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Abstract— Main purpose of multivariate regression analysis is the estimation of model parameters. The use of maximum 

likelihood method would not be appropriate in estimation problems while data contains outlier or extreme observations. So it is 

necessary to find a parameter estimation method in which the value of the estimator is not much affected by small changes in 

the data. This paper introduces robust method for multivariate regression based on robust estimation of location and scatter 

matrix of predictor and response variables. In this paper Comedian method is taken as a robust estimator of location and 

scatter. Based on the simulations, the finite-sample efficiency and robustness of the estimator are investigated. Efficiency of 

proposed robust estimators is compared with maximum likelihood estimator, minimum covariance determinant estimator and 

orthogonalized Gnanadesikan-Kettenring estimator in terms of mean squared errors. Proposed estimator combines high 

robustness and high efficiency in estimation. The proposed method is illustrated on a real data set. 

 

Keywords—Multivariate Regression, Outliers Detection, Comedian Approach, Finite Sample Efficiency.

I. INTRODUCTION 

In statistical modeling, regression analysis is a statistical 

process for estimating the relationships among variables. It 

includes many techniques for modeling and analyzing 

several variables, when the focus is on the relationship 

between dependent variables (response) and independent 

variables (predictors). More specifically, regression analysis 

helps to understand how the typical value of the dependent 

variables changes when any one of the independent variables 

is varied. As outlined above multivariate regression model 

allows us to assess the impact of multiple variables on one or 

more dependent variable in the same model. 

 

Consider the multivariate regression model 

 

     
                      (1) 

 

with xi = (xi1, . . . , xip) 
t
 ∈ R

p
 , yi  = (yi1, . . . , yiq)

t ∈ R
q
, 

 αi = (⍺i1, . . . , ⍺iq)
t ∈ R

q
  is the q-dimensional intercept 

vector and ℬ∈ R
(p×q) 

is the (p×q) slope matrix. The error 

terms εi = (εi1. . . εiq)
t
 are independent and identically 

distributed random variables with center zero, positive 

definite and symmetric scatter matrix Σε of size q. 

 

Let us denote the location of the joint (x, y) variables by μ 

and scatter matrix by Σ. Partitioning μ and Σ yields the 

notations: 

   (
  
  
)          (

      
      

) (2) 

 

Traditionally, μ and   are often estimated by the classical 

estimation procedures like Maximum Likelihood Method.  

Let  ̂ and   ̂ be the maximum likelihood estimators of μ 

and  . Then the maximum likelihood estimators for ℬ , α and 

Σε are given by  

 

  ̂    ̂   
   (3) 

  ̂    ̂  
    ̂  ̂  (4) 

  ̂ε    ̂     ̂
  ̂    ̂ (5) 

 

The expressions (3), (4) and (5) are directly depending on the 

estimates of the location vector and scatter matrix of 

response and predictor variable respectively. Unfortunately, 

classical estimators are not robust to the presence of outliers 

which are the observations in a data that appears to be 

inconsistent with the remainder of that data set [1]. 

Consequently, the classical regression techniques are 

extremely sensitive to the presence of outliers and provide 

misleading results. As a solution to this problem, one may 

http://www.isroset.org/
https://en.wikipedia.org/wiki/Statistical_model
https://en.wikipedia.org/wiki/Dependent_variable
https://en.wikipedia.org/wiki/Independent_variable
https://en.wikipedia.org/wiki/Independent_variable
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replace classical estimates of location and scatter by highly 

robust estimates which are less sensitive to outliers and 

perform robust analysis. Many robust estimates have been 

proposed over the years with various properties [2].  

 

An overview of robust multivariate regression techniques is 

explained in the context of simultaneous equation models by 

[3]. Application of M-estimator to each coordinate of the 

responses was investigated and suggested to minimizing the 

sum of the Euclidean norm of the residuals [4, 5]. But, these 

two methods are not affine equivariant. Robust estimation 

procedure of multivariate regression based on the sign 

covariance matrix was introduced by [6]. The application of 

Minimum Covariance Determinant (MCD) method which 

possesses breakdown value was discussed and developed the 

reweighted versions of Minimum Covariance Determinant 

estimator in multivariate regression estimation [7, 8]. The 

MCD methods provide better robust estimates of multivariate 

regression coefficients compared to many other methods. But 

for large dimensional data it is computationally expensive 

and time consuming. This article explores the possibilities of 

Comedian method, proposed for robust estimation of 

multivariate regression coefficients explained in [9]. 

Comedian estimates has high breakdown value and provide 

better results for large dimensional datasets. The efficiency 

of the proposed method is evaluated through simulation and 

the results are compared with that of MLE estimates, 

Orthogonalized Gnanadesikan-Kettenring (OGK) estimates 

of and MCD estimates [10].  

 

In section II, robust method adapted for multivariate 

regression estimation with suitable threshold function is 

described. Section III consist results of simulated 

environment in terms of finite sample efficiencies. Section 

IV includes simulated robustness properties of proposed 

method. Application of proposed method in real life dataset 

explained in section V. The conclusion is presented in last 

section.  

 

II. MATERIALS AND METHODS 

 

Consider the data set Z = {zi ; i=1,2,…,n}∈ R
p+q

  consisting 

of q response variables and p predictor variable each sample 

of size n. Then the comedian matrix COM (Z) is defined as 

 

    ( )  (    (     ))                 (6) 

 

Similarly, multivariate correlation median matrix δ is defined 

as, 

 

  ( )       ( )   (7) 

 

where D is a diagonal matrix with diagonal elements 

1/MAD(Zi) (i = 1, …, p).  

 

Consider a pxp matrix E whose columns are eigenvectors of 

δ (Z). Let Q = D (Z)
-1 

E and wi = Q
-1

zi (i = 1, 2, …, n). Then 

W is an orthogonalized matrix with rows wi
T
, (i= 1, …, n) 

and columns Wj (j = 1, …, p). The resulting robust estimates 

for location μ and scatter Σ are then defined as 

 

        
               (8) 

 

where Γ = diag(MAD(W1)
2
, …, MAD(Wp)

2
) and l = 

(med(W1), …, med(W1))
T
. The procedure can be iterated, 

computing ΣR and μR for W and then expressing them in the 

original coordinate system. These estimates can be improved 

on by a reweighting step by using a robust Mahalanobis 

distance defined as, 

 

 
  (  )         (        )

    
   (       ) 

             
  

(9) 

where ΣR and μR are defined in (8). Let M be a weight 

function, and define ΣRW and μRW as the weighted mean and 

covariance matrix, where each zi has weight mi = M (di), that 

is,  

    
∑     
 
 

∑   
 
 

         
∑   (      )(      )

  
 

∑   
 
 

    

 

The simplest weight function M is ―hard rejection‖, with 

M(d) = I(d ≤ cv), where I(.) is the indicator function. We 

consider 

 

             
  
2( .  )median (         )

  
2(   )

 (10) 

It is showed that reweighted comedian estimates are positive 

definite, possess high-breakdown value and are 

approximately affine equivariant [9]. Then the robust 

Comedian estimators for ℬ , α and Σε are obtained by  

 

   ̂    ̂  
   (11) 

   ̂   ̂  
     ̂ 

  ̂                                      (12) 

  ̂ ε    ̂    ̂ 
  ̂    ̂  (13) 

 

Efficiency of the proposed method is analyzed and evaluated 

through simulation. 

III. EMPIRICAL RESULTS 

To investigate the importance and finite sample efficiency of 

Comedian multivariate regression, the following simulation 

study is performed. For various sample sizes n and for 

different choices of p and q, simulated m datasets of size n 

from the multivariate standard Gaussian distribution N(0, 

Ip+q), which corresponds to putting ℬ  = 0 and α = 0. For each 

dataset Z
(k)

, k = 1, . . . ,m, Comedian regression has been  
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Table 1. Finite sample comparison of Comedian, MLE, MCD and OGK 
estimations based on Mean Square Error (MSE) for p=q=6 

 n 

 50 200 500 1000 

Comedian Regression:   

Slope  1.202 1.051 1.014 1.002 

Intercept 1.176 1.032 1.003 1.004 

Σdiagnoal 2.641 2.126 2.065 2.050 

Σoffdiagnoal 0.897 0.983 0.996 0.997 

MLE Regression:      

Slope  1.201 1.051 1.014 1.002 

Intercept 1.176 1.032 1.003 1.004 

Σdiagnoal 2.640 2.126 2.065 2.050 

Σoffdiagnoal 0.897 0.983 0.996 0.997 

MCD Regression:      

Slope  3.571 1.541 1.245 1.171 

Intercept 2.290 1.297 1.137 1.086 

Σdiagnoal 6.323 2.883 2.412 2.325 

Σoffdiagnoal 3.187 1.540 1.235 1.179 

OGK  Regression:      

Slope  1.732 1.428 1.353 1.329 

Intercept 1.522 1.260 1.225 1.205 

Σdiagnoal 5.322 5.774 8.046 12.440 

Σoffdiagnoal 0.908 1.056 1.074 1.093 

 

Table 2. Finite sample comparison of Comedian, MLE, MCD and OGK 
estimations based on Mean Square Error (MSE) for p=q=6, when the data 

contains 10% outlier. 

 n 

 50 200 500 1000 

Comedian 

Regression:  
 

Slope  1.335 1.144 1.141 1.109 

Intercept 1.299 1.121 1.150 1.147 

Σdiagnoal 2.935 2.421 2.283 2.226 

Σoffdiagnoal 0.996 1.060 1.129 1.092 

MLE Regression:      

Slope  12.545 10.731 10.792 10.537 

Intercept 54.249 211.368 523.930 1051.373 

Σdiagnoal 3424.488 16510.274 42681.683 86414.403 

Σoffdiagnoal 3585.411 16937.652 43621.652 88193.685 

MCD Regression:      

Slope  3.226 1.516 1.344 1.264 

Intercept 2.229 1.344 1.236 1.205 

Σdiagnoal 6.288 4.373 5.875 9.717 

Σoffdiagnoal 3.336 1.749 1.556 1.459 

OGK  

Regression:  
    

Slope  1.876 1.515 1.515 1.508 

Intercept 1.651 1.365 1.349 1.357 

Σdiagnoal 4.988 5.050 6.501 9.192 

Σoffdiagnoal 0.964 1.132 1.226 1.248 

 

carried out for yielding the (p × q) slope matrix estimate 

 ̂
( )

, the intercept vector   ̂( ), and the (q × q) covariance 

matrix estimate   ̂ 
( )

 of the errors. 

 

To measure sample efficiency, mean squared error (MSE) of 

the proposed estimators are used. As commonly defined, 

MSE of a univariate component T are given by 

   ( )        ( 
( )   )  

Where, θ is the true value of parameter. The MSE of slope is 

defined as 

   (  ̂)          (   (  ̂   )) 

Similarly for the intercept  ̂  and for the diagonal and off-

diagonal of  ̂ . 
 

Table 1 gives the efficiency comparison results of Comedian 

regression method from simulated data. The proposed 

Comedian regression is compared with MLE, MCD and 

OGK based on Mean square Error (MSE). The MSE of slope 

matrix, intercept vector, and error covariance matrix were 

obtained based on different methods are tabulated. All 

simulations were done with m=1000 replications. The table 

contains sample sizes between 50 and 1000.   In the Table 1, 

MSE of Comedian regression estimates equals MSE of MLE 

regression estimates. But he MSE obtained from Comedian 

regression are much lower than those obtained from MCD 

regression and OGK regression. Simulations for other 

sample sizes n and different dimensions p and q gave similar 

results. 

 

To study the robustness, multivariate data sets contaminated 

by different type of outliers are simulated. A point (xi, yi) that 

does not follow the linear pattern of the majority of the data 

but whose xi is not outlying is called a vertical outlier. A 

point (xi, yi) whose xi is outlying is called a leverage point. 

Such a point (xi, yi) do not follow pattern of the remaining 

data is term as bad leverage point; otherwise, it is a good 

leverage point. The data sets are generated with both type of 

outliers because regression estimators often inefficient in the 

presence of vertical outliers or bad leverage points.  From the 

data discussed in the beginning of the section 4, 10% of data 

is replaced as follows. To include vertical outliers, the xi’s 

are kept same and q response variables are distributed as 

N(2√χ
2

p+q, 0.99, 0.1). Here only the response variables are 

outlying. Further 10% of the data is replaced with bad 

leverage points for which p independent variables are 

generated according to N(2√χ
2
p, 0.99, 0.1)  and q dependent 

variables are generated according to N(2√χ
2
q, 0.99, 0.1).

 

 

Efficiency comparison results of Comedian regression 

method for a 10% contaminated data are shown in Table 2. 

Here also the proposed Comedian regression is compared 

with MLE, MCD and OGK based on Mean square Error 

(MSE). From the table, one can see that MSE obtained from 

Comedian regression are much lower than those obtained 

from MLE regression, MCD regression and OGK regression. 

The contamination level is increased to 20% and 40%, the 

efficiency values are shown in Table 3 and Table 4 

respectively. In 20% contaminated data, the efficiency of 

proposed method is similar to 10% contamination. Comedian 
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Regression MSEs are greater for small sample sizes and 

gradually it deceases for 40% contaminated data. Simulations 

for other sample sizes n and different dimensions p and q 

gave similar results. The efficiency of Comedian regression 

is compared in correlated sample by generating correlated 

multivariate Gaussian responses with correlation rjk = 0.5. 

The result of efficiency comparison using correlated data is 

shows the performance of Comedian regression under 

collinear situations. Again, comparison process is repeated 

for data with 10% of vertical outliers and 10% of bad 

leverage points. 

IV. ROBUSTNESS PROPERTIES 

The robustness properties of the estimator are studied in 

terms of breakdown and affine equivariance. These 

robustness properties confirm finite sample results in the 

previous section. The breakdown point of an estimator is the 

proportion of outliers an estimator can handle before giving 

an incorrect result. An empirical method to find the 

breakdown value was discussed in [9]. To find the 

breakdown value Comedian regression method, observations 

of size n generated from the multivariate standard Gaussian 

distribution N (0, Ip+q). The efficiency of the estimates from 

data sets with and without outliers is compared to find the 

maximum proportion of contamination tolerable by the 

Comedian regression method. The study consists of two kind 

of contamination: vertical outliers and bad leverage points 

described in the previous section. Various values of n (n = 

100, 1000), γ percentage of contamination (γ = 10, 20, 30, 40, 

45, 48) and different combinations p and q of were selected 

to identify the empirical breakdown values of the Comedian 

regression method. Table 5 contains efficiency comparison 

of the Comedian regression estimates through MSE of the 

additional 48% contaminated observations. The efficiency 

values are tabulated for different combinations of variables 

dimension of sample size n =1000. It is possible to observe 

 
Table 3. Finite sample comparison of Comedian, MLE, MCD and OGK 

estimations based on Mean Square Error (MSE) for p=q=6, when the data 

contains 20% outlier 

 n 

 50 200 500 1000 

Comedian 

Regression:  
 

Slope  1.571 1.328 1.269 1.252 

Intercept 1.492 1.291 1.258 1.248 

Σdiagnoal 3.432 2.667 2.538 2.582 

Σoffdiagnoal 1.097 1.228 1.251 1.258 

MLE 

Regression:  
    

Slope  21.310 18.268 17.437 17.620 

Intercept 210.239 839.258 2097.342 4194.708 

Σdiagnoal 10923.406 52256.444 134867.700 272745.700 

Σoffdiagnoal 11328.196 53570.524 137997.700 278842.700 

MCD 

Regression:  
    

Slope  3.791 1.617 1.416 1.365 

Intercept 10.928 1.448 1.342 1.301 

Σdiagnoal 437.533 8.296 16.307 31.234 

Σoffdiagnoal 445.059 2.099 1.916 1.894 

OGK  

Regression:  
    

Slope  2.105 1.680 1.624 1.668 

Intercept 1.836 1.495 1.522 1.603 

Σdiagnoal 5.103 4.472 5.269 7.086 

Σoffdiagnoal 1.051 1.302 1.416 1.531 

 

that the MSE values similar for both type of simulated data, 

γ=48 indicate high level of contamination that the Comedian 

regression method can robustly detect. 

 

Generalized versions of regression, scale, affine equivariance 

and robustness of multiple regression estimators developed 

in [11]. Consider T(X,Y)=(  ̂ t
,  ̂ )

t
, X is (n×p) matrix and Y 

is (n×q) matrix. The regression equivariance is that if we 

transformation of the response variables by adding a linear 

transformation of predictor variables is equivalent to adding 

the coefficients in the linear transformation to the estimator. 

The estimator T is said to be regression equivariant if 

 

  (             
 )   (   )  (     )   (14) 

 

Here C is any (p×q) matrix, V is any (q×1) vector, and In = 

(1, 1,…,1)
t
 ∈ R

n
   

The estimator T is said to be y-affine equivariant if 

 

  (           
 )    (   )   (   

   )
 
 (15) 

 

The y-affine equivariance of estimator T means linear 

transformation of the response variables implies that the 

estimator T is transformed in the same manner. Here M is 

any nonsingular (q×q) matrix, P is any (q×1) vector, and Opq 

is (p×q) zero matrix. 

The estimator T is said to be x-affine equivariant if 

 

 
 (          

   )     (   )    

 (  ̂        ̂    ̂      )
 
  

(16) 

Here N is any nonsingular (p×p) matrix and D is any (p×1) 

vector. If the predictor variables are transformed linearly, 

then x-affine equivariance says that the estimator T 

transforms accordingly. 

 

The three equivariance properties are empirically 

proved with the help of simulated samples in all possible 

situations by varying parameter and different contamination 

levels. Table 6 gives empirical evidence to the affine 

equivariance expressions (14), (15) and (16). The table 

contains the MSE efficiency of the estimates from 

transformed data and efficiency of transformed estimates 

from untransformed data. It is clear that the MSE values are 

equal when the transformations are given to data and 
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estimate. This indicates the Comedian regression method is 

affine equivariant. The result is similar when affine 

equivariance is tested for different possible contamination 

levels. 

 One of the important advantages of Comedian 

regression is that the time consumption for estimation is 

relatively less compared with MLE, OGK and MCD method. 

A simulation study is performed to compare the time 

efficiency of the proposed method. The simulation consist of 

different sample sizes n (50, 200, 500, 1000) with different 

combinations of p and q, all simulation done for m=1000 

replications. The average time consumptions of different 

robust methods are tabulated in Table 7. It is possible to see 

that comedian regression method requires relatively less time 

for the estimation than other methods. 

V. ILLUSTRATION EXAMPLES 

Consider the dataset consisting of measurements of 

properties of Pulp-Fiber and the paper made from them [8]. 

The dataset comprises of n = 62 observations with p = 4 

predictor variables and q = 4 response variables. The 

predictor variables describe the properties four pulp fiber 

characteristics: arithmetic fiber length, long fiber fraction, 

fine fiber fraction and zero span tensile and the response 

variables measure four properties of paper: breaking length, 

elastic modulus, stress at failure and burst strength measure 

property paper made from them. The objective is to establish 

a relationship between pulp fiber properties and the resulting 

paper properties.  

 The Figure1 shows the diagnostic plot of Pulp-Fiber 

data (robust residual distance versus the robust distance of 

residuals). The vertical and horizontal cutoff lines shown in 

the Figure1 is at √χ2
4, 0.975 = 3.34. Observations 56, 58, 59, 60, 

61 and 62 lie far from both the cutoff lines, these six 

observations thus be classified as outliers (bad leverage 

points). Some observations (28, 51, and 52) lie above the 

horizontal cutoff lines, these are vertical outliers because 

they have small residual distance. Considering the fact that 

the efficiency of Comedian Multivariate regression is 

relatively high, the suspicious outliers are observations 56, 

58, 59, 60, 61 and 62. This computation took only 0.42 

seconds in R-Programming. 

 

 
Figure 1: Plot of Robust Residuals versus Robust Distances for the Pulp-

fiber data 

 

 
Table 4. Finite sample comparison of Comedian, MLE, MCD and OGK 

estimations based on Mean Square Error (MSE) for p=q=6, when the data 

contains 40% outlier 

 n 

 50 200 500 1000 

Comedian 

Regression:  
 

Slope  12.487 6.554 8.777 13.15665 

Intercept 170.516 373.544 1602.672 5444.999 

Σdiagnoal 5304.519 16483.99 72856.47 250612.3 

Σoffdiagnoal 5516.615 16957.59 74829.62 257271.1 

MLE 

Regression:  
    

Slope  31.204 26.305 26.876 25.952 

Intercept 846.075 3358.234 8386.028 16783.810 

Σdiagnoal 24526.030 116970.600 301261.400 608892.000 

Σoffdiagnoal 25482.450 120633.600 310316.500 626954.500 

MCD 

Regression:  
    

Slope  77.393 50.714 50.593 47.986 

Intercept 1818.105 9090.076 22660.577 45244.190 

Σdiagnoal 50644.300 185423.200 474748.800 962059.400 

Σoffdiagnoal 52398.640 193795.500 496380.500 1006114.300 

OGK  

Regression:  
    

Slope  51.700 30.970 30.826 29.763 

Intercept 1010.802 4416.548 11286.298 22811.280 

Σdiagnoal 22468.810 122102.500 317716.600 644000.400 

Σoffdiagnoal 23621.880 127502.900 331643.200 672213.500 
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VI. CONCLUSION 

The context of robustness classical regression estimation 

procedures are highly sensitive to the outliers presented in 

the data set. Several alternative robust methods are available 

to estimate multivariate regression parameters like MCD 

and OGK. In this paper an improved alternative robust 

estimation method is suggested based on Comedian 

estimation introduced by [9]. Substituting proposed 

Multivariate robust estimate of location and scatter in the 

classical expressions of Multivariate regression parameter 

for slope, intercept and error covariance gives Comedian 

Multivariate regression method. The performance of 

Comedian regression is investigated by a comparative study 

with MLE, MCD and OGK methods. The finite sample 

efficiency and robustness properties are explained with the 

help of simulated samples and the MSE result are presented 

in the tables. The proposed approach gave best finite sample 

performance in the simulations and also gave highest 

efficiency compared to the other methods. Moreover, the 

robustness properties of the proposed approach also exist in 

simulations with contaminated data sets. The proposed 

method satisfied robustness properties like high breakdown 

value and affine equivariance through simulation technique.  

The time efficiency of the Comedian regression method is 

remarkably better than the other two methods and it is 

explained through the average time spent for estimation 

from 1000 replications of simulation. The Comedian 

regression method requires almost half time required by the 

OGK and MCD method. Comedian Multivariate regression 

on a real data application with the help of diagnostic plots 

has been illustrated.  The plots have been constructed based 

on robust residual distances. With the help of proposed 

estimators, it is easy to identify possible outliers contained 

in the data. The proposed robust regression estimator is 

suitable for multivariate regression estimation and further 

regression analysis in real data sets with multiple outliers.  
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Table 5. Efficiency comparison of breakdown value 

p,q 

Normal data 48%Contaminated data 

Slo

pe 

Interce

pt 

Σdiagn

oal 

Σoffdiagn

oal 

Slo

pe 

Interce

pt 

Σdiagn

oal 

Σoffdiagn

oal 

6,6 1.00

0 

1.008 2.037 1.008 1.00

0 

1.008 2.037 1.008 

6,10 1.01

2 

1.016 2.020 0.991 1.01

2 

1.016 2.020 0.991 

10,6 1.00

2 

0.983 2.11 0.987 1.00

2 

0.983 2.11 0.987 

10,1

0 

1.01

7 

1.022 2.107 0.982 1.01

7 

1.022 2.107 0.982 

15,1

5 

1.01

3 

1.005 2.244 0.986 1.01

3 

1.005 2.244 0.986 
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Table 6: MSE comparison for different affine equivariance, 
The sample size is n=1000 

 

p,q 

 

 

Transformed data 

Regression 

Equivariance 

Y 

Equivariance 

X 

Equivariance 

ℬ  α ℬ  α ℬ  α 

6,6 336.409 332.911 0.389 330.204 0.374 1.839 

6,10 333.429 326.539 0.385 336.376 .378 1.931 

10,6 335.287 342.927 0.370 338.949 0.375 2.441 

10,10 333.188 340.942 0.379 335.341 0.379 2.465 

15,15 334.682 330.545 0.375 332.042 0.379 3.064 

 

p,q 

 

Transformed Estimate 

Regression 

Equivariance 

Y 

Equivariance 

X 

Equivariance 

ℬ  α ℬ  α ℬ  α 

6,6 336.409 332.911 0.389 330.204 0.377 1.841 

6,10 333.429 326.539 0.385 336.376 0.379 1.901 

10,6 335.163 342.362 0.370 338.949 0.373 2.380 

10,10 333.188 340.9425 0.379 335.341 0.377 2.444 

15,15 334.682 330.5456 0.375 332.042 0.379 3.019 

 

 

Table 7: Average time consumption of different method in R Programming. 

n p,q 

Time(s) 

Comedian MCD OGK 

50 4,4 0.017 0.030 0.023 

100 4,4 0.021 0.090 0.027 

500 4,4 0.030 0.219 0.038 

1000 4,4 0.064 0.249 0.086 

50 6,6 0.040 0.069 0.059 

100 6,6 0.034 0.162 0.052 

500 6,6 0.057 0.421 0.082 

1000 6,6 0.083 0.340 0.117 

50 10,10 0.089 0.159 0.139 

100 10,10 0.115 0.467 0.176 

500 10,10 0.139 0.982 0.212 

1000 10,10 0.209 1.519 0.317 

 


