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Abstract- In this paper we investigate the effect of non-normality and auto-correlation on the OC function of mean chart 
with known coefficient of variation. We synthesize the second order auto-correlation process by its three different roots. In 
particular, the shift in the auto-correlation structure from independent data to a random walk, this is a special case of the 
structural shift occurring in the process. For various values of roots the values of OC functions are tabulated with known 
coefficient of variation. 
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1. INTRODUCTION 

Control charts are widely used to monitor manufacturing 
processes with the objective of detecting any change in a 
process that may affect the quality of the output. The 
statistic plotted on a control chart is frequently based on 
samples (subgroups) of n > 1 observations that are taken 
at regular sampling intervals. For example, a sample of n 
= 5 observations might be taken hourly. There are many 
practical situations, however, where control charts are 
applied using individual observations (n = 1), such as 
when repeated process measurements differ very little (as 
in many chemical and process industries) or when the rate 
of production is slow (Montgomery, 1997) and (Ryan , 
2000) for other situations where using individual 
observations is appropriate.  In most applications in which 
a continuous process characteristic, say x is being 
measured, it is assumed that x is approximately normally 
distributed, and that the observations from the process at 
different sampling times are independent random 
variables. If x is approximately normally distributed and a 
special cause affects the distribution of x, then the special 

cause may change the mean µ of x, the standard deviation 

σ of x, or both µ and σ. When individual observations 

are taken to monitor µ and σ, the standard practice to 

simultaneously use a Shewhart X chart for monitoring µ 
and a. Shewhart moving range (MR) chart for monitoring 

σ. These two Shewhart charts are simple to implement 

and effective in detecting large changes in µ or σ, but 
have two drawbacks which can seriously hinder their 
practical usefulness.  
(i)The X and MR charts are ineffective in detecting small 
or moderate  shifts in µ or σ. There is also recent evidence 
that there is little or no benefit to using an MR chart when 
an X chart for µ is also being used,(Albin et al.,  1997) 
and (Reynolds and Stoumbos, 2000).  
(ii)The statistical performance of the X and MR charts is 
very sensitive to deviation from the normality assumption, 

(Montgomery, 1997) and (Borror et al., 1999). 
 
The usual independence assumption may be unrealistic in 
industries, such as the pharmaceutical and chemical 
industries, where many processes inherently produce auto 
correlated data. The presence of autocorrelation in the 
process data can result in considerable changes in the 
statistical performance of the X and MR charts, when 
these charts are developed under the assumption of 
independence, ( Maragah and Woodall , 1992) , (Lu and 
Reynolds , 1999), and references there in efficient 
detection of small and moderate shifts in µ or σ requires 
that the control statistics in some way incorporate 
information from current and past sample statistics. Runs 
rules, which are based on patterns of points in a Shewhart 
chart, improve the ability of Shewhart charts to detect 
small and moderate shifts in µ or σ (Champ and Woodall, 
1987) and (Lowary et al., 1995), but use of these rules is 
not the best method for detecting small and moderate 
shifts in µ or σ. A much better method of accumulating 
information across sampling points employs a control 
statistic that is an exponential weighted moving average 
(EWMA) of current and past sample statistics. (Reynolds 
and Stoumbos , 2001) considered various combination of 
Shewhart and other control charts, in order to determine 
which chart combinations are most effective for detecting 
shifts in µ or σ when single independent and normally 
distributed observations are taken. They showed that the 
common practice of using the Shewhart X and MR charts 
to monitor µ and σ is ineffective at detecting small and 
moderate shifts in these parameters, and that much better 
alternative for monitoring µ and σ are based on 
combinations of charts that involve at least one EWMA 
chart. There are many other contributions by (Amin and 
Ethridge, 1998), (Box et al., 1994), (Champ and Woodall , 
1987), (Domangue and Patch, 1991), (Lucas and Saccucci 
, 1990), (Macgregor and Harris, 1993), (Reynolds, 
1996b), (Regdon et al., 1994), (Stoumbos and Reynolds, 
1997), (Sullivan and Woodall, 1996), and (Zhang , 1998) 
on control charts to detect shift in mean chart. If the 
underlying distribution is not normal, three different 
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approaches are suggested to deal this problem. One 
approach is to transform the original data so that the 
transformed data more closely modeled by the normal 
distribution, and then proceed with the standard control 
charts using the transformed data. However, the 
difficulties of this approach is how to identify an 
appropriate transformation and justify the transformation 
appear more suitable than with the following alternatives. 
Another approach is to design control charts based on 
heuristic methods. Some heuristic control charts are 
developed for monitoring the non-normal process, for 
example, the weighted variance (WV) control chart 
proposed by (Chang and Bai,1995), the weighted standard 
deviation (WSD) control chart proposed by (Chang and 
Bai, 2001) and Skewness correction (SC) control chart 
proposed by (Chan and Cui, 2003). The design of 
heuristic control charts depend on some approximation 
procedures so that these control charts may not work well 
for some specified processes, for example, the skew 
normal process. A third approach is to increase the sample 
size until the distribution of the sample average is well 
modeled by the normal distribution, regardless of the 
amount of deviation from normality of individual units. 
Larger sample sizes, however, may not be operationally 
feasible and they are obviously more costly.  
Measurements come from production process often follow 

skewed distribution. This situation makes the standard X  
control chart results in a high false alam rate  (Azzalini 
,1985, 1986, 1999), (Bittanti et al., 1998), (Chang ,1994), 
(Chou et al.,2005), (Cowden, 1957), (Dodge and Rousson, 
1999), (Genton et al., 2001), (Gunter,1989), (Gupta and 
Brown, 2001), and (Pyzdek, 1995)) for more details. 
          The objective of this paper  to investigate the effect 
of non-normality and autocorrelation on the statistical 
performance of control charts for monitoring the mean µ 
with known cv of a continuous process characteristic x. 
For the numerical results that pertain to investigating the 
effects of non-normality, both heavy-tailed symmetric and 
skewed non-normal distributions are used as first four 
terms an Edgeworth series. While for the numerical result 
in this chapter that pertain to investigating the effect of 
autocorrelation, the observations are represented as a 
second order autoregressive (AR(2)) process. This time - 
series model is relatively simple, but it has been used in a 
wide variety of applications. The level of autocorrelation 
considered in the numerical results were chosen with the 
general objective of considering autocorrelation that is 
sufficiently high to have a significant effect on the 
performance of the charts, yet not so high that the patterns 
of points in a control chart look very unusual. 
 

2. MATERIALS AND METHODS 
 

2.1 Second order Autoregressive mode 
Consider a manufacturing process where a quality 
characteristic is measured at equidistance time points 1, 2, 
3, ... n. This situation may occur in a discrete 
manufacturing process which produces discrete time 1, 2, 
3, ... n, with one quality characteristic of interest. It may 
also occur in a continuous manufacturing process where 
the quality characteristic of interest is measured at discrete 
equidistant time points. We denote the behavior of the 

quality characteristic as x1, x2, .... xn. It will assumed that 
on EPC control action can be represented by some 
controllable variable or factor xt, such that 
 
        xt = µ + ξt,                      (1) 

Where µ is a constant, and ξt is a stationary time series 
with zero mean and standard deviation σ. A  (Durbin and 
Watson , 1950) “d” statistic can be used to detect the 
presence or absence of serial correlation. The problem, 
however, is that to do once the suspicion of dependence 
via the serial correlation test is confirmed. If serial 
correlation exist we use identification techniques to define 
the nature of ξt. When identification is complete, the 
likelihood function can provide maximum likelihood 
estimate of the parameters of the identified model. 
 Suppose that a correlation test revealed the 
presence of data dependence and identification technique 
suggested autoregressive model of order two AR(2) say, 
then we can express ξt of equation (1) as  

ntkttt ....,2,1,2211 =∈++= −− ξαξαξ           (2)  

where 
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 The Class of stationary models that assume the 
process to remain in equilibrium about a constant mean 
level µ. The variance of AR (2) process is given by: 
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Following Kendall and Stuart (1976) it can be shown that 
for stationarity, the roots of the characteristic equation of 
the process in equation (2) 

  ( ) 2
211 BBB ααφ −−=  (5)   

 
 must lies outside the unit circle, which implies that the 
parameters α1 and α2 must satisfy the following 
conditions : 

  112 <+ αα  

  112 <− αα  
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 For stationarity we require that 

.2,1,1|| =< iGi  Thus, three situations can 

theoretically arise :  
 

(i) Roots G1 and G2 are real and distinct 

( )04.,. 2
2

1 >+ ααei  

(ii) Roots G1 and G2 are real and equal 

( )04.,. 2
2

1 =+ ααei  

(iii) Roots G1 and G2 are complex conjugate

( )04.,. 2
2

1 <+ ααei . 
 

 When the serial correlation is present in the data, 
we have for the distribution of the sample mean ,x  its 

mean and variance is given by, 
  

( ) µ=xE  

Var ( ) ( )n
n

x ap ,, 21

2

ααλσ= ,               (9)  

 where  ( )nap ,, 21 ααλ  depends on the nature of the roots G1 and G2 , and for different situations is given as follows : 

 
(i) If G1 and G2 are real and distinct, 
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(ii) If G 1 and G2 are real and equal 
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( ) ( ) ( ) ( )( )

( )n

nudznudW
n

d
udn

cc

ap

,,

,,,,
2

,,,

21

21

ααλ

γααλ

=






 ++=
                          (12) 

 

Where ( ) ( )
( ) ( )uddd

uddd
ud

cos211

cos121
,

22

24

−++
−+−=γ , 

( ) ( ) ( ) ( )
( ) ( ) uuddd

undududd
nudW

n

sincos211

)2(sin2sin1sin12
,,

222

442

−++

−−+−+=
+

, 

( ) ( ) ( ) ( )
( ) ( ) uuddd

undundund
nudZ

nnn

sincos211

)2(sin1sin21sin2
,,

222

13

−++

+++−−=
++

, 

d2 = - α2, 

and 






= −

d
u

2
cos 11 α

. 

 
The xt denote the change in the level of the compensating 
variable model at the time t, i.e., the adjustment made at 

the time point t. The tε  is Gaussian white noise with 

variance .2
∈σ  Throughout, we suppose that the noise 

variance is known. In practice, this is justified if reliable 

estimates of 
2

∈σ  are available from the evaluation of a 

large number of previous values of the process, e.g., 
during the setup phase. The real - valued parameters α1 
and α2  (the autoregressive parameters) determines the 

influence of the preceding time point (t - 1) and (t - 2) on 
the present time point t. We assume an in-control value 
α1 = α2 = O for the autoregression parameters. It is 
possible that the autoregression parameters may shift to 
an out-of-control value (α1,α2) ≠ 0. 
 
2.2 The effect of Non-Normality and AR (2) process on 
control charts for monitoring the mean : We consider the 
effect of autocorrelation equation (9). The AR(2) process 
will be used to model the data taken from auto correlated 
process of interest with known cv Further, we assume that 
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the non-normal population is represented by the first four 
terms of an Edgeworth series. To study the robustness of 
the control chart to non normality under AR(2) process, 
we examined the effect of non-normality and dependency 
on the OC and error of the first kind with known cv mean 
chart. We assumes that the observations 

( )ntxt ...2,1=  are address the problem of non-

normality and dependency with known cv in the control 

statistics *x . Following (Srivastava and Banarasi, 1982)  
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where .
µ
σ=v  The OC of the control chart is derived from the sampling distribution of mean with the probability density 

function of the non-normal variables as the first four terms of an Edgeworth series. The control chart for mean is set up by 

drawing the control line at the process average µ and the control limits at ,
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function gives the probability that the control chart indicates 

the process average as µ when it is actually not µ but 

( )

n
n

nv ap ,,*
1 21 ααλ

σγµµ
−

+=′  (say) and it is device 

by integrating the distribution of mean with  µ ′  as the process average between the limits of the control chart. In case of 

known cv the non-normal population is represented by the first four terms on Edgeworth series by (Rao and Bhatt, 1989) 
as, 
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Following the ( )*xMSE  the distribution of sample mean *x  is given by  Gayen (1949), as 
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The OC function is obtained, after replacing µ in equation (14) by n′  and integrating between the limits of control charts 
we get 

buN LLLL ′+′−=′                    (15) 
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is the non-normality correction for the error of the first kind. 
 

The error of the first kind gives the probability of searching for assignable causes when is fact there are no such causes 
exist. 

If uα′  is the probability of exceeding, the upper control limit and bα′ , that lying below the lower control limit, when the 

process is in control, then positively skewed population bu αα ′≥′  and negatively skewed population bu αα ′≤′  are given 

as the expressions for bu and αα ′′  are given as 
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it is evident from the above equation that uα′  becomes bα′  and bα′  becomes uα′ , when the sign of λ3 changed. That is 

bu ααα ′+′=′  is independent of the sign of skewness. 

 
(3) RESULTS AND DISCUSSION 

To investigate the robustness of the control chart schemes 
for the normality assumption, both heavy-tailed symmetric 

and skewed distribution i.e. ( )43, λλ  will be used. For 

non-normal with three different situation of autoregressive 
parameter along with independent observation, the values 
of type-I error and OC function have been computed and 
given in Table (1) and Table (4) respectively. 

 
Table-1: Values of OC Function under  AR(2) Process 

with Known cv for (n=7, k=1.0232) 

v Independent Observations (α1=0.0, α2=0.0 ) 

λ3=0,λ4=0 λ3=-0.6,λ4=0 λ3=0.6,λ4=0 λ3=0,λ4=-1.0 λ3=0,λ4=2.0 

p L(p) p L(p) p L(p) p L(p) p L(p) 

 
 
 
 
0 

0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 

0.0500 0.9500 0.0284 0.9572 0.0636 0.9439 0.0521 0.9497 0.0458 0.9506 

0.1000 0.7529 0.0902 0.7449 0.1127 0.7576 0.1127 0.7496 0.0746 0.7594 

0.1500 0.5140 0.1548 0.4988 0.1583 0.5289 0.1694 0.5137 0.1112 0.5145 

0.2000 0.3155 0.2181 0.3067 0.2018 0.3274 0.2225 0.3183 0.1550 0.3098 

0.2500 0.1781 0.2787 0.1779 0.2441 0.1808 0.2727 0.1812 0.2046 0.1720 

0.3000 0.0935 0.3364 0.0982 0.2860 0.0889 0.3207 0.0951 0.2586 0.0902 

0.3500 0.0457 0.3912 0.0518 0.3281 0.0384 0.3670 0.0459 0.3161 0.0454 

0.4000 0.0208 0.4432 0.0261 0.3709 0.0142 0.4120 0.0201 0.3761 0.0222 

 
 

0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 

0.0500 0.9549 0.0284 0.9620 0.0636 0.9489 0.0521 0.9550 0.0458 0.9551 
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Table-2: Values of OC Function under  AR(2) Process 

with Known cv for (n=7, k=1.0232) 
 

v Roots are Real and Distinct (α1=0.3, α2=0.6) 

λ3=0,λ4=0 λ3=-0.6,λ4=0 λ3=0.6,λ4=0 λ3=0,λ4=-1.0 λ3=0,λ4=2.0 

p L(p) p L(p) p L(p) p L(p) p L(p) 

 
 
 
 
 
0 

0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 

0.0500 0.9500 0.0284 0.9572 0.0636 0.9439 0.0521 0.9497 0.0458 0.9506 

0.1000 0.7529 0.0902 0.7449 0.1127 0.7576 0.1127 0.7496 0.0746 0.7594 

0.1500 0.5140 0.1548 0.4988 0.1583 0.5289 0.1694 0.5137 0.1112 0.5145 

0.2000 0.3155 0.2181 0.3067 0.2018 0.3274 0.2225 0.3183 0.1550 0.3098 

0.2500 0.1781 0.2787 0.1779 0.2441 0.1808 0.2727 0.1812 0.2046 0.1720 

0.3000 0.0935 0.3364 0.0982 0.2860 0.0889 0.3207 0.0951 0.2586 0.0902 

0.3500 0.0457 0.3912 0.0518 0.3281 0.0384 0.3670 0.0459 0.3161 0.0454 

0.4000 0.0208 0.4432 0.0261 0.3709 0.0142 0.4120 0.0201 0.3761 0.0222 

 
 
 
 
 

0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 

0.0500 0.9760 0.0284 0.9817 0.0636 0.9714 0.0521 0.9765 0.0458 0.9752 

0.1000 0.7945 0.0902 0.7906 0.1127 0.7964 0.1127 0.7922 0.0746 0.7989 

0.1500 0.5168 0.1548 0.5042 0.1583 0.5292 0.1694 0.5166 0.1112 0.5172 

 
 

0.4 

0.1000 0.7593 0.0902 0.7520 0.1127 0.7635 0.1127 0.7623 0.0746 0.7654 

0.1500 0.5144 0.1548 0.4996 0.1583 0.5288 0.1694 0.5146 0.1112 0.5149 

0.2000 0.3104 0.2181 0.3021 0.2018 0.3217 0.2225 0.3077 0.1550 0.3050 

0.2500 0.1710 0.2787 0.1712 0.2441 0.1730 0.2727 0.1682 0.2046 0.1653 

0.3000 0.0871 0.3364 0.0920 0.2860 0.0821 0.3207 0.0857 0.2586 0.0843 

0.3500 0.0411 0.3912 0.0470 0.3281 0.0339 0.3670 0.0411 0.3161 0.0411 

0.4000 0.0180 0.4432 0.0229 0.3709 0.0119 0.4120 0.0187 0.3761 0.0194 

 
 
 
 

0.8 

0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 

0.0500 0.9597 0.0284 0.9667 0.0636 0.9540 0.0521 0.9598 0.0458 0.9596 

0.1000 0.7662 0.0902 0.7596 0.1127 0.7699 0.1127 0.7633 0.0746 0.7720 

0.1500 0.5148 0.1548 0.5005 0.1583 0.5289 0.1694 0.5146 0.1112 0.5153 

0.2000 0.3049 0.2181 0.2971 0.2018 0.3155 0.2225 0.3074 0.1550 0.2997 

0.2500 0.1635 0.2787 0.1641 0.2441 0.1648 0.2727 0.1661 0.2046 0.1583 

0.3000 0.0804 0.3364 0.0854 0.2860 0.0752 0.3207 0.0816 0.2586 0.0781 

0.3500 0.0365 0.3912 0.0421 0.3281 0.0296 0.3670 0.0363 0.3161 0.0368 

0.4000 0.0152 0.4432 0.0197 0.3709 0.0097 0.4120 0.0145 0.3761 0.0167 

 
 
 
 

1.2 

0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 

0.0500 0.9646 0.0284 0.9713 0.0636 0.9591 0.0521 0.9648 0.0458 0.9642 

0.1000 0.7737 0.0902 0.7678 0.1127 0.7769 0.1127 0.7709 0.0746 0.7791 

0.1500 0.5153 0.1548 0.5015 0.1583 0.5289 0.1694 0.5151 0.1112 0.5158 

0.2000 0.2988 0.2181 0.2915 0.2018 0.3088 0.2225 0.3013 0.1550 0.2939 

0.2500 0.1554 0.2787 0.1564 0.2441 0.1560 0.2727 0.1578 0.2046 0.1507 

0.3000 0.0736 0.3364 0.0787 0.2860 0.0681 0.3207 0.0745 0.2586 0.0718 

0.3500 0.0319 0.3912 0.0373 0.3281 0.0253 0.3670 0.0316 0.3161 0.0324 

0.4000 0.0126 0.4432 0.0167 0.3709 0.0077 0.4120 0.0119 0.3761 0.0141 
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0.
4 

0.2000 0.2817 0.2181 0.2758 0.2018 0.2899 0.2225 0.2839 0.1550 0.2774 

0.2500 0.1336 0.2787 0.1357 0.2441 0.1325 0.2727 0.1353 0.2046 0.1301 

0.3000 0.0562 0.3364 0.0613 0.2860 0.0505 0.3207 0.0566 0.2586 0.0555 

0.3500 0.0212 0.3912 0.0257 0.3281 0.0157 0.3670 0.0207 0.3161 0.0222 

0.4000 0.0072 0.4432 0.0101 0.3709 0.0038 0.4120 0.0066 0.3761 0.0084 

 
 
 
 
 

0.
8 

0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 

0.0500 0.9961 0.0390 0.9900 0.0636 0.9945 0.0521 0.9964 0.0458 0.9900 

0.1000 0.8653 0.0902 0.8680 0.1127 0.8639 0.1127 0.8644 0.0746 0.8673 

0.1500 0.5226 0.1548 0.5132 0.1583 0.5318 0.1694 0.5224 0.1112 0.5229 

0.2000 0.2188 0.2181 0.2166 0.2018 0.2221 0.2225 0.2200 0.1550 0.2163 

0.2500 0.0680 0.2787 0.0716 0.2441 0.0641 0.2727 0.0683 0.2046 0.0673 

0.3000 0.0165 0.3364 0.0196 0.2860 0.0128 0.3207 0.0162 0.2586 0.0171 

0.3500 0.0032 0.3912 0.0046 0.3281 0.0017 0.3670 0.0029 0.3161 0.0037 

0.4000 0.0005 0.4432 0.0009 0.3709 0.0001 0.4120 0.0004 0.3761 0.0007 

 
 
 
 
 

1.
2 

0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 

0.0500 1.0000 0.0290 1.0000 0.0636 1.0000 0.0521 1.0000 0.0458 1.0000 

0.1000 0.9939 0.0902 0.9670 0.1127 0.9930 0.1127 0.9940 0.0746 0.9780 

0.1500 0.5511 0.1548 0.5470 0.1583 0.5551 0.1694 0.5510 0.1112 0.5512 

0.2000 0.0391 0.2181 0.0408 0.2018 0.0372 0.2225 0.0390 0.1550 0.0391 

0.2500 0.0004 0.2787 0.0005 0.2441 0.0002 0.2727 0.0003 0.2046 0.0004 

0.3000 0.0000 0.3364 0.0000 0.2860 0.0000 0.3207 0.0000 0.2586 0.0000 

0.3500 0.0000 0.3912 0.0000 0.3281 0.0000 0.3670 0.0000 0.3161 0.0000 

0.4000 0.0000 0.4432 0.0000 0.3709 0.0000 0.4120 0.0000 0.3761 0.0000 

 
Table-3: Values of OC Function under  AR(2) Process 

with Known cv for (n=7, k=1.0232) 
 

 
v 

Roots are Real and Equal  ( α1=0.8, α2=-0.16) 

λ3=0,λ4=0 λ3=-0.6,λ4=0 λ3=0.6,λ4=0 λ3=0,λ4=-1.0 λ3=0,λ4=2.0 

p L(p) p L(p) p L(p) p L(p) p L(p) 

 
 
 
 
 
0 

0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 

0.0500 0.9500 0.0284 0.9572 0.0636 0.9439 0.0521 0.9497 0.0458 0.9506 

0.1000 0.7529 0.0902 0.7449 0.1127 0.7576 0.1127 0.7496 0.0746 0.7594 

0.1500 0.5140 0.1548 0.4988 0.1583 0.5289 0.1694 0.5137 0.1112 0.5145 

0.2000 0.3155 0.2181 0.3067 0.2018 0.3274 0.2225 0.3183 0.1550 0.3098 

0.2500 0.1781 0.2787 0.1779 0.2441 0.1808 0.2727 0.1812 0.2046 0.1720 

0.3000 0.0935 0.3364 0.0982 0.2860 0.0889 0.3207 0.0951 0.2586 0.0902 

0.3500 0.0457 0.3912 0.0518 0.3281 0.0384 0.3670 0.0459 0.3161 0.0454 

0.4000 0.0208 0.4432 0.0261 0.3709 0.0142 0.4120 0.0201 0.3761 0.0222 

 
 
 
 
 
0.4 

0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 

0.0500 0.9651 0.0284 0.9717 0.0636 0.9596 0.0521 0.9653 0.0458 0.9647 

0.1000 0.7744 0.0902 0.7686 0.1127 0.7775 0.1127 0.7717 0.0746 0.7798 

0.1500 0.5154 0.1548 0.5016 0.1583 0.5289 0.1694 0.5152 0.1112 0.5158 

0.2000 0.2982 0.2181 0.2910 0.2018 0.3081 0.2225 0.3007 0.1550 0.2933 

0.2500 0.1546 0.2787 0.1557 0.2441 0.1552 0.2727 0.1570 0.2046 0.1500 
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0.3000 0.0729 0.3364 0.0780 0.2860 0.0674 0.3207 0.0738 0.2586 0.0712 

0.3500 0.0314 0.3912 0.0368 0.3281 0.0249 0.3670 0.0311 0.3161 0.0320 

0.4000 0.0124 0.4432 0.0164 0.3709 0.0075 0.4120 0.0117 0.3761 0.0138 

 
 
 
 
 
0.8 

0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 

0.0500 0.9796 0.0284 0.9848 0.0636 0.9753 0.0521 0.9801 0.0458 0.9787 

0.1000 0.8024 0.0902 0.7991 0.1127 0.8038 0.1127 0.8003 0.0746 0.8065 

0.1500 0.5174 0.1548 0.5052 0.1583 0.5293 0.1694 0.5172 0.1112 0.5178 

0.2000 0.2751 0.2181 0.2696 0.2018 0.2827 0.2225 0.2771 0.1550 0.2710 

0.2500 0.1256 0.2787 0.1280 0.2441 0.1240 0.2727 0.1271 0.2046 0.1225 

0.3000 0.0504 0.3364 0.0553 0.2860 0.0447 0.3207 0.0506 0.2586 0.0500 

0.3500 0.0179 0.3912 0.0221 0.3281 0.0129 0.3670 0.0174 0.3161 0.0189 

0.4000 0.0057 0.4432 0.0082 0.3709 0.0028 0.4120 0.0051 0.3761 0.0067 

 
 
 
 
 
1.2 

0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 

0.0500 0.9918 0.0420 0.9820 0.0636 0.9892 0.0521 0.9922 0.0458 0.9910 

0.1000 0.8407 0.0902 0.8401 0.1127 0.8402 0.1127 0.8393 0.0746 0.8434 

0.1500 0.5204 0.1548 0.5100 0.1583 0.5306 0.1694 0.5202 0.1112 0.5207 

0.2000 0.2417 0.2181 0.2383 0.2018 0.2466 0.2225 0.2432 0.1550 0.2386 

0.2500 0.0892 0.2787 0.0926 0.2441 0.0858 0.2727 0.0899 0.2046 0.0877 

0.3000 0.0271 0.3364 0.0311 0.2860 0.0224 0.3207 0.0269 0.2586 0.0276 

0.3500 0.0069 0.3912 0.0093 0.3281 0.0042 0.3670 0.0065 0.3161 0.0077 

0.4000 0.0015 0.4432 0.0025 0.3709 0.0005 0.4120 0.0012 0.3761 0.0019 

 
Table-4: Values of OC Function under  AR(2) Process 

with Known cv for (n=7, k=1.0232) 
 

v  Roots are Complex Conjugate  (  α1=0.8, α2=-0.6 ) 

λ3=0,λ4=0 λ3=-0.6,λ4=0 λ3=0.6,λ4=0 λ3=0,λ4=-1.0 λ3=0,λ4=2.0 

p L(p) p L(p) p L(p) p L(p) p L(p) 

 
 
 
 
 
0 

0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 

0.0500 0.9500 0.0284 0.9572 0.0636 0.9439 0.0521 0.9497 0.0458 0.9506 

0.1000 0.7529 0.0902 0.7449 0.1127 0.7576 0.1127 0.7496 0.0746 0.7594 

0.1500 0.5140 0.1548 0.4988 0.1583 0.5289 0.1694 0.5137 0.1112 0.5145 

0.2000 0.3155 0.2181 0.3067 0.2018 0.3274 0.2225 0.3183 0.1550 0.3098 

0.2500 0.1781 0.2787 0.1779 0.2441 0.1808 0.2727 0.1812 0.2046 0.1720 

0.3000 0.0935 0.3364 0.0982 0.2860 0.0889 0.3207 0.0951 0.2586 0.0902 

0.3500 0.0457 0.3912 0.0518 0.3281 0.0384 0.3670 0.0459 0.3161 0.0454 

0.4000 0.0208 0.4432 0.0261 0.3709 0.0142 0.4120 0.0201 0.3761 0.0222 

 
 
 
 
 

0.4 

0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 

0.0500 0.9556 0.0284 0.9627 0.0636 0.9497 0.0521 0.9555 0.0458 0.9558 

0.1000 0.7603 0.0902 0.7532 0.1127 0.7645 0.1127 0.7573 0.0746 0.7664 

0.1500 0.5145 0.1548 0.4998 0.1583 0.5288 0.1694 0.5142 0.1112 0.5149 

0.2000 0.3095 0.2181 0.3013 0.2018 0.3207 0.2225 0.3122 0.1550 0.3042 

0.2500 0.1698 0.2787 0.1701 0.2441 0.1717 0.2727 0.1726 0.2046 0.1642 

0.3000 0.0860 0.3364 0.0909 0.2860 0.0810 0.3207 0.0874 0.2586 0.0833 

0.3500 0.0404 0.3912 0.0462 0.3281 0.0332 0.3670 0.0403 0.3161 0.0404 
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0.4000 0.0175 0.4432 0.0224 0.3709 0.0115 0.4120 0.0168 0.3761 0.0190 

 
 
 
 
 

0.8 

0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 

0.0500 0.9613 0.0284 0.9681 0.0636 0.9556 0.0521 0.9614 0.0458 0.9611 

0.1000 0.7685 0.0902 0.7622 0.1127 0.7721 0.1127 0.7657 0.0746 0.7742 

0.1500 0.5150 0.1548 0.5008 0.1583 0.5289 0.1694 0.5148 0.1112 0.5155 

0.2000 0.3030 0.2181 0.2954 0.2018 0.3134 0.2225 0.3055 0.1550 0.2979 

0.2500 0.1609 0.2787 0.1617 0.2441 0.1620 0.2727 0.1635 0.2046 0.1559 

0.3000 0.0782 0.3364 0.0833 0.2860 0.0729 0.3207 0.0793 0.2586 0.0761 

0.3500 0.0350 0.3912 0.0406 0.3281 0.0282 0.3670 0.0348 0.3161 0.0354 

0.4000 0.0144 0.4432 0.0187 0.3709 0.0090 0.4120 0.0136 0.3761 0.0158 

 
 
 
 
 

1.2 

0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 

0.0500 0.9669 0.0284 0.9734 0.0636 0.9616 0.0521 0.9672 0.0458 0.9665 

0.1000 0.7775 0.0902 0.7720 0.1127 0.7804 0.1127 0.7748 0.0746 0.7827 

0.1500 0.5156 0.1548 0.5020 0.1583 0.5289 0.1694 0.5154 0.1112 0.5160 

0.2000 0.2957 0.2181 0.2887 0.2018 0.3053 0.2225 0.2981 0.1550 0.2909 

0.2500 0.1513 0.2787 0.1526 0.2441 0.1516 0.2727 0.1536 0.2046 0.1469 

0.3000 0.0702 0.3364 0.0753 0.2860 0.0646 0.3207 0.0710 0.2586 0.0686 

0.3500 0.0297 0.3912 0.0349 0.3281 0.0233 0.3670 0.0293 0.3161 0.0304 

0.4000 0.0114 0.4432 0.0153 0.3709 0.0068 0.4120 0.0107 0.3761 0.0128 

The table(1) clearly indicates that the effect of 
autocorrelation and non-normality on type - I error is 
quite substantial and an increasing function of n. it is seen 
from table that for heavy tailed and skewed distributions, 
type - I error (false alarms) will occur much more often 
than anticipated. An excessive number of false alarms can 
lead to unneeded process adjustment, loss of confidence 
in the control chart scheme, and eventually low 
productivity and increased cost. From Table (2) it is 
observed that the OC function is very close to the 
independent observation while the OC function increases 
when the roots are (real and distinct, and real and equal) 
for increasing value of v. It is very difficult to imagine 
any applications where the process cv would be 
monitored alone without also monitoring the process 
mean. Thus, deviating from assumptions of normality and 
independence seemingly causes more harm to the 

performance of the chartx − . The performance of 

chartx −  is quite robust to low and moderate 
autocorrelation of course, these findings for the 

performance of the chartx −  should be taken 
cautiously become of the increase in the number of false 
alarms resulting from the autocorrelation. In general, we 
conclude that autocorrelation and non-normality can have 
significant effect on the statistical performances of 
control charts for monitoring µ with known cv, even 
when the process parameters have been estimated with 
negligible error by a large enough sample.  
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