line, we introduce reciprocally continuous maps in 

Menger WNAPM-spaces. 

  

Definition 8. A pair of self-maps (A,S) of a  Menger 

WNAPM-space (X, F, *) is said to be reciprocally 

continuous if g(FASx
n

,Az,  (t))  0 and g(FSAx
n

,Sz (t))  0 

for all t > 0, whenever there exists a sequence {xn} in X 

such that Axn  z , Sxn  z for some z in X as n . 

If A and S  both are continuous, then, they are obviously 

reciprocally continuous but the converse generally is not 

true . 

 

Proposition 1. Let A and S be two self-maps of a  

Menger WNAPM-space (X, F, *). Assume that (A, S) is 

compatible and reciprocally continuous,  then (A,S)  is 

weakly compatible . 

Proof. Let { xn } be a sequence in X such that Ax
n

→ z 

and Sx
n

→  z since the pair of maps (A, S) is reciprocally 

continuous, then for all t > 0, we have 
n
lim

→∞

 g( FASx
n

 , 

Az, (t)) = 0  and 
n
lim

→∞

 g( FSAx
n

 , Sz (t)) = 0 

suppose that (A, S) is compatible and reciprocally 

continuous, then, for t > 0,    have                                                                                                                   

n
lim

→∞

g(FASx
n

 , SAx
n

 
(t)) = 0, for all xn    X 

Then we get 

g(FASx
n

 , Sz (t)) ≤ g(FASx
n

 , SAx
n

 (t))  

                         +  g  (FSAx
n

, Sz  (t)), 

And so letting n →  +∞  ,we obtain 

n
lim

→∞

 g(FASx
n

, Sz (t))=0 thus ,A and S are weak 

compatible. 

Naturally, we can define the concept of compatible 

mappings of type (A-1) and type (A-1) in  Menger 

WNAPM-space is as follows. 

 
Definition 9. Two self-maps A and B of a  Menger 

WNAPM-space (X, F, *) are said to be compatible of 

type (A-1) if, for all t > 0, limn+g(FABx
n

,BBx
n

 (t)) = 0, 

whenever {xn} is a sequence in X such that Axn, Bxn → z 

for some z  X as n → +∞. 

Definition 10. Two self-maps A and B of a  Menger 

WNAPM-spac ( X , F, *)  are said to be compatible of 

type (A-2) if, for all t > 0,  limn+g(FBAx
n

,AAx
n
 (t)) = 0, 

whenever {xn} is a sequence in X such that 

Axn,Bxn  z for some z  X . 

In the following proposition, it is shown that the concept 

of compatible maps of type (A-1), type (A-2) and if A and 

B compatible maps of type (A) then the pair (A,B) is 

compatible of type (A-1) as well as type (A-2). 

 

Proposition 2.  Let A and B be two self-maps of a  

Menger WNAPM-space (X, F, *). If (A,B) are compatible 

of type A then they are weakly compatible.  

Proof. To prove  let { xn } be a sequence in X such that 

Axn , Bxn →  z for some z in  X, as n → +∞  and let the 

pair (A, B) be compatible of type (A). we have  

n
lim

→∞

 g(FABx
n

, BBx
n

  (t)) = 0 and  

n
lim

→∞

 g(FBAx
n

, AAx
n

 (t)) = 0 

g(FABx
n

 , BAx
n

  (t))  ≤   g(FABx
n

,BBx
n 

 (t))     + g(FBBx
n

, BAx
n

  

(t)), 

letting n → +∞,  we have 

g(FABx
n

 , BAx
n

  (t)) g = 0 for all t > 0 

Thus ABxn =BAxn and we get (A, B) is weakly 

compatible .Using similar arguments as above, the reader 

can easily prove the following result. 

 (3) 



  ISROSET- Int.J.Sci.Res. in Mathematical & Statistical Sciences       Vol-3 (2), PP (1- 8) Apr  2016, E-ISSN: 2348-4519 

    © 2016, IJSRMSS All Rights Reserved                                                                                                                          4 

Proposition 3.  Let A and B be two self-maps of a  

Menger WNAPM-space.  If the pair (A,B) is weakly-

compatible and reciprocally continuous and {xn} is a 

sequence in X such that  Axn, Bxn  z for some z  X as  

n  +, then ABz = BAz. 

Proof. Suppose {xn} is a sequence in X defined by 

xn = z, n = 1, 2, ... and Az = Bz. 

Then we have, 

Axn, Bxn → Bz  as  n → ∞   

Since (A, B) is weakly compatible , by triangle inequality 

g(FTBx
n
,BBx

n
 (t)) ≤  g(FTBx

n
,Bz (t)) +   g(FBz,BBx

n
 (t)) 

Since    BAxn → Az   and   AAxn → Az         as n → ∞     

then    g(FTBx
n 

,Bz (t)) = 0  and   g(FBz ,BBx
n
 (t)) = 0 

  g(FTBx
n
,BBx

n
 (t)) = 0 

 g(FTBz  ,BBz   (t)) = 0 

i.e. BAz = AAz.                   (1) 

Similarly, we can have 

ABz = BBz.                  (2) 

Hence, by (1) and (2), we have 

ABz = BAz = AAz = BBz 

Before proving our main theorem, we need the following 

lemma . 

Lemma 2.  Let A, B, L, M, S and T be self-maps of a 

complete  Menger WNAPM-space (X, F, *) of type (D)g, 

satisfying 

(i)  L(X)  ST(X), M(X)  AB(X); 

(ii) for all x, y  X and t > 0, 

g(FLx,My(t))                                                                  

(max{g(FABx,Sty(t)),g(FLx,ABx(t)),g(FM

y,Sty(t)) ,    ½[g(FABx,My(t))+g(FLx, Sty  

(t))]}), 

where the function  : [0,+∞)  [0,+∞) satisfies 

the condition (Φ) 

proof: Let x0     X   Then the sequence {yn} in X, 

defined by   

Lx2n = STx2n+1 = y2n  and              ABx2n+1 = 

Mx2n+2 = y2n+1     for n = 0, 1, 2, ...,           such that 

g(Fy
n
,y

n+1

(t)) = 0   for all t > 0   is a Cauchy sequence in 

X. If is not a Cauchy sequence in X, there exist ε > 0, t > 

0 and two sequences { mi },{ ni } of positive integer such 

that, 

(a) mi > ni + 1 and ni →∞ as i→∞ 

(b) Fym
i
 , yn

i
 (t0))  < 1 – ε and Fym

i
- 1, yn

i
 (t0)) ≥ 1- ε0  ,   

i = 1,2,3…     

Thus, we have      

g (1- ε0)  <   g( Fym
i
 , yn

i
 (t0))                       ≤  g( Fym

i
 , ym

i
- 

1  (t0))          +  g( Fym
i
- 1 , yn

i
 (t0))             

 ≤ g( Fym
i
 , ym

i
- 1 (t0))                      + g(1- 

ε0  ) 

And letting i → +∞,  we get 

g(Fym
i
 , yn

i
 (t0)) = g(1- ε0  )                                                                                 

(3) 

on the other hand, we have 

g(1- ε0  ) <  g(Fym
i
 , yn

i
 (t0)) ≤  g( Fym

i
 , yn

i
+ 1 (t0))+ g( F yn

i
+ 

1 , yn
i
 (t0))                (4) 

Let us assume that both mi and ni are even, By contractive 

condition (ii),we get 

g( Fym
i
 , yn

i
+ 1 (t0))  =   g( FLxm

i
 , Mxn

i
+ 1 (t0)) 

                 ≤φ(max{g(FABx,Sty(t)) 

,g(FLx,ABx(t)),g(FMy,STy(t)),½[g(FABx,My(t)) +g(FLx,STy(t))]}), 

that is 

g( Fym
i
 , yn

i
+ 1 (t0))   ≤  φ(max{g(Fym

i
- 1  , yn

i
 (t0)),  g(Fym

i
- 1  

, ym
i
 (t0)) , g(Fyn

i
 , yn

i
+ 1 (t0)) ,½                               

F ym
i
- 1  , yn

i
+ 1 (t0)) +g(Fyn

i
 , ym

i
 (t0))]}), 

putting this values in (6), using (5) and letting i → +∞, we 

get 

g(1- ε0  )       ≤    φ(max{g(1- ε0  ), 0, 0 g(1- ε0)}) = φ{g(1- 

ε0  ) } < g(1- ε0  ) 

a contradiction. Hence {yn}is a Cauchy sequence in X.  

 

III. MAIN RESULT 

Theorem 1.  Let A,B,L,M,S and T be self-maps of a 

complete  Menger WNAPM-space (X, F, *) of type (D)g, 

satisfying 
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(1.1)  L(X)  ST(X), M(X)  AB(X); 

(1.2) for all x, y  X and t > 0, 

g(FLx,My (t))    (max{g(FABx,Sty (t)), g(FLx,ABx, 

(t)), g(FMy,Sty  (t)), 

    ½ [g(FABx,My  (t)) + g(FLx,Sty  (t))]}), 

where the function  : [0,+1)  [0,+1) satisfies 

the condition (Φ). 

(1.3)  AB = BA, ST = TS, LB = BL, MT = TM; 

(1.4)  the pair (M,ST) is compatible. 

If the pair (L,AB) is weakly-compatible and reciprocally 

continuous, then A, B, L, M, S and T have a unique 

common fixed point. 

Proof  Let x0     X    

From condition (3.1.1)     x1, x2  X  such that 

Lx1 = STx2 = y1     and     Mx0 = ABx1 = y0. 

Inductively, we can construct sequences {xn} and {yn} in 

X such that 

(1.5) Lx2n = STx2n+1 = y2n     and      Mx2n+1 = 

ABx2n+2 = y2n+1 

for n = 0, 1, 2, ... . 

We prove that   g(Fy
n
,y

n+1
 (t)) = 0 for all t > 0. 

From (1.4) and (1.5), we have 

g(Fy
2n

, y
2n+1

 (t)) = g(FLx
2n

, Mx
2n+1

 (t)) 

  ≤(max{g(FABx
2n

, STx
2n+1

                                                 

(t)), g(FABx
2n

, Lx
2n

 (t)), 

                          g(FSTx
2n+1

, Mx
2n+1

(t)), 

 ½(g(FABx
2n

, Mx
2n+1

(t)) +     

g(FSTx
2n+1

, Lx
2n

 (t)))}) 

                        =   (max{g(Fy
2n-1

,y
2n

 (t)), g(Fy
2n-1

, y
2n

 

(t)), g(Fy
2n

, y
2n+1

 (t)), 

½(g(Fy
2n-1

, y
2n+1

 (t)) + g(1))}) ≤ (max{g(Fy
2n-1

, y
2n

 (t)), 

g(Fy
2n

, y
2n+1

 (t)), 

     ½(g(Fy
2n-1

, y
2n

 (t)) + g(F y
2n

, y
2n+1

 (t))}). 

If   g(F y
2n-1

, y
2n

 (t))  ≤  g(F y
2n

, y
2n+1

 (t))  for all t > 0, 

then by (1.4) 

  g(F y
2n

, y
2n+1

 (t))  ≤   g(F y
2n

,  y
2n+1

 (t))), 

on applying Lemma 2,  we have 

g(F y
2n

, y
2n+1

 (t)) = 0  for all t > 0. 

Similarly, we have 

g(F y
2n+1

, y
2n+2

 (t)) = 0 for all t > 0. 

Thus, we have 

g(F y
n
, y

n+1
 (t)) = 0  for all t > 0. 

On the other hand, if  g(Fy
2n-1

,y
2n

 (t)) ≥  g(Fy
2n

,y
2n+1

 (t)), 

then by (3.1.4), we have 

g(Fy
2n

,y
2n+1

 (t))  ≤   (g(Fy
2n-1

,y
2n

 (t)))  for all t > 0. 

Similarly,  g(Fy
2n+1

,y
2n+2

 (t)) ≤  (g(Fy
2n

,y
2n+1

 (t)))  for all 

t > 0. 

Thus, we have 

g(Fy
n
,y

n+1
 (t))  ≤    (g (Fy

n-1
,y

n
 (t)))  for all t > 0  and  n 

= 1, 2, 3, … . 

Therefore, by Lemma 2, 

g(Fy
n
, y

n+1
 (t)) = 0  for all t > 0, which implies that {yn} 

is  a Cauchy sequence in X by Lemma 1. 

Since (X, F, )  is complete, the sequence {yn} 

converges to a point z   X. Also its subsequences 

converges as follows : 

(1.6){Mx2n+1}→  z and{STx2n+1}   →  z, 

(1.7){Lx2n} →  z  and {ABx2n}  →  z. 

Now since the pair of maps (L, AB)is reciprocally 

continuous, therefore, we have g(FLABx
2n

, Lz (t)) → 0 

and   g(FABLx
2n

, ABz (t)) →0 as n→+∞. 

As (L, AB) is weakly compatible, so by Proposition 3,  

we have 

L(AB)x2n  →  ABz. That is  ABz = Lz 

  Putting  x = ABx2n  and  y = x2n+1  for t > 0  in (1.2), 

we get 
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g(FLABx
2n

,Mx
2n+1

 (t)) ≤  (max{g(FABABx
2n

,STx
2n+1

 

(t)), g(FABABx
2n

, LABx
2n

 (t)), g(FSTx
2n+1

, Mx
2n+1

 (t)), 

   ½(g(FABABx
2n

, Mx
2n+1

 (t)) + g(FSTx
2n+1

, LABx
2n

 

(t)))}). 

Letting n →∞, we get 

g(FABz,z (t))    ≤      (max{g(FABz,z (t)), g(FABz, ABz 

(t)), g(Fz, z (t))      ½(g(FABz, z (t)) + g(Fz, ABz (t)))}). 

i.e. g(FABz,z (t)) ≤  (g(FABz,z (t))) 

which implies that  g(FABz,z(t)) = 0 by Lemma 2 and so 

we have     ABz =z  

  Putting  x = z   and   y = x2n+1  for t > 0  in (1.2), we get 

g(FLz,Mx
2n+1

(t)) ≤   (max{g(FABz,STx
2n+1

(t)), g(FABz, 

Lz (t)),   g(FSTx
2n+1

, Mx
2n+1

 (t)), ½(g(FABz, Mx
2n+1

 (t)) + 

g(FSTx
2n+1

, Lz (t)))}). 

Letting n →∞  , we get 

g(FLz,z (t)) ≤   (max{g(Fz,z, (t)), g(Fz, Lz (t)), g(Fz, z 

(t))    ½(g(Fz, z (t)) + g(Fz, Lz (t)))}) 

i.e.  g(FLz,z (t)) ≤   (g(FLz,z (t))) 

which implies that  g(FLz,z (t)) = 0 by Lemma 2 and so 

we have 

Lz = z. 

Therefore,  ABz = Lz = z.    

  Putting  x = Bz   and  y = x2n+1  for t > 0  in (1.2), we 

get 

g(FLBz,Mx
2n+1

(t))≤(max{g(FABBz,STx
2n+1

(t)),g(FAB

Bz,LBz(t)),g(FSTx
2n+1

,Mx
2n+1

(t)),½(g(FABBz, Mx
2n+1

(t)) 

+ g(FSTx
2n+1

, LBz (t)))}). 

As BL = LB,  AB = BA,  so we have 

L(Bz) = B(Lz) = Bz  and   AB(Bz) = B(ABz) = Bz. 

Letting n →∞ , we get 

g(FBz, z (t)) ≤   (max{g(FBz,z (t)),g(FBz, Bz (t)),g(Fz,z 

(t)),  ½(g(FBz, z (t)) + g(Fz, Bz (t)))}) 

i.e     g(FBz, z (t)) ≤   (g(FBz, z (t))) 

which implies that  g(FBz, z (t)) = 0 by Lemma 2 and so 

we have 

Bz = z. 

Also,  ABz = z  and so Az = z. 

Therefore,    Az = Bz = Lz = z.  (1.8) 

As L(X)    ST(X),  there exists w  X such that z = Lz 

= STw. 

Putting x = x2n and  y = w  for t > 0  in (1.2),  we get 

g(FLx
2n

,Mw (t))  ≤   (max{g(FABx
2n

,STw (t)), 

g(FABx
2n

, Lx
2n

 (t)), g(FSTv, Mw (t)), 

   ½(g(FABx
2n

, Mw (t)) + g(FSTw, Lx
2n

(t)))}). 

Letting n →∞  and using equation (1.7),  we get 

g(Fz,Mw (t))  ≤     (max{g(Fz, z (t)), g(Fz, z (t)), g(Fz, 

Mw (t)), ½(g(Fz, Mw (t)) + g(Fz, z (t)))}) 

i.e. g(Fz,Mw (t))  ≤   (g(Fz,Mw (t))) 

which implies that  g(Fz,Mw (t)) = 0 by Lemma 2 and so 

we have 

z = Mw. 

Hence,  STw = z = Mw. 

As (M, ST) is weakly compatible, we have 

STMw = MSTw. 

Thus, STz = Mz. 

    Putting  x = x2n, y = z   for t > 0  in (1.2),  we get 

g(FLx
2n

,Mz (t)) ≤   (max{g(FABx
2n

,STz (t)), g(FABx
2n

, 

Lx
2n

 (t)), g(FSTz, Mz (t)),  ½(g(FABx
2n

, Mz (t)) + 

g(FSTz, Lx
2n

 (t)))}). 

Letting n →∞  and using equation (3.8) and Step 5,  we 

get 

g(Fz,Mz (t)) ≤   (max{g(Fz,Mz (t)), g(Fz, z,(t)), g(FMz, 

Mz (t)), ½(g(Fz, Mz (t)) + g(FMz, z (t)))}) 

i.e.    g(Fz,Mz (t)) ≤   (g(Fz,Mz (t))) 

which implies that  g(Fz,Mz (t)) = 0 by Lemma 2 and so 

we have 

z = Mz. 
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Putting x = x2n   and  y = Tz    for t > 0  in (1.2),  we get 

g(FLx
2n

,MTz (t)) ≤   (max{g(FABx
2n

,STTz (t)), 

g(FABx
2n

, Lx
2n

 (t)),  g(FSTTz, MTz (t)), ½(g(FABx
2n

, 

MTz (t)) + g(FSTTz, Lx
2n

(t)))}). 

As MT = TM   and ST = TS,   we have 

MTz = TMz = Tz   and ST(Tz) = T(STz) = Tz. 

Letting n →∞  we get 

g(Fz,Tz (t)) ≤   (max{g(Fz,Tz (t)), g(Fz,z (t)), g(FTz,Tz 

(t)),½(g(Fz,Tz (t)) + g(FTz,z (t)))}) 

i.e   g(Fz,Tz (t)) ≤   (g(Fz,Tz (t))), 

which implies that  g(Fz,Tz (t)) = 0 by Lemma 2 and so 

we have 

z = Tz. 

Now     STz = Tz = z  implies  Sz = z. 

Hence   Sz = Tz = Mz = z.    

             (1.9) 

Combining (1.8)  and (1.9), we get 

Az = Bz = Lz = Mz = Tz = Sz  =  z. 

Hence, the six self maps have a common fixed point z. 

(Uniqueness)  Let u be another common fixed point  of 

A, B, S, T, L and M;  then 

Au =  Bu = Su = Tu = Lu = Mu = u. 

Putting  x = z   and   y = u    for t > 0  in   (1.2), we get 

g(FLz,Mu (t)) ≤   (max{g(FABz,STu (t)),                                        

g(FABz, Lz (t)), g(FSTu, Mu (t)), ½(g(FABz, Mu (t)) + 

g(FSTu, Lz (t)))}). 

Letting n →∞,  we get 

g(Fz, u (t)) ≤   (max{g(Fz, u (t)),                        g (Fz,   

z  (t)), g(Fu, u (t)), ½(g(Fz, u (t)) + g(Fu, z (t)))}) 

                  =    (g(Fz, u (t))), 

which implies that  g(Fz,u (t)) = 0 by Lemma 2 and so we 

have 

z = u. 

Therefore, z is a unique common fixed point of A, B, S, 

T, L and M. 

This completes the proof. 

Remark 1.1. If we take B = T = I, the identity map on X 

in theorem 1, then the condition  (b) is satisfied  trivially 

and we get 

Corollary 1.1.  Let A, S,  L, M : X → X be mappings 

satisfying the condition: 

(a) L(X)   S(X),    M(X)   A(X); 

(b) Either A or L is continuous; 

(c)      (L, A) is reciprocally continuous and weakly 

compatible . 

(d)g(FLx,M(t)) ≤(max{g(FAx, Sy (t)),                             

g(FAx, Lx (t)), g(FSy, My (t)),   

½(g(FAx, My (t)) + g(FSy, Lx 

(t)))}) 

for all t > 0, where a function      : [0,+ ∞) → [0,+ ∞) 

satisfies the condition (Φ). 

Then A, S, L and M have a unique common fixed point in 

X. 

Remark 1.2. In view of remark 3.1, corollary 3.1 is a 

generalization of the result of Cho et. al. [2] in the  sense 

that condition of compatibility of the pairs of self maps in 

a  weak non-Archimedean Menger PM-space has been 

restricted to weak compatible in a  weak non-

Archimedean Menger PM-space and only one of the 

mappings of the compatible pair is needed to be 

reciprocally continuous. 
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