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Abstract— An SEIR epidemic model with saturated incidence rate under a limited resource for treatment function which is 

proposed by W. Wang (2006) is investigated in this paper. We have assumed that treatment rate is proportional to the number 

of infective when it is below the capacity and is a constant when the number of infective is larger than the capacity. The 

existing threshold conditions of all kinds of the equilibrium points are obtained. The local and global stability of the disease 

free equilibrium and the endemic equilibrium of the model are discussed. The local asymptotical stability of equilibrium is 

verified by analyzing the eigen values and using the Routh-Hurwitz criterion. We also discuss the global asymptotical stability 

of the disease free equilibrium by using, Lyapunov function and endemic equilibrium by autonomous convergence theorem. 

The study indicates that we should improve the efficiency and enlarge the capacity of the treatment to control the spread of 

disease. Finally, numerical simulations are given to illustrate the validity of the proposed results. 
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I.  INTRODUCTION  

Mathematical models describing the population dynamics of 

infectious diseases have been playing an important role in a 

better understanding of epidemiological patterns and disease 

control for a long time. Various epidemic models have been 

established and investigated extensively, which leads to the 

huge progress in the studies of disease control and prevention 

(See, for example [2-6]. In classical epidemic models, it is 

usually assumed that the recovered rate of the infection is 

proportional to the number of the infective.  

 Furthermore, mathematical models now plays a key role in 

policy making, including health-economic aspects, 

emergency planning and risk assessment, control-program 

evaluation, and optimizing various detection. One of the 

fundamental results in mathematical epidemiology is that 

most mathematical epidemic models usually exhibit 

‖threshold‖ behavior stated as follows: if the average number 

of secondary infections caused by an average infective, 

called the basic reproduction number, is less than one the 

disease will die out, while if it exceeds one there will be an 

endemic. Most of the models in mathematical epidemiology 

are compartmental models, with the population being divided 

into compartments with the assumptions about the nature and 

time rate of transfer from one compartment to another. These 

models are often referred to as compartmental models since 

the individuals in the population are divided into classes or 

compartments depending on their disease status.  It has been 

suggested by several authors that the disease transmission 

process may have a nonlinear incidence rate. This allows one 

to include behavior changes and prevent unbounded contact 

rate [7, 2]. A particular example of such an incidence rate is 

given by 
p

q

I

1 I




, where p , q ,   and   are positive. After 

studying the cholera epidemic spread in Bari in 1973, 

Capasso and Serio [14] introduced a saturated incidence rate 

g(I)S   into epidemic models, where g(I)  tends to a saturation 

level when I  gets large, i.e. 
I

g(I)
1 I





 where I  measures 

the infection force of the disease and 
1

1 I
 measures the 

inhibition effect from the behavioral change of the 

susceptible individuals when their number increases or from 

the crowding effect of the infective individuals. This 
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incidence rate seems more reasonable than the bilinear 

incidence rate g(I)S IS proposed by Kermack and 

Mckendrick [16] in 1927 because it includes the behavioral 

change and crowding effect of the infective individuals and 

prevents the unboundedness of the contact rate by choosing 

suitable parameters. In many epidemic models, bilinear 

incidence rate SI  is frequently used [9, 11].  

Many diseases such as measles, severe acute 

respiratory syndromes (SARS) and so on, however, incubate 

inside the hosts for a period of time before the hosts become 

infectious. So the systems that are more general than SIR or 

SIRS types need to be studied to investigate the role of 

incubation in disease transmission. We may assume that a 

susceptible individual first goes through a latent period (and 

said to become exposed or in class E) after infection before 

becoming infectious. Thus the resulting models are of SEIR                  

(susceptible-exposed-infectious-recovered) or SEIRS 

(susceptible-exposed-infectious-recovered-susceptible) types, 

respectively, depending on whether the acquired immunity is 

permanent or not. However, every country should have a 

maximal capacity treatment for diseases. Therefore, it is vital 

to describe the limited capacity for treatment [7]. The 

treatment is an important method to decrease the spread of 

diseases. Wang and Ruan in [18], introduced the following 

constant treatment function of diseases into an SIR epidemic 

model, 

r, I 0
T(I)

0 I 0


 


 

which simulated a limited capacity for treatment. Later, 

Wang [14] considered the piecewise linear treatment 

function 

0

0 0

rI, If0 I I
T(I)

kI IfI I

 



 

where k  and 0I  are positive constants. This means that the 

treatment rate is proportional to the number of the infective 

before the capacity of treatment is reached and takes the 

maximal capacity 0kI , otherwise. This type of treatment 

function is more realistic because in every hospital, the 

number of beds is limited and also they have a certain 

capacity of medicines. In this paper, we shall investigate a 

model which includes a nonlinear incidence rate 
SI

1 I




 and 

treatment function which was introduced by Wang [17].  

Motivated by the work of Jinhoge Zhang, Jianwen Jia and 

Xinyu Song [8], Kar and Batabyal[13] in this paper, we are 

concerned an SEIR epidemic model with the effect of 

saturated incidence rate and the piecewise linear treatment 

function. The purpose of this paper is to show that the 

piecewise linear treatment has significant impact on an SEIR 

epidemic model. 

 

II. RELATED WORK  

In the year 2012 [10] L. Zhou et.al worked on an SIR epidemic with 

treatment function 
* I
h (I)

I





after this in year 2014 [8] J. Zhang 

et.al modified the model [10], with saturated incidence  rate 

SI

1 S




and the same treatment function. Recently in the year 2017 

[1] A. Agrawal modified the paper of [8] J. Zang et.al. using a 

SEIRS epidemic model with same incidence rate and treatment 
function.  

III. METHODOLOGY 

The Mathematical Model and the Existence of Equilibria 

 

In [10] some examples of the SEIR epidemic model 

with saturated incidence rate and continually differentiable 

treatment function with the saturated phenomenon of the 

limited medical resources was studied as follows: 

   SI
S (t) A dS

1 I


   


  

SI
E'(t) (d )E

1 I


   


 

rI
I'(t) E (d v)I

1 kI
    


 

rI
R (t) vI dR

1 kI
   


 

Another example is SEIRS epidemic model with saturated 

incidence rate 
SI

1 I




 and treatment function 

rI
T(I)

1 kI



 

generated by [18] included the recovered compartment 

R(t) in S'(t)  which was studied as follows: 

SI
S (t) B dS vR

1 I


    


 

 
SI

E (t) ( d)E
1 I


    


 

rI
I (t) E ( d)I

1 kI
      


 

rI
R (t) I (d v)R

1 kI
     


 

Based on the above motivations, in this paper, we further 

explore an SEIR epidemic model with saturated incidence 

rate 
SI

1 I




 and continually differentiable function 

0

0

rI if0 I I
T(I)

k ifI I

 
 


 generated by [17] to characterize 

the saturation phenomenon of limited medical resources. The 

model can be described by following system of equations: 
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SI
S (t) A dS

1 I

SI
E (t) (d )E

1 I

I (t) E (d v)I T(I)

R (t) vI dR T(I)


   




    

 

      

   

            (1) 

 

where  S(t) , E(t) , I(t) and R(t) 0 , and S(t) , E(t) , I(t)  and 

R(t)denote the numbers of susceptible, exposed but not yet 

infective, infective and recovered individuals at time t. A is 

recruitment rate of the population,  is saturation factor that 

measures the inhibitory effect,  is the transmission or 

contact rate, d is natural death rate of population,  is the 

rate of transformation from incubation period individuals to 

infective individuals,  is the diseases related mortality, v  is 

natural recovery rate of the infective individuals, r is 

maximal medical resources supplied per unit time, and k is 

saturation factor that measures the effect of the infected 

being delayed for treatment.  , d ,  , , v , r , and k all are 

positive. 

Since the first three equations in (1) are independent of 

variable R , it suffices to consider the following reduced 

model: 

SI
S (t) A dS

1 I

SI
E (t) (d )E

1 I

I (t) E (d v)I T(I)


   




    



      

           (2) 

In the next section we study the stability of the model taking 

two different cases of treatment function. 

 

 Equilibrium states and their stability 

 

Case –I when 0T(I) rI,if0 I I   our model reduces to  

SI
S (t) A dS

1 I

SI
E (t) (d )E

1 I

I (t) E (d v)I rI


   




    



      

           (3) 

 

It follows from system of equations (3) that  
'(S E I) A d(S E I) ( v)I rI

A d(S E I)

        

   
         (4) 

Then the 
t

A
limsup(S E I)

d
   .Thus the feasible region for 

the system (3) is  

A
{(S,E,I) S E I ,S 0,E 0,I 0}

d
        

It is easy to verify that the region  is positively invariant 

with respect to system of equations (3). 

Denote reproduction number  

0

A
R

d( d)( d r v)




    
 

The system of equations (3) always be diseases free 

equilibrium 0 A
E ( ,0,0)

d
.  Next, we will find the conditions of 

the existence of endemic equilibrium. 

An endemic equilibrium always satisfies 

SI
S (t) A dS 0

1 I


    


 

 

SI
E (t) (d )E 0

1 I


     


    

     

I (t) E (d v)I rI 0        

By some simple calculation, we have * A(1 I)
S

{ I d(1 I)}



  

, 

* AI
E

(d ){( d)I d}




   
 

* d A
I [ 1]

( d) d(d )(d r v)


 
    

 or *
0

d
I [R 1]

( d)
 


 

 

Lemma.1 The system (1) has a disease free equilibrium 

points if
A

N
d

 . 

Proof.  Consider N(t) S(t) I(t) R(t)     

Then have 
dN

A dN(t)
dt

  Simplify and thus t

A
lim N(t)

d
  . 

This implies the conclusion. 

 

 The Local Stability Analysis of Equilibria 

In this section we will examine the local stability of the 

equilibria by analyzing the eigen values of the Jacobian 

matrices of (3) at the equilibria and using Routh-Hurwitz 

criterion. 

Theorem.1 The diseases free equilibrium 0E is locally 

asymptotically stable when 0R 1  and is unstable 

when 0R 1 . 

Proof. The Jacobian matrix of system (3) at 0E  is 

 

1 0

A
d 0

d

A
J (E ) 0 ( d)

d

0 0 d r v

 
 
 

 
   
 
 

     
 
 

        (5) 
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The characteristics equation of system (3) at 0E  is the 

following form: 
2( d)[ ( 2d r v) ( d)( d r v)

A
] 0

d

              


 

          (6) 

Clearly, 1 d   is always negative root of (6) and all other 

roots of (6) are determined by the following equation: 

2 A
( 2d r v) ( d)( d r v) 0

d


              

which has negative roots, if and only if 

A
( d)( d r v) 0

d


       . That is 0R 1 . So the diseases 

free equilibrium 0E  is locally asymptotically stable when 

0R 1  and is unstable when 0R 1 . 

 

Theorem.2 If 0R 1 then the endemic equilibrium 

* * * *E (S ,E ,I ) is locally asymptotically stable 

Proof. The Jacobian matrix of system (3) at *E  is 

 

* *

* * 2

* *
*

1 1 * * 2

I S
d 0

1 I (1 I )

I S
J (E ) ( d)

1 I (1 I )

0 d r v

  
   

   
  

    
   

      
  
 

          (7) 

The characteristic equation is given by 
3 2

1 2 3a a a 0                  (8) 

where  
*

1 *

I
a (d ) 2d r v

1 I


      


 

 
*

2 *

*

* 2

I
a (d )( 2d r v)

1 I

S
( d)( d r v)

(1 I )


       




      



 

* *

3 * * 2

I dS
a (d )( d)( d r v)

1 I (1 I )

 
       

 
 

 

By direct calculation we have  

 

1a 0 , 2a 0  if
*

* 2

S
0

(1 I )





, 3a 0 if 

*

* 2

dS
0

(1 I )





 and 

1 2 3a a a 0  . Then by Routh-Hurwitz criterion, it follows 

that the endemic equilibrium *E is locally asymptotically 

stable. This completes the proof. 

 

 The Global Stability Analysis of Equilibria 

In this section, we analyze the global stability of the disease-

free and endemic steady states. Firstly, we consider the 

global stability of the disease-free equilibrium. 

Theorem.3 If 0R 1 , then the disease-free equilibrium 0E  is 

globally asymptotically stable 

Proof If 0R 1  then 0R 1 . From the first equation of (3), 

we have
dS

A dS
dt

   . A solution of the equation 

dy
A dy

dt
  is a maximal solution of S(t) . Note that

A
y

d
  

as t .  By the comparison theorem, we get 
A

S(t)
d

 , and 

from the set 
A

{(S,E,I) S E I ,
d

    S 0,E 0,I 0}     we 

have 
A

I(t)
d

  

Consider the following Lyapunov function: 

L E (d )I                (9) 

L E (d )I       

SI
L [ (d )( d r v)I]

1 I


       


 

A
L [ (d )( d r v)]I

d


         

A
(d )( d r v)[ 1]I

d(d )( d r v)


      

    
 

0(d )( d r v)[R 1]I 0               (10) 

 

and L 0  if and only if I 0 . The largest compact invariant 

set in {(S,E,I) ,L 0}  is the singleton 0E . Therefore, by 

Lasalle-Lyapunov theorem, every solution that starts in   

approaches 0E  as t . This completes the proof. 

In the following, we will discuss the global stability of the 

endemic equilibrium when 0R 1 , 1k k  using the second 

additive compound matrix. Here we will shortly describe the 

general method in which the global stability analysis for the 

endemic equilibrium will be performed through the approach 

due to Li and Muldowney [12]. Consider the autonomous 

dynamical system 

x f(x)             (11) 

where nf :D R , nD R is open set and is simply connected, 

and x D , 
nx f (x) R  ,

1f(x) C (D) . 

Let *x   be a equilibrium of (11). We recall that *x  is said to 

be globally stable in 𝐷 if it is locally stable and all 

trajectories in 𝐷 converge to *x . Assume that the following 

hypotheses hold. 

(𝐻1)  There exists a compact absorbing setK D . 

(𝐻2)  Equation (11) has a unique equilibrium *x  in 𝐷. 
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The basic idea of this method is that if the equilibrium *x  is 

locally stable, then the stability is assured provided that (𝐻1) 

and (𝐻2) hold and no non-constant periodic solution of (11) 

exists. Therefore, sufficient conditions on 𝑓 capable of 

precluding the existence of such solutions have to be 

detected. Li and Muldowney showed that if (𝐻1) and (𝐻2) 

hold and (11) satisfy a Bendixson criterion that is robust 

under 1C  local 𝜖-perturbations of 𝑓 at all non-equilibrium 

non-wandering points for (11), then *x  is globally stable and 

robust under  1C  local 𝜀-perturbation. Let P(x) be a 

n n

2 2

   
   

   
matrix valued function, that is, 1C , on D and 

consider  
[2]

1 1
f

f
B PP P P

x
 

 


         (12) 

where fP is  

*
ij ij

(11)

P P
f

x t

 


 
          (13) 

and the matrix [2]J is the second additive compound matrix of 

the Jacobian matrix J , that is, J(x) Df(x) . Generally 

speaking, for an n n  matrix ijJ (J ) , [2]J is a 
n n

2 2

   
   

   
 

matrix and in the special case n 3  one has 

11 22 23 13

[2]
32 11 33 12

31 21 22 33

J J J J

J J J J J

J J J J

  
 

  
   

       (14) 

Consider the Lozinski l  measure   of B with respect to a 

vector norm . in nR , 
n

N
2

 
  
 

 defined by  

h 0

I hB 1
(B) lim

h

 
           (15) 

It is proved in [12] that if (𝐻1) and (𝐻2) hold, condition  

 

0

t

0
t x K

0

1
q limsupsup (B(x(s,x )))ds 0

t 

     (16) 

It is shown in [12] that there are no orbits giving rise to a 

simple closed rectifiable curve in 𝐷 which is invariant for 

(11), that is, periodic orbits, homoclinic orbits, and 

heteroclinic cycles. In particular, condition (16) is proved to 

be a robust Bendixson criterion for (11). Besides, it is 

remarked that, under assumptions (H1) and (H2), condition 

(16) also implies the local stability of *x . 

The analysis of the global stability of the endemic 

equilibrium may be usefully approached by means of the 

Poincare- Bendixson trichotomy. If the endemic equilibriums 

globally asymptotically stable, then the disease will 

permanently be present in the population in case of 

infinitesimal initial prevalence. Here we will provide an 

analytical proof of global stability of *E  by giving sufficient 

conditions. Global stability analysis for the endemic 

equilibrium will be perform through the approach due to Li 

and Muldowney. The instability of 0E  implies the uniform 

persistence; that is, there exists a constant 𝑎 > 0 such that any 

solution (𝑆 (𝑡), 𝐸 (𝑡), 𝐼 (𝑡)) with (𝑆 (0), 𝐸 (0), 𝐼 (0)) in the 

orbit of the system satisfies 

t t t
min{liminfS(t),liminfE(t),liminfS(t)} a

  
                     (17) 

Lemma.2 Assume that D is simply connected and that the 

assumptions (H1) and (H2) hold. Then the unique 

equilibrium *x of (11) is globally stable in D if q 0 . 

Now, we study the global stability of the endemic 

equilibrium *P  and obtain. 

 

Theorem.4 If 0R 1  then the endemic equilibrium *P  of the 

system (31) is globally stable. 

Proof: The Jacobian matrix of system (3) is 

 

2

*
1 2 2

I S
d 0

1 I (1 I)

I S
J (E ) ( d)

1 I (1 I)

0 d r v

  
     
 

  
      
 
      
 
 

   (18) 

and its second additive compound matrix is  

 

 

2 2

[2]
1

I S S
( 2d)

1 I (1 I) (1 I)

I
( 2d r v) 0

J (1 I)

I
0 ( 2d

(1 I)

r v)

   
       
 

 
        

 
 

     
 
   

   (19) 

Choose the function
E E

P P(S,E,I) diag(1, , )
I I

  ; it follows that 

 

1 I I
P diag(1, , )

E E
   and f 2 2

E I I E E I I E
P diag(0, , )

I I

    
  (20) 

Also we have  

1
f

E I E I
PP diag(0, , )

E I E I
    
    
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2 2

[2] 1
1

I SI SI
( 2d)

1 I (1 I) E (1 I) E

E I
PJ P ( 2d r v) 0

I (1 I)

2dI
0

r v(1 I)



   
    

   
  
       

 
            

 (21) 

The matrix 1 [2] 1
fB PP PJ P    can be written in the matrix 

form 

11 12

21 22

B B
B

B B

 
  
 

         (22) 

where     

11

I
B ( 2d)

1 I


    


 

12 2 2

SI SI
B ( , )

(1 I) E (1 I) E

 


 
 

21

E
B ( ,0)

I


  

22

I E I
( 2d r v) 0

1 I E I
B

I E I
( 2d r v)

1 I E I

  
        

  
          

 

 

Let (u,v,w) be vector in 3R ; its norm . is defined as  

(u,v,w) max{u , v , w}         (23) 

 Let (B)  be the Lozinski l measure with respect to this norm. 

We choose 

1 2(B) sup{g ,g }   

 where 1 1 11 12g (B ) B  , 2 1 22 21g (B ) B  , 12B  and 

21B are matrix norm with respect to 1l  vector norm and 1  

denotes the Lozinski l measure with respect to 1l  norm, then 

1 11 1

I
(B ) ( 2d)

1 I


     


        (24) 

12 2

SI
B

(1 I) E





 and 21

E
B

I


  

Now calculating 1 22(B ) , taking the non diagonal elements of 

each column of 22B  in absolute value, and then adding to the 

corresponding columns of the diagonal elements, we get 

 

22

E I
( 2d r v) 0

E IB
I E I

( 2d r v)
1 I E I

  
       

   
          

 

   (25) 

Take a maximum of two diagonal elements of 22B ; we have  

1 22

E I E I
(B ) max{ ( 2d r v) , ( 2d r v) }

E I E I

   
             

 

 
E I

( 2d r v)
E I

 
               (26) 

Therefore we have  

1 1 11 12 2

2 1 22 21

SI I
g (B ) B ( 2d)

1 I(1 I) E

E I E
g (B ) B ( 2d r v)

E I I

  
        


              



      (27) 

From (1), we have 

 

E SI
(d )

E (1 I)E

 
   


 and 

I E
( d r v)

I I

 
           (28) 

Then we have  

1 2

I SI SI
g ( 2d) ( 2d)

(1 I) (1 I)E(1 I) E

  
         

 
 

     

2

E E I E E I
g ( 2d r v) ( d r v) d

I E I I E I

    
              

Then from equation (28) 

1

E
g d

E


   and 2

E E
g d (d r)

E E

 
            (29) 

Furthermore, we obtain 

1 2(B) sup{g ,g }             

E E
d, (d r)

E E

  
    
 

 

  
E

(d r)
E


             (30) 

By integrating both sides at the same time, we obtain  
t

0

1 1 E(t)
(B)ds ln (d r)

t t E(0)
    , 

t

t
0

1
limsupsup (B)ds (d r) 0

t
             (31) 

Thus, by the result of [12] it implies that *P is globally 

asymptotically stable. 

 

 Equilibrium states and their stability 

 

Case –II when 0T(I) rI,ifI I   

Equilibrium states and their stability 

 

In this case our model reduces to  

SI
S (t) A dS

1 I

SI
E (t) (d )E

1 I

I (t) E (d v)I k


   




    



      

          (32) 
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It follows from system of equations (32) that  
'(S E I) A d(S E I) ( v)I k          

 A d(S E I)             (33) 

Then the
t

A
limsup(S E I)

d
     

     

The Local stability analysis of endemic equilibrium points  

In this section we will examine the local stability of the 

endemic equilibrium point * * * *E (S ,E ,I )  by analyzing the 

eigen values of the Jacobian matrices of equation (31) at the 

endemic equilibrium points and using Routh-Hurwitz 

criterion. 

Theorem.5 If 0R 1 then the endemic equilibrium 

* * * *E (S ,E ,I ) is locally asymptotically stable. 

Proof. The Jacobian matrix of system (3) at *E  is 

 

* *

* * 2

* *
*

2 1 * * 2

I S
d 0

1 I (1 I )

I S
J (E ) ( d)

1 I (1 I )

0 d v

  
   

   
  

    
   

     
  
 

      (34)  

The characteristic equation is given by 
3 2

1 2 3b b b 0                (35) 

where 
*

1 *

I
b (d ) 2d v 0

1 I


      


 

*

2 *

*

* 2

I
b (d )( 2d v) ( d)( d v)

1 I

S

(1 I )


           








 

* *

3 * * 2

I dS
b (d )( d)( d v)

1 I (1 I )

 
      

 
 

By direct calculation we have  

1b 0 , 2b 0  if
*

* 2

S
0

(1 I )





, 3b 0 if 

*

* 2

dS
0

(1 I )





 and 

1 2 3b b b 0  . Then by Routh-Hurwitz criterion, it follows 

that the endemic equilibrium *E is locally asymptotically 

stable. This completes the proof. 

 

The Global stability analysis of endemic equilibrium 

points     

 

In this section, we analyze the global stability of the endemic 

steady states. 

Theorem.6 If 0R 1  then the endemic equilibrium *P  of the 

system (32) is globally stable 

Proof: The Jacobian matrix of system (32) is 

 

2

*
2 2 2

I S
d 0

1 I (1 I)

I S
J (E ) ( d)

1 I (1 I)

0 d v

  
     
 

  
      
 
     
 
 

      (36) 

and its second additive compound matrix is  

 

 

 

2 2

[2]
2

I S S
( 2d)

1 I (1 I) (1 I)

I
J ( 2d v) 0

(1 I)

I
0 2d v

(1 I)

   
    

    
 

       
 

 
 

     
  

      (37) 

Choose the function
E E

Q Q(S,E,I) diag(1, , )
I I

  ; it follows that 

 

1 I I
Q diag(1, , )

E E
   and f 2 2

E I I E E I I E
Q diag(0, , )

I I

    
       (38) 

Also we have  

1
f

E I E I
Q Q diag(0, , )

E I E I
    
    

2 2

[2] 1

I SI SI
( 2d)

1 I (1 I) E (1 I) E

E I
QJ Q ( 2d v) 0

I (1 I)

I
0

2d v(1 I)



   
    

   
  
      

 
           

 (39) 

The matrix 1 [2] 1
fC Q Q QJ Q    can be written in the matrix 

form 

11 12

21 22

C C
C

C C

 
  
 

         (40) 

where     

11

I
C ( 2d)

1 I


    


 

12 2 2

SI SI
C ( , )

(1 I) E (1 I) E

 


 
 

21

E
C ( ,0)

I


  

22

I E I
( 2d v) 0

1 I E I
C

I E I
( 2d v)

1 I E I

  
       

  
         

 

 



  Int. J. Sci. Res. in Mathematical and Statistical Sciences                                                Vol. 5(3),  Jun 2018, ISSN: 2348-4519 

  © 2018, IJSRMSS All Rights Reserved                                                                                                                                   55 

0 10 20 30 40 50 60
0

5

10

15

20

25

30

35

40

45

50

t(day)

P
o
p
u
la

t
io

n

 

 

S(t)

E(t)

I(t)

R(t)

Let (u,v,w) be vector in 3R ; its norm . is defined as  

(u,v,w) max{u , v , w}         (41) 

 Let (C)  be the Lozinskil measure with respect to this norm. 

We choose 

1 2(C) sup{f ,f }   

 where 1 1 11 12f (C ) C  , 2 1 22 21f (C ) C  , 12C  and 

21C are matrix norm with respect to 1l  vector norm and 1  

denotes the Lozinskil measure with respect to 1l  norm, then 

1 11 1

I
(C ) ( 2d)

1 I


     


        (42) 

12 2

SI
C

(1 I) E





 and 21

E
C

I


  

Now calculating 1 22(C ) , taking the non diagonal elements of 

each column of 22C  in absolute value, and then adding to the 

corresponding columns of the diagonal elements, we get 

 

22

E I
( 2d v) 0

E IC
I E I

( 2d v)
1 I E I

  
      

   
         

 

      (43) 

Take a maximum of two diagonal elements of '
22C ; we have  

1 22

E I E I
(C ) max{ ( 2d v) , ( 2d v) }

E I E I

   
             

            
E I

( 2d v)
E I

 
              (44) 

Therefore we have  

1 1 11 12 2

2 1 22 21

SI I
f (C ) C ( 2d)

1 I(1 I) E

E I E
f (C ) C ( 2d v)

E I I

  
        


             



      (45) 

From model (1), we have 

 

E SI
(d )

E (1 I)E

 
   


 and 

I E k
( d v)

I I I

 
       (46) 

Then we have  

1 2

I SI SI
f ( 2d) ( 2d)

(1 I) (1 I)E(1 I) E

  
         

 
 

      

2

E E I E E I
f ( 2d v) ( d v) d

I E I I E I

    
            

  

2

E k
f d

E I


     

    
E

d
E


     

Then from equation (46) 

 

1

2

E
f d

E
E k E E

f d d (d r)
E I E E


 

  
       

         (47) 

Furthermore, we obtain 

1 2(C) sup{f ,f }        

      

E E
d, (d r)

E E

  
    
 

 

 
E

(d r)
E


             (48) 

By integrating both sides at the same time, we obtain  
t

0

1 1 E(t)
(C)ds ln (d r)

t t E(0)
    , 

t

t
0

1
limsupsup (C)ds (d r) 0

t
             (49) 

Thus, by the result of [12] it implies that *P is globally 

asymptotically stable. 

IV. RESULTS AND DISCUSSION 

To see the dynamical behavior of system (1) we will give 

some numerical simulations. We consider the hypothetical 

set of parameter values as the following. 

Case-I when 00 I I 
 
: 

If we choose the parameters as follows 

A 10
 
;d 0.2 ; 0.05  ; 1.2  ; 0.4  ; v 0.2 ; r 2.5 ; 

1.25  , then we get the unique positive equilibrium point. 

Here the basic reproduction number 0R 0.6493506 1  , 

S(t)
 
approaches to its steady state value while E(t) , I(t) and 

R(t)  approach zero as time goes to infinity, the diseases dies 

out (see in Fig.1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 The figure represents that the diseases dies out 

 

Case-II when 00 I I   If we choose the parameters as 

follows: 
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=0.1
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A 10
 
; d 0.5 ; 0.3  ; 1.2  ; 0.4  ; v 0.2 ; r 0.1 ; 

0.8  then the basic reproduction number 

0R 3.52941176 1  . For the above choice of parameters we 

see that all the four component S(t)  E(t) , I(t)  and 

R(t) approach to their steady state values as time goes to 

infinity, the diseases becomes endemic (see in Fig.2) 
 

 

 

 

 

 

 

 

 

 

 

 

Fig.2The figure represents that the diseases dies endemic 

Case-III When 0I I : To study the system (32) we choose 

our parameters as: 

A 10 ; d 0.5 ; b 0.3 ; 1.2  ;
 

0.4  ; v 0.2 ; k 1.25 ; 

1.25   this shows the dependence of the steady state value 

of *I  of I(t)  on the parameter k and we see that *I decreases as 

k  increases. (See Fig 3) 

 

 

 

 

 

 
 

 

 

 

 

 

Fig. 3 The figure represents the diseases endemic   
 

Case-IV For value of r
 

r 0.2 , r 0.4 , r 0.4  and
 
r 1.5  see in Fig 4 that the 

dependence of *I on the parameter r  and see that *I decreases 

as r  increases. 
 
 

 

 

 

 

 

 

 

 

Fig. 4 The figure represents the dependence of 
*I on the 

parameter r  

Case-V In our model parameter  describes the 

psychological or inhibitory effect. We see Fig5 this shows 

that the dependence of *I on the parameter  , the steady 

state value *I of the infective decreases as   

increases. 
 

 

 

 

 

 

 

 

 

 

 

Fig. 5 The figure represents the dependence of *I on the 

parameter   

V. CONCLUSION and Future Scope  

In this paper, we consider the SEIR epidemic model with 

saturated incidence and treatment function which is to 

understand the effect of delayed treatment on the disease 

transmission, we have deal with an epidemic model with 

nonlinear incidence to simulate the limited resources for the 

treatment of patients, which can occur because patients have 

to be hospitalized but there are limited beds in hospitals, or 

there is not enough medicine for treatments. In terms of basic 

reproduction number the disease-free and endemic 

equilibrium are discussed.  On the basis of stability theory of 

differential equation, we get some relatively complex 

conclusion. These results provide useful guidelines to 

policymaker for public health and can also estimate the 

impact of control measures for further efforts like patients 

treatment timely by improving our medical technology and 

investing more medicines, beds and so on required for 

eradicate the disease. 
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