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Abstract- In the present study the problem of a steady 1-D incompressible flow through a planar two dimensional 

converging nozzle is investigated. Numerical solutions of the set of one dimensional governing equation are obtained by 

using SIMPLE algorithm. The numerical computations for velocity and pressure have been conducted using a 

staggered grid system. Iterative solution of the discretised momentum equation and the pressure correction equation is 

done to obtain the velocity and pressure field. The numerical solutions of the velocity and pressure obtained in the 

present study have been ensured to be stable using under relaxation factors. The accuracy of the computed solution has 

been checked against the well known Bernoulli equation. The significant findings from this investigation have been 

given under conclusion. 
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I. Introduction 
 

Computational Fluid Dynamics (CFD) is the analysis of 

systems involving fluid flow, heat transfer and associated 

phenomena such as chemical reactions by means of 

computer-based simulation. The technique is very powerful 

and has a wide range of industrial and non industrial 

application areas. It is not only economical but also time 

saving tool to solve flow problems without performing 

actual experiments. The development of high speed 

computers and advanced software packages has made the 

simulation of the flow system more convenient 

 

A nozzle is a tube of varying cross-sectional area which is 

usually axisymmetric and is used to increase the speed of an 

outflow and to control its direction and shape. Nozzle flow 

always generates forces associated to the change in flow 

momentum. Nozzles are used to accelerate the fluid in 

subsonic gas streams and in liquid jets. Substantial research 

has been in progress to study the properties of nozzles. 

([1],[2],[3],[4],[5], [6], [7], [8], [9]).  

 

In this paper, the well-known SIMPLE algorithm of 

Patankar and Spalding is used to deal with a converging 

nozzle problem. SIMPLE stands for Semi-Implicit Method 

for Pressure-Linked Equations. This method is very reliable 

and can deal with both compressible and incompressible 

flow. The method has been used in [10], [11] [12] and[13] 

among others. In section II of this paper, mathematical 

formulation of the problem is done. In section III, SIMPLE 

algorithm is discussed. In section IV and V, numerical 

calculations and discussion of the result are given. The 

conclusions of the paper are given in section VI. 

 

II. Mathematical Formulation 
 

We consider a steady and frictionless flow through a planar 

two-dimensional nozzle shown in Figure 1. The density of 

the fluid is constant. The stagnation pressure is given at the 

inlet and the static pressure is specified at the exit. Using the 

backward-staggered grid using the SIMPLE algorithm we 

write down the discretised momentum and pressure 

correction equations and solve for the unknown pressures at 

pressure nodes and velocities at velocity nodes. We will also 

check the continuity of the computed velocity field and 

evaluate the error in the computed pressure and velocity 

fields by comparing with the exact solution.  
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                Fig 1: Geometry of planar 2D nozzle 

 

The governing equations for steady, one-dimensional, 

incompressible, frictionless equations through the planar 

nozzle are as follows: 

  0
d

Au
dx

 
   

 (1) 

          (Mass conservation)  

du dp
uA A

dx dx
 

  

(2)

 
            (Momentum conservation)  

 

Discretised u-momentum equation 

The discretised form of momentum equation  is 

   e we w

p
uA u uA u V

x
 


  


  (3) 

where w ep p p     

The discretised momentum equation for this one 

dimensional problem can be written in standard notation as 

            P P W W E E ua u a u a u S       (4) 

Using the upwind differencing scheme the coefficients may 

be obtained from  

max( ,0)

max(0, )

( )

W w w

E e e

P W E e w

a D F

a D F

a a a F F

 

  

   
  

Since the flow is frictionless, there is no viscous diffusion 

term in the governing equation, and hence Dw = De = 0. Fw 

and Fe are mass flow rates through the west and east face of 

the u-control volume. We compute the face velocities 

needed for Fw and Fe from averages of velocity values at 

nodes straddling the face and use the correct values of the 

west and east face area. At the start of the calculations we 

use the initial velocity field generated from the guessed 

mass flow rate. For subsequent iterations we use the 

corrected velocity obtained after solving the pressure 

correction equation. The source term Su contains the 

pressure gradient integrated over the control volume

1
( )

2
u av w e

p p
S V A x p A A

x x

 
         
          (5) 

Since the nozzle has a varying cross-sectional area we use 

an averaged area to calculate ΔV. In summary the 

coefficients of the discretised u-equations are given by 

;

0
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The parameter d required in the pressure correction 

equations is calculated at this stage from 

( )

2

av w e

P P

A A A
d

a a


 

  

 (6) 

Pressure correction equation 

The discretised form of the continuity equation in this one-

dimensional problem is 

( ) ( ) 0e wuA uA  
   (7) 

The corresponding pressure correction equation is 

      
P P W W E Ea p a p a p b     

   (8) 

where  

( ) ; ( )

( )

W w E e

w e

a dA a dA

b F F

 

 

 

  
  

Values of the parameter d come from discretised momentum 

equations. 

In the SIMPLE algorithm the pressure corrections p′ are 

used to compute the velocity corrections u′ and the corrected 

pressure and velocity fields using 

1( )I Iu d p p

p p p

u u u


   

 

    
 

III. SIMPLE Algorithm 
 

SIMPLE algorithm is an iterative method to calculate 

pressure and velocities. To initiate the SIMPLE calculation 

process, a pressure field p* and velocity field u* are 

guessed. Discretised momentum Eqns. (4) are solved using 

the guessed pressure field to yield velocity components u* at 

all velocity nodes as follows:  
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P P W W E E ua u a u a u S      

 

Solving Pressure correction equation (Eqn. (8)) 

 

            P P W W E Ea p a p a p b       

 

pressure correction field p′ can be obtained at all pressure 

points. Once the pressure correction field is known, the 

correct pressure field may be obtained using  

p p p 
  (9)

 

and velocity components through correction formula  

1( )I Iu d p p

u u u


   

 
  (10)

 

The pressure correction equation is susceptible to 

divergence unless some under-relaxation is used during the 

iterative process. Using under relaxation factor  a new, 

improved, pressures pnew are obtained with 

  *   

(1 ) *   (11)

new p

new p p

p p p

or p p p



 

  

  
          

where αp is the pressure under-relaxation factor. If we take 

αp equal to 1 the guessed pressure field p* is corrected by p′. 

Taking αp equal to zero would apply no correction at all, 

which is also undesirable. Taking αp between 0 and 1 allows 

us to add to guessed field p* a fraction of the correction field 

p′ that is large enough to move the iterative improvement 

process forward, but small enough to ensure stable 

computations. The velocities are also under-relaxed. The 

iteratively improved velocity components unew is obtained 

from  

   1  new u uu u u       

where αu is  the u-velocity under-relaxation factors.  

For cost effective simulations, a correct choice of under-

relaxation factors α is essential. A very small value of α may 

cause extremely slow convergence, whereas very large value 

leads to an oscillatory or even divergent iterative solutions. 

The optimum values of under relaxation factors are flow 

dependent and must be sought on a case-by-case basis.  

 

 

IV. Numerical Calculations 

 

In order to get unknown variables u (x-component of 

velocity) and p (pressure), numerical computations are 

carried out for different number of nodes. While doing the 

computations the density of the fluid ρ has been chosen to 

be 1.0 kg/m
3
.The Nozzle length L  is 2.00 m. The grid is 

taken to be uniform for all cases. The cross-sectional area at 

the inlet is 0.5 m
2
 and at the exit is 0.1 m

2
. The area changes 

as a linear function of distance from the nozzle inlet. For 

boundary conditions we assume that at inlet the flow 

entering the nozzle is drawn from a large plenum chamber; 

the fluid has zero momentum and the stagnation pressure at 

inlet p0 = 10 Pa. The static pressure at exit is 0 Pa. To 

generate an initial velocity field for this problem we guess a 

mass flow rate say   1.0 /m kg s  and use 

   /u m A  along with the cross-sectional areas at 

velocity nodes. To generate a starting field of guessed 

pressures we assume a linear pressure variation between 

pressure nodes.  

The computation of u-velocity and pressure is done by 

following the method which has been described under 

Section III. The same algorithm has been implemented in 

MATLAB programming language. The unknown quantities, 

the velocity of the fluid flow in x direction and the pressure 

p, obtained for different number of velocity and pressure 

nodes. The exact solution to this steady, one-dimensional, 

incompressible, frictionless flow problem can be obtained 

using Bernoulli’s equation. The analytical values of velocity 

and pressure fields obtained from Bernoulli Equation are 

given and compared with the iterative values for different 

number of nodes. The comparisons are given in the Table I 

given below:  

TABLE I: VELOCITIES AND PRESSURE FIELD AT 5 VELOCITIES 

NODES AND 6 PRESSURE NODES WITH αP = 0.1 AND αv =0.9 

Pressure 

Node  

Actual 

Value of p  

Value of p after 20 

iterations  

Errors  

(%) 

1 9.6 9.7128 -1% 

2 9.4331 9.1719 3% 

3 9.1350 8.7442 4% 

4 8.5207 7.8931 7% 

5 6.9136 5.7662 17% 

6 0 0 0% 

Velocity 

Node  

Actual 

Value of u  

Value of u after 20 

iterations  

Errors 

(%) 

1 0.9722 1.2713 -31% 

2 1.1769 1.5390 -31% 

3 1.4907 1.9494 -31% 

4 2.0328 2.6582 -31% 

5 3.1944 4.1772 -31% 
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Fig.2(a) 

 
Fig. 2(b) 

 

Figure 2(a) &2(b): Velocities and Pressure field at 5 velocities nodes and 6 

pressure nodes with αp = 0.1 and αu =0.9 
 

TABLE II: VELOCITIES AND PRESSURE FIELD AT 10 VELOCITY 

NODES AND 11 PRESSURE NODES WITH αP = 0.1 AND αU =0.9 

Pressure 

nodes 

Actual 

value of P 

Value of P after 

20 iterations 

Errors 

(%) 

1 9.6000 9.831 -2.4% 

3 9.4331 9.3447 0.93% 

5 9.1350 9.1108 0.26% 

7 8.5207 8.4122 1.27% 

9 6.9136 6.603 4.49% 

10 4.8980 4.5947 6.19% 

 
Fig.3(a) 

 
 Fig. 3(b) 

Fig 3(a) &3(b): Velocities and Pressure field at 10 velocity nodes and 11 

pressure nodes with αp = 0.1 and αu =0.9 

 
 TABLE III: VELOCITIES AND PRESSURE FIELD AT 20 
VELOCITIES NODES AND 21 PRESSURE NODES  WITH αP = 0.1 

AND αU =0.9 

 

Pressure 

nodes 

Actual 

value of P 

Value of P after 

20 iterations 

Error 

(%) 

1 9.6000 9.8233 -2.3% 

5 9.4331 9.4361 -0.03% 

10 9.0235 8.8779 1.61% 

15 7.9339 8.2424 -3.8% 

20 3.0557 3.2093 -5.02% 

21 0 0 -- 
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Analytical solution

10 Iteration solution

20 iteration solution

Velocity 

Node  
Actual 

Value of u  

Value of u after 

20 iterations  

Errors  

(%) 

 1 0.9317 1.0354 -11% 

3 1.1180 1.2425 -11% 

5 1.3975 1.5531 -11% 

7 1.8634 2.0708 -11% 

9 2.7951 3.1063 -11% 

10 3.7268 4.1417 -11% 

Velocity 

Node  

Actual 

Value of u  

Value of u after  

20 iterations  

Errors 

 (%) 

1 0.9127 0.9396 -2.9% 

5 1.0908 1.1230 -2.9% 

10 1.4426 1.4852 -2.9% 

15 2.1296 2.1925 -2.9% 

20 4.0655 4.1857 -2.9% 
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Fig 4(a) 

 
Fig 4(b) 

Fig 4(a )& 4(b): Velocities and Pressure field at 20 velocity nodes and 21 
pressure nodes with αp = 0.1 and αu =0.9 

 

 TABLE 4: VELOCITIES AND PRESSURE FIELD AT 50 VELOCITIES 
NODES AND 51 PRESSURE NODES  WITH αP = 0.1 AND αU =0.9 

Pressure 

nodes 

Actual 

value of P 

Value of P after 

5 iterations 

Error 

(%) 

1 9.6000 9.9499 -3.6% 

10 9.4541 10.9366 -15% 

20 9.1743 13.2153 -44% 

30 8.6077 13.6955 -59% 

40 7.1707 10.0079 -39% 

50 1.4267 1.1686 18% 

  

 
Fig 5(a) 

 
Fig 5(b) 

Fig 5(a )&5(b): Velocities and Pressure field at 50 velocity nodes and 51 

pressure nodes with αp = 0.1 and αu =0.9 

 

V.  Result and Discussion 
 

The values of velocity and pressure fields are obtained using 

different number of velocity and pressure nodes. During the 

numerical process, different values of under relaxation 

factors αp and αu were tested for all cases. It was seen that 

for a grid with 10 velocity nodes, the solution was 

converging for many values of αu ranging from 0.9 to 0.4, 

but the values of αp for which the solution converges could 

be taken only from 0.1 to 0.3.In case of a grid with 20 

velocity nodes and 50 velocity nodes ,the value of αp  for 

which solution converges could be only 0.1.Hence, we can 

say that the solution converges for many values of under 

relaxation factor for velocity αu but only for few values of 

under relaxation factor for pressure αp. It was also observed 

that as the grid gets refined i.e. number of nodes increases, 

the solution converges for fewer values of αp. It was also 
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Velocity 

Node  

Actual 

Value of u  

Value of u after  

5 iterations  

Errors 

 (%) 

1 0.9016 1.1063 -22% 

10 1.0547 1.2922 -22% 

20 1.300 1.5952 -22% 

30 1.6940 2.0786 -22% 

40 2.4305 2.9823 -22% 

50 4.3001 5.2764 -22% 
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observed that pressure values converges faster than the 

velocity values when the grid is refined whereas for coarser 

grid velocity value converges faster. In Fig. 2(a & b) it can 

be seen that for a coarse grid in which number of velocity 

and pressure nodes are less, the solution converges to a 

limited extent. In such a case, increasing the number of 

iterations does not converge the solution any further.  In Fig. 

3(a & b) it can be seen that for a 10 velocity nodes and 11 

pressure nodes grid a good approximation for velocities can 

be obtained in 10 iterations whereas pressure fields are 

obtained with good approximations only after 20 iterations. 

From Fig. 4(a & b) it is clear that better approximation for 

velocity and pressure fields can be obtained by increasing 

the number of iterations. From fig. 5(a  & b) it can be seen 

that the solution converges very fast in case of finer grid. 

From Tables 1, 2 and 3, it can be clearly seen that by 

refining the grid, the error can be reduced using same 

number of iterations. 

Using Bernoulli Equation the mass flow rate m


  is obtained 

as 0.44721 kg/s. In case of 5 node grid the converged mass 

flow rate is 0.5848 kg/s which is 30% higher than the exact 

value. After refining the grid with 10, 20 and 50 velocity 

grid points, the converged mass flow rates obtained are 

0.4985 kg/s , 0.4604 kg/s and 0.4597 kg/s respectively .The 

errors in these cases are 11% , 3%  and 2.79 % respectively. 

This demonstrates that the errors in the solution can be 

reduced by refining the grid. This is graphically illustrated in 

Fig. 6. 

 
Fig 6: Predicted mass flow rate with different grids 

  

One of the important properties of SIMPLE algorithm is 

that, at the end of each iteration cycle the velocity field 

satisfies continuity. This property of SIMPLE ALGORIHM 

also applies in more complex multi-dimensional problems 

and is a major strength of the SIMPLE algorithm and its 

variants. However, at the end of an iteration cycle the 

momentum is not conserved because the computed velocity 

solution is not yet in balance with the computed pressure 

field. This is due to the fact that the entries in the discretised 

momentum equations were computed on the basis of an 

assumed initial velocity field. Therefore, iterations are 

performed until both continuity and momentum equations 

are satisfied. 

 

The discretised momentum equations will not satisfied by 

the under-relaxed values of velocity and pressure fields. The 

difference between the left and right hand sides of the 

discretised momentum equation at every velocity node is 

called the momentum residual. If the value of these residual 

decreases with increasing iterations it shows that the 

iteration sequence is convergent. Usually, we stop the 

iteration process when mass and momentum are exactly 

balanced in the discretised pressure correction and 

momentum equations.  

Solution 

VI. Conclusions 

The problem of a steady 1-D incompressible flow through a 

planar two dimensional nozzle was investigated. Numerical 

solutions for the governing equations are obtained using 

SIMPLE algorithm. The numerical computations for u-

velocity and pressure were conducted using staggered grid 

system. Conclusions of this study are as follows: 

1. The solution converges for many values of under 

relaxation factor for velocity αu but only for few values 

of under relaxation factor for pressure αp. 

2. For a coarse grid in which the number of velocity and 

pressure nodes are less, the solution converges to a 

limited extent 

3. For a given grid, better approximation for velocity and 

pressure fields can be obtained by increasing the number 

of iterations. 

4. The error can be reduced by refining the grid and using 

same number of iterations. 
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