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 Introduction: Acceptance sampling plan is a field of 

statistical quality control. Tagaras (1994) pointed out that in 

recent years more emphasis was placed on process control 

and off-line quality control methods, but acceptance 

sampling plan still remained important functions in many 

practical quality control systems. Sower et al. (1993) 

proposed an integrated model of statistical process 

control(SPC) and acceptance sampling plan. Acceptance 

sampling plan might be useful in an SPC environment under 

the following three situations: 

1. When a supplier has not yet achieved statistical 

control of the process. 

2. When a process may shift from an in-control state to 

an out-of-control state. 

3. When a customer specifies that a standard acceptance 

sampling plan be used. 

 

Although there certainly exist situations in which screening 

inspection (i.e., 100% inspection) are feasible, there are also 

many cases where sampling is inevitable either because 

inspection is destructive, or because lot sizes are large and 

inspection is expensive, time-consuming, and high error rate. 

The classical Dodge-Romig (1959)  rectifying attributes 

sampling plans provide the lot tolerance percent defective 

(LTPD) on each lot or the average outgoing quality limit 

(AOQL) protection for the lots. The design of Dodge-Romig 

(1959)  AOQL single sampling plans (SSP) by attributes is 

based on the following four assumptions: (1) the 

manufacturing process is normally in binomial control with a 

process average fraction defective; (2) inspection is 

rectifying and rejected lots are totally inspected; (3) to make 

sure that the average quality of his product is satisfactory, the 

producer chooses an AOQL value, and considers only 

sampling plans satisfying this specification; and (4)among 

plans having the specified AOQL, the producer chooses the 

one minimizing average total inspection (ATI) for product of 

process average fraction defective. Montgomery (1991)  

pointed out that variables sampling plans usually involve 

smaller sample size than attributes sampling plans for the 

same levels of protection. Because of economic reasons, 

Klufa (1994) ,(1997) presented the designs of Dodge-Romig 

LTPD and AOQL SSP by variables. The traditional concept 

of conformance to specifications is that items meet the 

specification limits. Taguchi (1986) refined the quality of 

product and presented the quadratic quality loss function for 

reducing total losses to the society. In general, there is an 

optimal target value for every measurable quality 

characteristic. Any deviation from this target value incurs an 

economic loss, even if the value of the quality characteristic 

lies within the specification limits. The losses of quadratic 

function are expressed in monetary terms and are easy to 

understand and to apply in the evaluation of product or 

process improvement. The quadratic quality loss function has 

been succeeded in the application of SPC, sampling plans, 

and specification limits design. Recently, Wu and Tang 

(1998), Li (1997), Maghsoodloo and Li (2000) , Phillips and 

Cho (2000) , Li and Chou (2001), Li and Wu(2001)  , 

Duffuaa and Siddiqi (2002), and Rahim and Tuffaha (2004)  

addressed the different problems of unbalanced tolerance 

design and optimum manufacturing target with the quadratic 

quality loss functions. Tagaras(1994) adopted the quadratic 

quality loss function for designing the parameters of 

acceptance sampling plan by variables. Kapur and Wang 

(1988), Kapur (1994), Kapur and Cho(1994), (1996) [20,21] 

and Chen and Chou (2003) ,  addressed the problems of 

quality loss function applied in the economic design of 

specification limits. Kapur and Wang pointed out that one of 

the short-term approaches to reduce variance of the units 

shipped to the customer is to put specification limits on the 

process and truncate the distribution by inspection. Chen 

(1999)  and Chen and Chou (2001)  considered the problems 

of the integrated designs of Dodge-Romig  AOQL SSP by 

attributes and specification limits and Dodge-Romig  LTPD 

SSP by variables and specification limits, respectively. It 

turns out that not only the sampling plan parameters, but also 

the specification limits have to be looked upon as design 

parameters in order to minimize the expected total cost. Corresponding Author: Vispute. S. 
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Eagle (1954) discussed the relationship between the 

probability of accepting non-conforming units and 

measurements error. He claimed that in the presence of 

imprecision one should set control limits inside 

specifications in order to protect the consumer’s risk or 

outside specifications to protect the producer’s risk. Grubbs 

and Coon (1954) derived formulae to adjust imprecision for a 

single specification when one wishes to maintain the 

consumer’s risk and producer’s risk (or  the linear 

combination of both) at a certain level. Diviney and David 

(1963) examined the same type of problem with which 

Grubbs and Coon dealt; however, they did not attempt to 

compensate for bias. In addition, Walsh et al. (1959) 

considered the same case wherein the variance of the 

population was unknown. They derived an adjustment 

method for one specification . To the best knowledge of the 

authors, the case concerning both bias and imprecision has 

not yet been considered. Two separate research efforts in 

recent years have taken a new look at variables acceptance 

sampling by attacking traditional approaches underlying 

sampling plan selection. One such traditional approach has 

been to design the sampling plan based upon � and � in a 

such way that good lots are accepted a high fraction (1 −
�) of the time while poor lots accepted only a low proportion 

(�) of the time. The alternative procedure presented recently 

selects sampling plans parameters based upon costs or 

economic factors, and in such way eliminates the to define 

�, �,  good  and poor . the other tradition attacked has been 

the assumption that all measurements are error free , when ,in 

fact, it is well known that this is not the case . Recent results 

indicate that the effect of measurement error on the sampling 

plan operating characteristics. curve can be significant  

 

The choice of variables sampling plans using cost effective 

criteria is a subjects covered by Schmidt et al. (1974).It has 

also been discussed by Chapman(1972) and Ailor et al. 

(1975).In order to base sampling plan selection upon 

economics, it is first necessary to develop a mathematical 

model of the quality control inspection process for the item 

or dimension of interest . such a model typically may include 

the following four typs of costs: 

(1) Inspection Cost the direct and indirect cost 

associated with inspecting unit of product. 

(2) Acceptance cost-  the cost of accepting some 

defective items in a lot which has been accepted 

based upon the sample inspection. 

(3) Rejection cost (screening)- the cost of repairing or 

replacing defective items found during the 

screening of a rejected lot. 

 

Rejection cost(scrapping)- the net value lost due to the 

scrapping of each item in a rejected lot plus the cost of the 

scrapping operation, per se. Schmidt et al. (1974) considers 

two models ,one in which lots screened upon rejection, and 

one in which lots are rejected. The authors then proceed to 

find an optimum variables sampling plan based upon 

minimum total expected cost.   

In  these chapter  is concerned with the effect of second order 

autocorrelation given in chapter-II for three different 

situations on economic model Case and Bennett(1977)  for 

variables acceptance sampling plan. This chapter 

quantitatively combines economic and autocorrelation and 

clearly illustrates the effects of autocorrelation in three 

different situations where variables sampling plan are used. 

 

 Economic model forvariables sampling plan: When 

product dimensions such as height, weight, strength, etc., are 

of concern, there may be an upper specification, a lower 

specification, or both. For example, if there are lower and 

upper specifications, � and U, a product item is said to be 

acceptable if its dimension, 	, is such that L≤X≤U ; 

otherwise, it is defective. 

 

A variables sampling plan, used to determine the 

acceptability of an individual lot, is characterized by its 

sample size, n, and acceptance constant, k. A random sample 

of size n is taken and the appropriate dimension of each item 

is measured. The measurements are averaged and constitute 

the statistics  	̅ , which is then compared against decision 

criteria 
LxDC ,

and
UxDC ,

.for upper and lower specification 

limits, this comparison proceeds as follows:     

 

  If σσ kUDCxkLDC UxLx −=≤≤+= ,,
, Accept 

the lot 

                                              Otherwise, reject the lot. 

                        The lot standard  deviation ,σ, is often 

assumed to be known and constant .The decision variables ,� 

and � , or equivalently �,
UxDC ,

and 
LxDC ,

,may then be 

determined using either  the  α , β   method or  cost  based  

modeling  as  in  Schmidt et al. (1974) 

�      Sample  size.                         

�     Acceptance constant, 

�      Lower specification limit. 


      Upper   specification limit                        

	      True measurable dimension 

	̅    True sample average 

�    True value of lot mean 

�     true standard deviation of lot. 

�(	/�, � ) Lot distribution of true measurements. 

ℎ(  	̅/�, �/√�)  distribution of true s ample average. 

�(�)         prior distribution of true mean dimension from lot. 

LxDC ,
  Lower decision criterion which the observed 

sample average must equal or exceed if the lot 

is to be accepted 

UxDC ,
        Lower decision criterion which the observed 

  sample  average must equal or below if the lot is 

to be accepted. 
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0x Observed dimension.  

)( 0xf Observed lot distribution   

0x      Sample mean observed.                      

1C       Cost per unit of sampling inspection. 

aC Cost per unit of a defective item contained in an accepted 

  Lot. 

rC      Cost of rejecting an entire lot. 

 

The mathematical model to be used for illustrative purpose is 

very simple conceptually. This because it will later be used 

to   illustrative the effect of autocorrelation, and presentation 

of more complete and difficult model would serve no 

purpose. From a lot of size � item a random sample of size 

� is drawn. Each item measured and the sample average 

compared against lower and upper decision criteria .If the lot 

accepted, all �  items are accepted. If the lot is rejected, all 

� items in the lot will be rejected and disposed easily in 

three term. They include inspection, acceptance, and 

rejection costs. 

 

Inspection cost is equal to the cost per unit of sampling 

inspection times the sample 

Sizen Thus, Inspection cost = nC1 (1) 

 

Note that the cost of inspection per item is often not a 

constant as inspectors are paid by the week. However ,for 

purposes of this model ,the cost per unit will be assumed 

constant , as if the number of inspectors is perfectly matched 

to the workload , or these  inspectors can perform other 

duties when not busy on inspection . 

 

Acceptance cost given that the lot is accepted and has mean 

 � is just the cost per unit of a defective item contained in an 

accepted lot times the number of such defectives. This cost 

may be difficult to ascertain ,particularly when loss of  

“goodwill “ is a factor; however ,none the less it is valid cost 

.since the total number of defectives is unknown, an expected 

value  is taken using the number of units in lot times the 

proportion of dimension which fall outside specification . 

Thus,    

 

Acceptance cost given acceptance and given 

 

�= ]),/(1[1 dxxfNC

U

L

∫− σµ        (2) 

To remove the condition on acceptance, the terms of eqn. (2) are taken times the Probability of acceptance, 

}( ,, UxLx DCxDCP ≤≤  .The condition on � is removed by taking the expectation with respect to µ . The unconditional 

acceptance cost may then be expressed as 

Acceptance cost  

µµσµσµ
µ

dgxdnxhdxxfNC

Ux

Lx

DC

DC

U

L

a )(])/,/(][),/(1[
,

,

∫∫∫ −=                                  (3) 

Finally, the rejection cost given that the lot is rejected and has mean  � is just the cost of rejecting an entire lot , �� .The 

conditions on rejection and  � are removed in much the same way as for the acceptance cost term. That is, 

 

 

Rejection cost  

.)(])/,/(1[

,

,

µµσµ
µ

dgxdnxhC

Ux

Lx

DC

DC

r ∫∫ −=      (4) 

The total expected cost per lot for as sampling plan having parameters 
LxDCn ,, and  

UxDC ,
 is  

.)(])/,/(1[

)(])/,/(][),/(1[

,

,

,

,

1

µµσµ

µµσµσµ

µ

µ

dgxdnxhC

dgxdnxhdxxfNCnCTC

Ux

Lx

Ux

Lx

DC

DC

r

DC

DC

U

L

a

∫ ∫

∫∫∫

−+

−+=

               (5)

 

 

 

Economic model forvariables sampling plan under 

second order autocorrelation: Consider a manufacturing 

process where a quality characteristic is measured at 

equidistance time points 1, 2, 3, … n. This situation may 
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occur in a discrete manufacturing process which produces 

discrete time 1, 2, 3 ... n, with one quality characteristic of 

interest. It may also occur in a continuous manufacturing 

process where the quality characteristic of interest is 

measured at discrete equidistant time points. We denote the 

behavior of the quality characteristic as x1, x2,.... xn. It will 

assumed that on EPC control action can be represented by 

some controllable variable or factor xt, such that  

xt = µ + ξt,             (6) 

 Where µ is a constant, and  ξt is a stationary time 

series with zero mean and standard deviationσ. A Durbin 

and Watson (1950) “d” statistic can be used to detect the 

presence or absence of serial correlation. The problem, 

however, is that to do once the suspicion of dependence via 

the serial correlation test is confirmed. If serial correlation 

exists we use identification techniques to define the nature 

of ξt. When identification is complete, the likelihood 

function can provide maximum likelihood estimate of the 

parameters of the identified model. 

  

Suppose that a correlation test revealed the presence of data 

dependence and identification technique suggested 

autoregressive model of order two AR (2) say, then we can 

express ξt of equation (6) as  

   

 

ntkttt ....,2,1,2211 =∈++= −− ξαξαξ                              (7) 

Where 

(i) ( )2
,0~ ∈∈ σNt  

(ii) ( )




≠

=
=∈∈ ∈

γ

γσ
γ

t

t
t

0
,cov

2

 

 

The Class of stationary models that assume the process to remain in equilibrium about a constant mean level µ. The variance of 

AR (2) process is given by: 

( )[ ].11

1
2

1

2

2

2

2

22

αα

σ

α

α
σ

−−








+

−
= ∈

                               (8) Following Kendall and Stuart (1976) 

it can be shown that for stationary, the roots of the characteristic equation of the process in equation (7) 

( ) 2

211 BBB ααφ −−=                                     (9)   must lies outside the unit circle, which 

implies that the parameters α1 and α2 must satisfy the following conditions : 

112 <+ αα  

112 <− αα  

11 2 <<− α                (10) 

Now If 
1

1

−
G  and 

1

2

−
G   are the roots of the characteristic equation of the process given by equation (9) then 

2

4 2

2

11

1

ααα ++
=G ….(11) 

2

4 2

2

11

2

ααα +−
=G  (12) 

 

For stationary we require that .2,1,1|| =< iGi  Thus, three situations can theoretically arise: 

(i) Roots G1 and G2 are real and distinct ( )04.,. 2

2

1 >− ααei  

(ii) Roots G1 and G2 are real and equal ( )04.,. 2

2

1 =− ααei  

(iii) Roots G1 and G2 are complex conjugate ( )04.,. 2

2

1 <− ααei . 

When the serial correlation is present in the data, we have for the distribution of the sample mean ,x  its mean and variance is 

given by, 

( ) µ=xE  
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Var ( ) ( )n
n

x ap ,, 21

2

ααλ
σ

= ,                                    (13) 

Where ( )nap ,, 21 ααλ  depends on the nature of the roots G1 and G2 , and for different situations is given as follows : 

 

(i) If G1 and G2 are real and distinct, 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( )








+−

−
−

+−

−
= nG

GGGG

GG
nG

GGGG

GG
nap ,

1

1
,

1

1
,, 2

2121

2

12
1

2121

2

21
21 λλααλ  

= ( ),,, 21 nrd ααλ                                (14) 

Where, ( ) ( )
( ) 









−

−
−

−

+
=

2
1

12

1

1
,

G

G

n

G

G

G
nG

n

λ  

(ii) If G1 and G2 are real and equal 

( ) ( )
( )

( ) ( ) ( ) ( )
( ) ( ) 









−+

+−−−+
+

−

−
−









−

+
=

n

nnn

ap
GG

GGnGG

Gn

GG

G

G
n

11

1111
1

1

12

1

1
,,

2

22

221 ααλ  

= ( )nre ,, 21 ααλ                                        (15) 

(iii) If G1 and G2 and complex conjugate 

( ) ( ) ( ) ( )( )

( )n

nudznudW
n

d
udn

cc

ap

,,

,,,,
2

,,,

21

21

ααλ

γααλ

=







++=

(16)Where

( ) ( )
( ) ( )uddd

uddd
ud

cos211

cos121
,

22

24

−++

−+−
=γ , 

( ) ( ) ( ) ( )

( ) ( ) uuddd

undududd
nudW

n

sincos211

)2(sin2sin1sin12
,,

222

442

−++

−−+−+
=

+

, 

( ) ( ) ( ) ( )

( ) ( ) uuddd

undundund
nudZ

nnn

sincos211

)2(sin1sin21sin2
,,

222

13

−++

+++−−
=

++

, 

d
2
 = - α2, 

And 







= −

d
u

2
cos 11 α

. 

 The xt denote the change in the level of the compensating variable model at the time t, i.e., the adjustment made at the 

time point t. The tε  is Gaussian white noise with variance .
2

∈σ  throughout, we suppose that the noise variance is known. In 

practice, this is justified if reliable estimates of 
2

∈σ  are available from the evaluation of a large number of previous values of 

the process, e.g., during the setup phase. The real - valued parameters α1 and α2   (the autoregressive parameters) determines the 

influence of the preceding time point (t - 1) and (t - 2) on the present time point t. We assume an in-control value α1 = α2 = O for 

the auto regression parameters. It is possible that the auto regression parameters may shift to an out-of-control value (α1,α2) ≠ 0. 

Further, the distribution of the sample average will have mean µ and standard deviation ),,( 21

2

n
n

ααλ
σ

 
Now the using equation (13)Reconsidering eqn.(2) in light of AR(2) process the only terms which will change those concerned 

with sampling inspection..Namely ),/(
n

xh
σ

µ will change to )],,(,/[ 21

*
n

n
xh ααλ

σ
µ .The true proportion defective and 
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the distribution of true lot means will not be affected. Thus the current model under second order autocorrelation processes is 

written as

.)(])),,(,/(1[

)(])),,(,/(][),(1[

,

,

,

,

21

*

21

*

1

µµααλ
σ

µ

µµααλ
σ

µσ
µ

µ

µ

dgxdn
n

xhC

dgn
n

xhdx
x

fNCnCTC

Ux

Lx

Ux

Lx

DC

DC

r

DC

DC

U

L

a

∫ ∫

∫∫∫

−+

−+=

  (17) 

We calculate the total cost for the help of following terms 

∫−=
U

L

dxxfT ),,(11 σµ  

xdnnxhT

U

L

∫= )),,(,,( 21

*

2 αασλµ  

,1 23 TT −=  

We take the value 
µµ ∆= )(4 gT

 from Kenneth and Bennett (1977)
 

 

Numerical example and conclusion: It is difficult to 

appreciate the effect of  AR(2) without referring to some 

typical specifications, plans ,and costs. Consider a 

manufacturing situation where variables acceptance sampling 

is used to obtain a decision to accept or reject lots. The lot 

size is  � = 5000, and if accepted, all items in the lot are 

passed. If rejected, all items in the lot are scrapped. Each item 

is to meet specifications, of 150 ± 0.3(149.7,150.3).The true 

process or lot distribution is normal with standard deviation 

 � = 0.1. Note that ,if the manufacturing  process is properly 

centered, virtually   all of the items produced will be within 

specifications. 

 

A sampling plan 

� = 5, 10, 15, 20,26 $�%,& ' = 149.9003 (�)  $�%̅,* =15 

0.0997(� = 2.00330) is to be used. The three costs are 

�+ = 1.5 , �, = 10 and ��= 10000.We calculate total cost for 

different sample size n, when no auto-correlation present, 

when roots are real and distinct, real and equal, and roots are 

complex conjugate by the help equation (17) and arrange in 

the tables 1.1 to 1.21, for visual comparison we plot the total 

cost versus different situations for different sample size n.  

 

 

 

Table:1.1 Values of terms in cost of model of equation (17) when no autocorrelation present (n=5) 

µ CaN Cr T1 T2 T3 T4 Partial TC for row 

149.8282 50000 10000 0.099923 0.053459 0.946541 0.0048 46.71599784 

149.8751 50000 10000 0.039984 0.286551 0.713449 0.0418 322.1676874 

149.9326 50000 10000 0.010129 0.764836 0.235164 0.2315 634.0728908 

150 50000 10000 0.0027 0.97421 0.02579 0.4438 172.8193521 

150.0674 50000 10000 0.010129 0.764836 0.235164 0.2315 634.0728908 

150.1249 50000 10000 0.039984 0.286551 0.713449 0.0418 322.1676874 

150.1718 50000 10000 0.099923 0.053459 0.946541 0.0048 46.71599784 

              2178.732504 

            Cin = 7.5 

          Total cost 2186.232504 
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Table:1.2 Values of terms in cost of model of equation (17) when no autocorrelation present  ( n= 10) 

µ CaN Cr T1 T2 T3 T4 Partial TC for row 

149.8282 50000 10000 0.099923 0.011304 0.988696 0.0048 47.72849909 

149.8751 50000 10000 0.039984 0.212756 0.787244 0.0418 346.8470393 

149.9326 50000 10000 0.010129 0.846471 0.153529 0.2315 454.6589476 

150 50000 10000 0.0027 0.998383 0.001617 0.4438 66.98862101 

150.0674 50000 10000 0.010129 0.846471 0.153529 0.2315 454.6589476 

150.1249 50000 10000 0.039984 0.212756 0.787244 0.0418 346.8470393 

150.1718 50000 10000 0.099923 0.011304 0.988696 0.0048 47.72849909 

       1765.457593 

      Cin = 15 

     Total cost 1780.457593 

 

 

Table:1.3 Values of terms in cost of model of equation (17) when no autocorrelation present 

(n=15) 

µ CaN Cr T1 T2 T3 T4 Partial TC for row 

149.8282 50000 10000 0.099923 0.002616 0.997384 0.0048 47.93717307 

149.8751 50000 10000 0.039984 0.164534 0.835466 0.0418 362.9741342 

149.9326 50000 10000 0.010129 0.894528 0.105472 0.2315 349.0416439 

150 50000 10000 0.0027 0.999887 0.000113 0.4438 60.40212893 

150.0674 50000 10000 0.010129 0.894528 0.105472 0.2315 349.0416439 

150.1249 50000 10000 0.039984 0.164534 0.835466 0.0418 362.9741342 

150.1718 50000 10000 0.099923 0.002616 0.997384 0.0048 47.93717307 

              1580.308031 

            Cin = 22.5 

          Total cost 1602.808031 

 

 

 

Table:1.4 Values of terms in cost of model of equation (17) when no autocorrelation present (n= 

20) 

µ CaN Cr T1 T2 T3 T4 Partial TC for row 

149.8282 50000 10000 0.099923 0.000631 0.999369 0.0048 47.98484036 

149.8751 50000 10000 0.039984 0.129876 0.870124 0.0418 374.5650935 

149.9326 50000 10000 0.010129 0.925701 0.074299 0.2315 280.5311821 

150 50000 10000 0.0027 0.999992 8.25E-06 0.4438 59.94457232 

150.0674 50000 10000 0.010129 0.925701 0.074299 0.2315 280.5311821 

150.1249 50000 10000 0.039984 0.129876 0.870124 0.0418 374.5650935 

150.1718 50000 10000 0.099923 0.000631 0.999369 0.0048 47.98484036 

              1466.106804 

            Cin = 30 

          Total cost 1496.106804 
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Table:1.5  Values of terms in cost of model of equation (17) when no autocorrelation present ( 

n= 26) 

µ CaN Cr T1 T2 T3 T4 Partial TC for row 

149.8282 50000 10000 0.099923 0.000118 0.999882 0.0048 47.99715914 

149.8751 50000 10000 0.039984 0.099404 0.900596 0.0418 384.7557909 

149.9326 50000 10000 0.010129 0.950219 0.049781 0.2315 226.6454679 

150 50000 10000 0.0027 1 3.7E-07 0.4438 59.91009501 

150.0674 50000 10000 0.010129 0.950219 0.049781 0.2315 226.6454679 

150.1249 50000 10000 0.039984 0.099404 0.900596 0.0418 384.7557909 

150.1718 50000 10000 0.099923 0.000118 0.999882 0.0048 47.99715914 

              1378.706931 

            Cin = 39 

          Total cost 1417.706931 

 

 

Table:1.6 Values of terms in cost of model of equation (17)  When roots are real and equal  λ(α1=-

0.8,α2=0.16,n=5)=2.775 

µ CaN Cr T1 T2 T3 T4 Partial TC for row 

149.8282 50000 10000 0.099923 0.266284 0.733716 0.0048 41.60424 

149.8751 50000 10000 0.039984 0.384381 0.615619 0.0418 289.4498 

149.9326 50000 10000 0.010129 0.513598 0.486402 0.2315 1186.235 

150 50000 10000 0.0027 0.578241 0.421759 0.4438 1906.409 

150.0674 50000 10000 0.010129 0.513598 0.486402 0.2315 1186.235 

150.1249 50000 10000 0.039984 0.384381 0.615619 0.0418 289.4498 

150.1718 50000 10000 0.099923 0.266284 0.733716 0.0048 41.60424 

              4940.987 

            Cin = 7.5 

          Total cost 4948.487 

 

 

Table:1.7 Values of terms in cost of model of equation (17) When roots are real and equal λ(α1=-

0.8,α2=0.16,n=10)=3.345 

µ CaN Cr T1 T2 T3 T4 Partial TC for row 

149.8282 50000 10000 0.099923 0.242608 0.757392 0.0048 42.17291 

149.8751 50000 10000 0.039984 0.388986 0.611014 0.0418 287.9099 

149.9326 50000 10000 0.010129 0.562867 0.437133 0.2315 1077.953 

150 50000 10000 0.0027 0.654083 0.345917 0.4438 1574.365 

150.0674 50000 10000 0.010129 0.562867 0.437133 0.2315 1077.953 

150.1249 50000 10000 0.039984 0.388986 0.611014 0.0418 287.9099 

150.1718 50000 10000 0.099923 0.242608 0.757392 0.0048 42.17291 

              4390.437 

            Cin = 15 

          Total cost 4405.437 
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Table: 1.8 Values of terms in cost of model of equation (17) When roots are real and equalλ(α1=-

0.8,α2=0.16,n=15)=3.544 

µ CaN Cr T1 T2 T3 T4 Partial TC for row 

149.8282 50000 10000 0.099923 0.213866 0.786134 0.0048 42.86325 

149.8751 50000 10000 0.039984 0.384453 0.615547 0.0418 289.4258 

149.9326 50000 10000 0.010129 0.604033 0.395967 0.2315 987.4796 

150 50000 10000 0.0027 0.724088 0.275912 0.4438 1267.874 

150.0674 50000 10000 0.010129 0.604033 0.395967 0.2315 987.4796 

150.1249 50000 10000 0.039984 0.384453 0.615547 0.0418 289.4258 

150.1718 50000 10000 0.099923 0.213866 0.786134 0.0048 42.86325 

              3907.412 

            Cin = 22.5 

          Total cost 3929.912 

 

 

Table:1.9 Values of terms in cost of model of equation (17) When roots are real and equal λ(α1=-

0.8,α2=0.16,n=20)=3.643 

µ CaN Cr T1 T2 T3 T4 Partial TC for row 

149.8282 50000 10000 0.099923 0.187622 0.812378 0.0048 43.49357 

149.8751 50000 10000 0.039984 0.375611 0.624389 0.0418 292.3829 

149.9326 50000 10000 0.010129 0.634019 0.365981 0.2315 921.5783 

150 50000 10000 0.0027 0.779015 0.220985 0.4438 1027.399 

150.0674 50000 10000 0.010129 0.634019 0.365981 0.2315 921.5783 

150.1249 50000 10000 0.039984 0.375611 0.624389 0.0418 292.3829 

150.1718 50000 10000 0.099923 0.187622 0.812378 0.0048 43.49357 

              3542.309 

            Cin = 30 

          Total cost 3572.309 

 

 

Table:1.10  Values of terms in cost of model of equation (17) When roots are real and equal λ(α1=-

0.8,α2=0.16,n=26)=3.7126 

µ CaN Cr T1 T2 T3 T4 Partial TC for row 

149.8282 50000 10000 0.099923 0.16093 0.83907 0.0048 44.13468 

149.8751 50000 10000 0.039984 0.363613 0.636387 0.0418 296.3955 

149.9326 50000 10000 0.010129 0.660475 0.339525 0.2315 863.4338 

150 50000 10000 0.0027 0.829099 0.170901 0.4438 808.1266 

150.0674 50000 10000 0.010129 0.660475 0.339525 0.2315 863.4338 

150.1249 50000 10000 0.039984 0.363613 0.636387 0.0418 296.3955 

150.1718 50000 10000 0.099923 0.16093 0.83907 0.0048 44.13468 

              3216.055 

            Cin = 39 

          Total cost 3255.055 
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Table:1.11  Values of terms in cost of model of equation (17) when roots are real and distinct 

λ(α1=0.3,α2=0.6,n=5)=4.03 

µ CaN Cr T1 T2 T3 T4 Partial TC for row 

149.8282 50000 10000 0.099923 0.278581 0.721419 0.0048 41.30886 

149.8751 50000 10000 0.039984 0.338055 0.661945 0.0418 304.9428 

149.9326 50000 10000 0.010129 0.394196 0.605804 0.2315 1448.651 

150 50000 10000 0.0027 0.419867 0.580133 0.4438 2599.782 

150.0674 50000 10000 0.010129 0.394196 0.605804 0.2315 1448.651 

150.1249 50000 10000 0.039984 0.338055 0.661945 0.0418 304.9428 

150.1718 50000 10000 0.099923 0.278581 0.721419 0.0048 41.30886 

              6189.588 

            Cin = 7.5 

          Total cost 6197.088 

 

 

Table:1.12 Values of terms in cost of model of equation (17) when roots are real and distinct 

λ(α1=0.3,α2=0.6,n=10)=7.26 

µ CaN Cr T1 T2 T3 T4 Partial TC for row 

149.8282 50000 10000 0.099923 0.258255 0.741745 0.0048 41.79707 

149.8751 50000 10000 0.039984 0.292335 0.707665 0.0418 320.233 

149.9326 50000 10000 0.010129 0.322589 0.677411 0.2315 1606.026 

150 50000 10000 0.0027 0.335907 0.664093 0.4438 2967.37 

150.0674 50000 10000 0.010129 0.322589 0.677411 0.2315 1606.026 

150.1249 50000 10000 0.039984 0.292335 0.707665 0.0418 320.233 

150.1718 50000 10000 0.099923 0.258255 0.741745 0.0048 41.79707 

              6903.483 

            Cin = 15 

          Total cost 6918.483 

 

 

Table:1.13 Values of terms in cost of model of equation (17) when roots are real and distinct 

λ(α1=0.3,α2=0.6,n=15)=9.91 

µ CaN Cr T1 T2 T3 T4 Partial TC for row 

149.8282 50000 10000 0.099923 0.244727 0.755273 0.0048 42.12201 

149.8751 50000 10000 0.039984 0.27074 0.72926 0.0418 327.4554 

149.9326 50000 10000 0.010129 0.293365 0.706635 0.2315 1670.253 

150 50000 10000 0.0027 0.3032 0.6968 0.4438 3110.564 

150.0674 50000 10000 0.010129 0.293365 0.706635 0.2315 1670.253 

150.1249 50000 10000 0.039984 0.27074 0.72926 0.0418 327.4554 

150.1718 50000 10000 0.099923 0.244727 0.755273 0.0048 42.12201 

              7190.225 

            Cin = 22.5 

          Total cost 7212.725 
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Table:1.14 Values of terms in cost of model of equation (17) when roots are real and distinct 

λ(α1=0.3,α2=0.6,n=20)=12.10 

µ CaN Cr T1 T2 T3 T4 Partial TC for row 

149.8282 50000 10000 0.099923 0.237115 0.762885 0.0048 42.30483 

149.8751 50000 10000 0.039984 0.25966 0.74034 0.0418 331.1607 

149.9326 50000 10000 0.010129 0.279093 0.720907 0.2315 1701.621 

150 50000 10000 0.0027 0.287492 0.712508 0.4438 3179.336 

150.0674 50000 10000 0.010129 0.279093 0.720907 0.2315 1701.621 

150.1249 50000 10000 0.039984 0.25966 0.74034 0.0418 331.1607 

150.1718 50000 10000 0.099923 0.237115 0.762885 0.0048 42.30483 

              7329.508 

            Cin = 30 

          Total cost 7359.508 

 

 

Table:1.15 Values of terms in cost of model of equation (17)when roots are real and distinct 

λ(α1=0.3,α2=0.6,n=26)=14.25 

µ CaN Cr T1 T2 T3 T4 Partial TC for row 

149.8282 50000 10000 0.099923 0.232556 0.767444 0.0048 42.41433 

149.8751 50000 10000 0.039984 0.253283 0.746717 0.0418 333.2934 

149.9326 50000 10000 0.010129 0.271062 0.728938 0.2315 1719.27 

150 50000 10000 0.0027 0.278723 0.721277 0.4438 3217.726 

150.0674 50000 10000 0.010129 0.271062 0.728938 0.2315 1719.27 

150.1249 50000 10000 0.039984 0.253283 0.746717 0.0418 333.2934 

150.1718 50000 10000 0.099923 0.232556 0.767444 0.0048 42.41433 

              7407.682 

            Cin = 39 

          Total cost 7446.682 

 

 

Table:1.16 Values of terms in cost of model of equation (17) when roots are complex and conjugate 

λ(α1=0.8,α2=-0.6,n=5)=1.40 

µ CaN Cr T1 T2 T3 T4 Partial TC for row 

149.8282 50000 10000 0.099923 0.124741 0.875259 0.0048 45.0039 

149.8751 50000 10000 0.039984 0.343494 0.656506 0.0418 303.124 

149.9326 50000 10000 0.010129 0.69323 0.30677 0.2315 791.4454 

150 50000 10000 0.0027 0.888705 0.111295 0.4438 547.1677 

150.0674 50000 10000 0.010129 0.69323 0.30677 0.2315 791.4454 

150.1249 50000 10000 0.039984 0.343494 0.656506 0.0418 303.124 

150.1718 50000 10000 0.099923 0.124741 0.875259 0.0048 45.0039 

              2826.314 

            Cin = 7.5 

          Total cost 2833.814 
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Table:1.17 Values of terms in cost of model of equation (17) when roots are complex and conjugate 

λ(α1=0.8,α2=-0.6,n=10)=1.18 

µ CaN Cr T1 T2 T3 T4 Partial TC for row 

149.8282 50000 10000 0.099923 0.026667 0.973333 0.0048 47.35949 

149.8751 50000 10000 0.039984 0.249732 0.750268 0.0418 334.4812 

149.9326 50000 10000 0.010129 0.806643 0.193357 0.2315 542.1912 

150 50000 10000 0.0027 0.992457 0.007543 0.4438 92.93368 

150.0674 50000 10000 0.010129 0.806643 0.193357 0.2315 542.1912 

150.1249 50000 10000 0.039984 0.249732 0.750268 0.0418 334.4812 

150.1718 50000 10000 0.099923 0.026667 0.973333 0.0048 47.35949 

              1940.997 

            Cin = 15 

          Total cost 1955.997 

 

 

Table:1.18  Values of terms in cost of model of equation (17) when roots are complex and conjugate 

λ(α1=0.8,α2=-0.6,n=15)=1.06 

µ CaN Cr T1 T2 T3 T4 Partial TC for row 

149.8282 50000 10000 0.099923 0.004215 0.995785 0.0048 47.89877 

149.8751 50000 10000 0.039984 0.178591 0.821409 0.0418 358.273 

149.9326 50000 10000 0.010129 0.881032 0.118968 0.2315 378.7015 

150 50000 10000 0.0027 0.99973 0.00027 0.4438 61.08921 

150.0674 50000 10000 0.010129 0.881032 0.118968 0.2315 378.7015 

150.1249 50000 10000 0.039984 0.178591 0.821409 0.0418 358.273 

150.1718 50000 10000 0.099923 0.004215 0.995785 0.0048 47.89877 

              1630.836 

            Cin = 22.5 

          Total cost 1653.336 

 

 

Table:1.19 Values of terms in cost of model of equation (17) when roots are complex and conjugate 

λ(α1=0.8,α2=-0.6,n=20)=1.03 

µ CaN Cr T1 T2 T3 T4 Partial TC for row 

149.8282 50000 10000 0.099923 0.000873 0.999127 0.0048 47.97904 

149.8751 50000 10000 0.039984 0.136944 0.863056 0.0418 372.2013 

149.9326 50000 10000 0.010129 0.919606 0.080394 0.2315 293.9258 

150 50000 10000 0.0027 0.999985 1.5E-05 0.4438 59.9741 

150.0674 50000 10000 0.010129 0.919606 0.080394 0.2315 293.9258 

150.1249 50000 10000 0.039984 0.136944 0.863056 0.0418 372.2013 

150.1718 50000 10000 0.099923 0.000873 0.999127 0.0048 47.97904 

              1488.186 

            Cin = 30 

          Total cost 1518.186 
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Table:1.20 Values of terms in cost of model of equation (17) when roots are complex and conjugate 

λ(α1=0.8,α2=-0.6,n=26)=1.01 

µ CaN Cr T1 T2 T3 T4 Partial TC for row 

149.8282 50000 10000 0.099923 0.000136 0.999864 0.0048 47.99673 

149.8751 50000 10000 0.039984 0.101646 0.898354 0.0418 384.0062 

149.9326 50000 10000 0.010129 0.948521 0.051479 0.2315 230.3785 

150 50000 10000 0.0027 1 4.82E-07 0.4438 59.91058 

150.0674 50000 10000 0.010129 0.948521 0.051479 0.2315 230.3785 

150.1249 50000 10000 0.039984 0.101646 0.898354 0.0418 384.0062 

150.1718 50000 10000 0.099923 0.000136 0.999864 0.0048 47.99673 

              1384.674 

            Cin = 39 

          Total cost 1423.674 

 

 

Table:1.21 Values of terms in cost of model of equation (17) for different situations of 

autocorrelation 

Sample size n no autocorrelation real and equal real and distinct complex conjugate 

5 2186.2325 4948.487 6197.088 2833.814 

10 1780.4575 4405.437 6918.483 1955.997 

15 1602.808 3929.912 7212.725 1653.336 

20 1496.1068 3572.309 7359.508 1518.186 

26 1417.7 3255.055 7446.682 1423.674 
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The importance of autocorrelation is clearly seen in table 1.1 

to 1.20 and fig. 1.1. Fig 1.1 shows the when sample size 

increases total cost also increases when roots are real and 

distinct, decreases when roots are real and equal, complex 

conjugate and no autocorrelation is presented. For visual 

comparison between all four different situation total cost was 

found large in case of roots are real and distinct as compare 

to other three different situations (real and equal, complex 

conjugate and no auto correlation), total cost was found large 

as compare to other two different situation (complex 

conjugate and no auto correlation), and there was minor 

difference found between total cost when roots are complex 

conjugate and no autocorrelation present. 
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