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Abstract: The temperature is fluctuated by special climate changes during seasons in India. In this paper, we were taking 

temperature data from 2000 to 2016. Maximum and minimum temperature values for season wise i.e., Jan-Mar(Spring), Apr-

June(Summer), July-Sep(Autumn), Oct-Dec(Winter) has to be taken throughout India. The organization of the work is divided 

into two parts, first part contains data from 2000 to 2010 as test group and second part contains from 2011 to 2016 as main 

group.  For this maximum and minimum temperature seasonal data we apply nine models. Among the nine, seven are ARIMA 

models, the 8
th

 one is Adaptive smoothing model and the last one is non linear model. In this paper, two measures of accuracy 

are used. They are Mean Absolute Error (MAE) and Root Mean Square Error (RMSE). The nine models are empirically tested 

using Maximum and Minimum temperature data of season wise in India. 
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I. INTRODUCTON 

           The temperature can be fluctuated by seasons in India 

because of Himalayas on one side, and the other sides Bay 

of Bengal, Arabian Sea and Indian Ocean. Due to these, the 

climate change in India is differ with the other countries 

regarding the temperature. For the last two decades the 

temperature variation is more due to global warming i.e., 

Emission of green house gases such as Carbon Dioxide, 

Methane and Nitrous oxide. Burning of fossil fuels like coal, 

oil and natural gas for energy, cut down and burn forests, 

dangerous pesticides used in agriculture, deforestation and 

farming. Data analysis has been carried for season wise in 

India using interval time series temperature data from 2000 

to 2016. Maximum and minimum temperature values for 

season wise i.e., Jan-Mar, Apr-June, July-Sep, Oct-Dec has 

to be taken throughout India. By conducting three interval 

time series models to this data. These three models are 

compared using R
2
 criteria for the best model for predicting 

the temperature values. 

         Form the above paragraph of the introduction, we are 

provided the introduction of the paper. The rest of the 

sections is as follows. Section II contains review of literature 

given by different authors in their respective papers in 

bibliography we are given the list of papers used in the 

literature. Section III contains nine models as ARIMA(1,0,0)   

-First order Auto Regressive model, ARIMA (0,1,0)-

Random Walk Model, ARIMA(1,1,0)                           -

Differenced first order Auto Regression model, 

ARIMA(0,1,1) without constant-Simple Exponential 

Smoothing, ARIMA(0,1,1) with constant-Simple 

Exponential Smoothing with growth, ARIMA (0,2,1) or 

(0,2,2)-Linear Exponential Smoothing, ARIMA (1,1,2) 

without constant-Damped-Trend linear Exponential 

smoothing, Adaptive Smoothing Model and The Non linear 

model. we are compare these nine models using error criteria 

like MAE and RMSE. Section IV contains empirical 

discussion by taking temperature data from 2000 to 2016. 

Maximum and minimum temperature values for season wise 

i.e., Jan-Mar, Apr-June, July-Sep, Oct-Dec has to be taken 

throughout India. The organization of the work is divided 

into two parts, first part contains data from 2000 to 2010 as 

test group and second part contains from 2011 to 2016 as 

main group. The comparison of the data is by using MAE & 

RMSE for interval data. Section V contains brief summery 

and conclusions of the above sections.  

II. RELATED WORK 

         The prime indicator of global warming is global mean 

temperature. Time series of global temperature show a well 

known rise since the early 20
th

 century and most notably 

since the late 1970s. the impacts are: shrinking mountain 

glaciers, accelerating ice loss from ice sheets in Greenland 

and Antarctica, shrinking Arctic sea ice extent, sea level rise, 

http://www.isroset.org/
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and a number of well-documented biospheric changes like 

earlier bud burst and blossoming time is spring. Much of the 

variability during that time span can be related to three 

known causes of short-term temperature variations: El 

Nino/southern oscillation, volcanic eruptions, and solar 

variations including the solar cycle. This complicates both 

comparison and trend analysis of the temperature records. 

Since independent measures of these variations are 

available, their influence can to a large extent be removed, 

leading to adjusted, less noisy global temperature data sets. 

Therefore we will remove the influence of these factors on 

the temperature data sets, not only to isolate the longer-term 

changes, but also to identify whether different data sets show 

meaningful differences in their response to these factors. The 

influence of exogenous factors will be approximated by 

multiple regression of temperature against ENSO, volcanic 

influence, total solar irradiance (TSI) and a linear time trend 

to approximate the global warming that has occurred during 

32 years subject to analysis [1]. 

 

  Global surface temperatures continue to rise. In most 

surface temperature data sets, the years 2014, 2015, and 

2016 set new global records since the start of regular 

measurements. Never before have three record years 

occurred in a row.  Global-mean surface 

temperature(GMST) is the most important indicator of 

global climate change, because (i) it is directly related to the 

planetary energy balance and increases quasi-linearly with 

cumulative greenhouse gas emission (ii) GMST is directly 

related to most climate impacts and risks. In this, the authors 

deal with the former only, i.e. with analysis of possible trend 

changes in the observational data [2]. 

 

          Now a days the forecasting of agricultural commodity 

future prices is very essential. Because now a days the 

growth of population is high in the countries like India, 

China etc. In recent years, agriculture commodity futures 

markets in populated countries have witnessed massive 

growth with an increasing product variety and deepering 

liquidity pools. The agricultural commodity futures markets 

in India are playing an increasing important role in serving 

the global financial market and the national economy [3]. 

           Agricultural commodity futures price forecasting is 

considered as a challenging task. Due to the fact that the 

prices are highly volatile, complex and dynamic and is thus 

of great interests to finance researchers, market practitioners 

and policy makers. An extensive investigation reveals that it 

is not difficult to find futures prices including stock index 

futures, gold futures, and metal futures. But an important 

point note from the past studies is their preoccupation with 

point forecasting rather than interval one. An interval 

forecasting of futures prices has the advantage of taking into 

account the variability and/or uncertainty so as to reduce the 

amount of random variation relative to that found in classic 

single valued futures prices time series. Interval analysis and 

forecasting has attracted particular attention in various fields 

particularly in finance market and energy market. The 

Interval – valued time series (ITS) forecasting method is a 

potential tool and will lead to a reduction in risk when 

making power system planning and operational decisions. 

                    A variety of Interval- valued time series 

forecasting methods has been developed. They are 

Traditional statistical techniques, including interval 

Exponential smoothing methods, Vector Auto Regressive 

(VAR) model and Vector error correction model (VECM). 

The traditional statistical techniques can provide good 

predictions only when ITS under study are linear and 

stationary. But it may not possible all times. Sometimes it 

appears as nonlinear and non stationary due to intrinsic 

complexity and volatility of ITS.  In order to overcome the 

limitations of traditional statistical techniques, machine 

learning techniques have recently attracted many attentions. 

The Interval multilayer perceptions, Multi output Supports 

Vector Regression (MSVR) are very useful in nonlinear 

modeling capability for ITS in real world.  

                  Actually in real world, ITS appears linear (or) 

non linear pattern and usually contains both patterns. This 

difficult forecasting can be partially solved by using 

combined linear and non linear model. It is very difficult in 

practice to construct a single model which is the best in all 

situations. Such as a hybrid Auto Regressive Integrated 

Moving Average (ARIMA) and Artificial Neural Network 

(ANN) model for time series forecasting to take advantage 

in linear and non linear modeling respectively.  

             Now a days over confidence is one of the most 

prevalent judgment biases. Several studies show that over 

confidence can lead to sub optimal decisions of investors, 

managers or politicians. It is the object of an active field of 

research over the last two decades. Over confidence indeed a 

bias or rather than an ecological and statistical illusion and 

therefore only an apparent anomaly that just seems to exist, 

but it is not real. There are different types of overconfidence  

i) overestimation of one’s actual performance ii) over 

placement of one’s performance relative to others called the 

better than average effect iii) excessive precision in one’s 

belief,  called miscalibration. 

 

               It is important to distinguish between these main 

manifestations of overconfidence, in particular between 

(relative) performance based and miscalibration based 

measures, because empirical studies find them typically to 

be hardly related. The degree of miscalibration can be 

measured in various ways, such as binary choice questions 

or interval estimates. For difficult reasons, the analysis is 

restricted to miscalibration in interval estimates; it is most 

closely related to the facet of overconfidence that is modeled 

in economics, finance and management. Interval estimates 

are less studied than two-choice questions. Newly designed 

method of measuring “true overconfidence” is naturally 

related to interval estimates [4].  
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              The widely used Generalized Additive Models 

(GAM) method is a flexible and effective technique for 

conducting nonlinear regression analysis in time series 

studies of health effects of air pollution. The GAM is being 

applied when the estimated regression coefficients are small 

and there exist confounding factors that are modeled using at 

least two non parametric smooth functions [5]. 

  

III. METHODOLOGY 

   We fitted seven Auto Regressed Integrated Moving 

Average (ARIMA) models and the other two are  

ARIMA (1,0,0) -   First order Auto Regressive model  

ARIMA (0,1,0) -    Random Walk model 

ARIMA (1,1,0) -   Differenced first order Auto Regression 

model 

ARIMA (0,1,1) without constant -   Simple Exponential 

Smoothing 

ARIMA (0,1,1) with constant -   Simple Exponential 

Smoothing with growth 

ARIMA (0, 2, 1) OR (0, 2, 2)   -   Linear Exponential 

Smoothing 

ARIMA (1,1,2) without constant  -   Damped-Trend linear 

Exponential smoothing. 

Adaptive Smoothing Model and The Non linear model is 

fitted for the temperature data of India. 

  The forms of general Auto Regressive Integrated Moving 

Average (ARIMA) Models are in the following   form.                

                    ARIMA (p, d, q): 

p is the number of auto regressive terms, 

d is the number of non seasonal differences needed for 

stationarity, and 

q is the number of lagged forecast errors in the prediction 

equation 

The Nine models are as follows. 

(a) ARIMA(1,0,0) = First-order Auto Regressive 

model: 

     The forecasting equation in this case is 

                    
1 1t t tY c Y e     

  or        
1 1t tY Y 



   

This is also called AR (1) model. Observation Yt depends on 

Yt-1 and the value of the auto regression coefficient ϕ1 is 

restricted to lie between -1 and +1. 

If  ϕ1 is positive and less than 1 in magnitude (it must be less 

than 1 in magnitude if Y is stationary), the model describes 

mean-reverting behavior in which next period’s value should 

be predicted to be ϕ1 times as far away from the mean as this 

period’s value.  If ϕ1 is negative, it predicts mean-reverting 

behavior with alternation of signs, i.e., it also predicts 

that Y will be below the mean next period if it is above the 

mean this period. 

(a) ARIMA(0,1,0) = Random Walk:  

           If the series Y is not stationary, the simplest possible 

model for it is a random walk model, which can be 

considered as a limiting case of an AR(1) model in which 

the autoregressive coefficient is equal to 1, i.e., a series with 

infinitely slow mean reversion.  The prediction equation for 

this model can be written as: 

1t tY Y 


     or   
1t tY Y



   

Where the constant term is the average period-to-period 

change in Y.  This model could be fitted as a no-intercept 

regression model in which the first difference of Y is the 

dependent variable.  Since it includes a non seasonal 

difference and a constant term, it is classified as an "ARIMA 

(0,1,0) model with constant." The random-walk-without-

drift model would be an ARIMA (0,1,0) 

model without constant 

(b) ARIMA(1,1,0) = Differenced first-order Auto 

Regressive model:  

            If the errors of a random walk model are auto 

correlated, perhaps the problem can be fixed by adding one 

lag of the dependent variable to the prediction equation i.e., 

by regressing the first difference of Y on itself lagged by one 

period. This would yield the following prediction equation: 

               
1 1 1 2( )t t t tY Y Y Y 



       

                      
1t tY Y 



   

This can be rearranged to 

             
1 1 1 2( )t t t tY Y Y Y        
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This is a first-order autoregressive model with one order of 

non seasonal differencing and a constant term i.e., an 

ARIMA (1, 1, 0 ) model. 

(c)  ARIMA(0,1,1) without constant = Simple 

Exponential Smoothing:  

                   Another strategy for correcting auto correlated 

errors in a random walk model is suggested by the simple 

exponential smoothing model.  The random walk model 

does not perform as well as a moving average of past values. 

In other words, rather than taking the most recent 

observation as the forecast of the next observation, it is 

better to use an average of the last few observations in order 

to filter out the noise and more accurately estimate the local 

mean. The simple exponential smoothing model uses 

an exponentially weighted moving average of past values to 

achieve this effect. The prediction equation for the simple 

exponential smoothing model can be written in a number 

of mathematically equivalent forms, one of which is called 

“error correction” form, in which the previous forecast is 

adjusted in the direction of the error it made: 

                   
1 1t t tY Y e



    

Because et-1 = Yt-1 - Ŷt-1 by definition, this can be rewritten 

as: 

                
1 1(1 )t t tY Y e



     

                  
1 1 1t t tY Y e



    

Which is an ARIMA (0, 1, 1) without constant forecasting 

equation with θ1 = 1-α. This means that we can fit a simple 

exponential smoothing by specifying it as an ARIMA (0, 1, 

1) model without constant, and the estimated MA (1) 

coefficient corresponds to 1 - alpha in the SES formula. 

(d)  ARIMA(0,1,1) with constant = Simple 

Exponential Smoothing with growth: 

           By implementing the SES model as an ARIMA 

model. First of all, the estimated MA (1) coefficient is 

allowed to be negative: this corresponds to a smoothing 

factor larger than 1 in an SES model, which is usually not 

allowed by the SES model-fitting procedure. Second, we 

have the option of including a constant term in the ARIMA 

model if you wish, in order to estimate an average non-zero 

trend. The ARIMA (0,1,1) model with constant has the 

prediction equation: 

            
1 1 1t t tY Y e 



     

The one-period-ahead forecasts from this model are 

qualitatively similar to those of the SES model, except that 

the trajectory of the long-term forecasts is typically a sloping 

line (whose slope is equal to mu) rather than a horizontal 

line. 

(e) ARIMA(0,2,1) or (0,2,2) without constant = 

Linear Exponential Smoothing:  

                 Linear exponential smoothing models are ARIMA 

models which use two non seasonal differences in 

conjunction with MA terms. The second difference of a 

series Y is not simply the difference between Y and itself 

lagged by two periods, but rather it is the first difference of 

the first difference--i.e., the change-in-the-change of Y at 

period t. Thus, the second difference of Y at period t is equal 

to (Yt - Yt-1) - (Yt-1 - Yt-2) =  Yt - 2Yt-1 + Yt-2. A second 

difference of a discrete function is analogous to a second 

derivative of a continuous function: it measures the 

"acceleration" or "curvature" in the function at a given point 

in time. 

The ARIMA (0,2,2) model without constant predicts that the 

second difference of the series equals a linear function of the 

last two forecast errors: 

          
1 2 1 1 2 22t t t t tY Y Y e e 



         

This can be rearranged as 

              
1 2 1 1 2 22t t t t tY Y Y e e 



        

  Where θ1 and θ2 are the MA (1) and MA (2) coefficients. 

This is a general linear exponential smoothing model, 

essentially the same as Holt’s model, and Brown’s model is 

a special case. It uses exponentially weighted moving 

averages to estimate both a local level and a local trend in 

the series.  The long-term forecasts from this model 

converge to a straight line whose slope depends on the 

average trend observed towards the end of the series. 

(f)  ARIMA(1,1,2) without constant = Damped-

Trend linear Exponential Smoothing: 

         
1 1 1 2 1 1 2 2( )t t t t t tY Y Y Y e e  



          

This model is illustrated for accompanying slides on 

ARIMA models.  It extrapolates the local trend at the end of 

the series but flattens it out at longer forecast horizons to 

introduce a note of conservatism, a practice that has 

empirical support. It is generally advisable to stick to models 

in which at least one of p and q is no larger than 1. 

(g)  Adaptive Smoothing Model 
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          The single exponential smoothing forecasting model 

requires the specifications of an α value and it has been 

shown that the mean absolute percentage error (MAPE) and 

Mean Square Error (MSE) measures depends on this choice. 

Adaptive Response Rate Single Exponential Smoothing 

(ARRSES) may have an advantage over Single Exponential 

Smoothing (SES), it allows the value of α to be modified in 

a controlled manner, as changes in the pattern of data occur. 

This characteristic seems attractive when hundreds (or) 

thousands of items require forecasting. 

                  The basic equation for forecasting with the 

method of ARRSES is similar to equation 

1 (1 )t t t t tF Y F      

1 /t t tA M    

1(1 )t t tA e A      

1(1 )t t tM e M      

t t te Y F  . 

here β is a parameter between 0 and 1 and mod || denotes 

absolute values. 

In the equation At denotes a smoothed estimate of forecast 

error and is calculated as a weighted average of At-1 and the 

last forecasting error €t . 

 Mt denotes a smoothed estimate of the absolute forecast 

error; being calculated as a weighted average of Mt-1 and the 

last absolute forecasting error |€t|. 

At and Mt gives single exponential smoothing estimates 

themselves. 

1 /t t tA M    indicates that the value of αt  to be used for 

forecasting period (t+2) is defined as an absolute value of 

the ratio of At and Mt. instead of αt+1, we could have used αt 

in the above equation . We prefer αt+1 because ARRSES is 

often too responsive to changes, thus using αt+1, we introduce 

a small log of one period, which allows the system to 

“settle” a little and forecast in a more conservative manner. 

(h) Non Linear Model  

       A non linear model fitted to the data is  

     0 1( )

1

t

t t ty y ee
 

                                 (1) 

  Where   yt is the time series observation at time point t. 

                 yt-1 is the time series observations at time period t-

1. 

                 β0  is constant 

                 β1 is the constant for time. 

                 et is the error term. 

     Take log on both sides for equation (1) 

                
1 0 1log logt ty y t     

           0 1tY t                                 (2) 

  Where    logt tY y  

               0 1 0log ty  
     

                β1  =  β1 . 

                 t = time 

         Eq (2) is straight line 

                          0 1tY t 


   

0 1 0log twhere y 


   

                    0 0 1log ty 
 

    

     The fitted equation is   0 1( )

1

t

t t ty y ee
 

  

IV.     RESULTS AND DISCUSSIONS 

For temperature data of India, we are fitted all nine models 

for minimum and maximum temperature data to the years 

2000 to 2010 are as follows. 

Table  -1 

 

SNO 

Model used for 

minimum and 

maximum temperature 

data 

The equation  for the model 

1 ARIMA(1,0,0) 

1 1t tY Y 


   

2 ARIMA(0,1,0) 

1t tY Y


   

3 ARIMA(1,1,0) 
1 1 1 2( )t t t tY Y Y Y        

4 ARIMA(0,1,1)without 
constant 1 1 1t t tY Y e



    

5 ARIMA(0,1,1) with 

constant 1 1 1t t tY Y e 


     

6 ARIMA(0,2,1)or(0,2,2) 

without constant 1 2 1 1 2 22t t t t tY Y Y e e 


        

7 ARIMA(1,1,2) without 
constant 1 1 1 2 1 1 2 2( )t t t t t tY Y Y Y e e  



          

8 Adoptive smoothing 

model 1 (1 )t t t t tF Y F     ,

1 /t t tA M   ,

1(1 )t t tA e A     ,

1(1 )t t tM e M     ,

t t te Y F   

9 Non linear model 0 1( )

1

t

t t ty y ee
 

  

 

The Mean Absolute Error (MAE) and Root Mean Square 

Error (RMSE) for minimum temperature values and 

maximum temperature values for nine models are shown in 

table-2. 

                              Table 2 

S.N

O 

Model Minimum Maximum 

MAE RMSE MAE RMSE 

1 ARIMA(1,0,0) 3.298 3.522 2.617 2.835 

2 ARIMA(0,1,0) 4.499 4.832 3.135 4.008 

3 ARIMA(1,1,0) 4.514 4.890 3.073 3.787 

4 ARIMA(0,1,1)without 
constant 

3.282 3.799 2.260 2.855 

5 ARIMA(0,1,1) with 3.295 4.026 2.211 2.903 
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constant 

6 ARIMA(0,2,1)or(0,2,2
) without constant 

2.058 2.721 2.502 3.235 

7 ARIMA(1,1,2) without 

constant 

2.777 3.360 1.930 2.479 

8 Adoptive smoothing 
model 

3.514 6.024 3.296 4.083 

9 Non linear model 4.015 4.098 2.851 3.345 

    

         In the above table, the minimum  Mean Absolute Error 

(MAE)  for minimum temperature data is 2.213  to the 

model ARIMA(0,2,1)or(0,2,2) without constant  and for 

maximum temperature data is 2.175 for the model 

ARIMA(1,1,2) without constant. The minimum Root Mean 

Square Error (RMSE) for minimum temperature data is 

2.804 to the model ARIMA(0,2,1)or(0,2,2) without constant  

and for maximum temperature data is 2.835 to the model 

ARIMA(1,0,0). 

Comparison of temperature fitted model of maximum data 

with minimum data using MAE and RMSE as given in 

table-3                 

Table - 3 

SNO Model MAE RMSE 

1 ARIMA(1,0,0) + + 

2 ARIMA(0,1,0) + + 

3 ARIMA(1,1,0) + + 

4 ARIMA(0,1,1)without constant + + 

5 ARIMA(0,1,1) with constant + + 

6 ARIMA(0,2,1)or(0,2,2) without 

constant 

- - 

7 ARIMA(1,1,2) without constant + + 

8 Adoptive smoothing model + + 

9 Non linear model + + 

 

Table 3 represents the positive and negative signs. Here the 

comparison is made-up of MAE values of maximum 

temperature data with minimum temperature data. The 

RMSE values of maximum temperature data with minimum 

temperature data. Here the positive (+) sign indicates 

increasing trend and negative (–) sign indicates decreasing 

trend. 

The test group is from 2011 to 2016. The equations for 

maximum and minimum Temperature data are fitted for nine 

models as given in table                               

                               Table 4 

 SNO Model used for minimum 

and maximum 

temperature data 

The equation  for the model 

1 ARIMA(1,0,0) 

1 1t tY Y 


   

2 ARIMA(0,1,0) 

1t tY Y


   

3 ARIMA(1,1,0) 
1 1 1 2( )t t t tY Y Y Y        

4 ARIMA(0,1,1)without 

constant 1 1 1t t tY Y e


    

5 ARIMA(0,1,1) with 

constant 1 1 1t t tY Y e 


     

6 ARIMA(0,2,1)or(0,2,2) 
without constant 1 2 1 1 2 22t t t t tY Y Y e e 



        

7 ARIMA(1,1,2) without 

constant 1 1 1 2 1 1 2 2( )t t t t t tY Y Y Y e e  


          

8 Adoptive smoothing 

model 1 (1 )t t t t tF Y F     ,

1 /t t tA M   ,

1(1 )t t tA e A     ,

1(1 )t t tM e M     ,

t t te Y F   

9 Non linear model 0 1( )

1

t

t t ty y ee
 

  

 

The Mean Absolute Error(MAE) and Root Mean Square 

Error(RMSE) for minimum and maximum temperature 

values for nine models during 2011 to 2016 is shown in 

table-5. 

     
                                 Table 5                                                                                                                                                                          
SN

O 

Model Minimum Maximum 

MAE RMSE MAE RMSE 

1 ARIMA(1,0,0) 3.291 3.741 2.540 2.940 

2 ARIMA(0,1,0) 4.538 5.014 3.079 4.041 

3 ARIMA(1,1,0) 4.543 5.143 2.985 3.921 

4 ARIMA(0,1,1)without 

constant 

3.839 4.374 2.658 3.258 

5 ARIMA(0,1,1) with 

constant 

3.848 4.496 2.664 3.346 

6 ARIMA(0,2,1)or(0,2,2

) without constant 

2.120 2.862 2.603 3.376 

7 ARIMA(1,1,2) without 

constant 

2.844 3.609 2.259 3.302 

8 Adoptive smoothing 

model 

2.862 3.353 2.280 3.076 

9 Non linear model 4.069 4.136 2.814 3.280 

 

              From the table-5, the minimum  Mean Absolute 

Error (MAE)  for minimum temperature data is 2.120  to the 

model ARIMA(0,2,1)or(0,2,2) without constant  and for 

maximum temperature data is 2.259  for the model 

ARIMA(1,1,2) without constant. The minimum Root Mean 

Square Error (RMSE) for minimum temperature data is 

2.862 to the model ARIMA(0,2,1)or(0,2,2) without constant  

and for maximum temperature data is 2.940 to the model 

ARIMA(1,0,0). 

Comparisons of MAE and RMSE for the temperature of 

maximum data with minimum data for 2011-2016 are given 

in table-6.               

                             Table 6  
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S.NO Model MAE RMSE 

1 ARIMA(1,0,0) + + 

2 ARIMA(0,1,0) + + 

3 ARIMA(1,1,0) + + 

4 ARIMA(0,1,1)without constant + + 

5 ARIMA(0,1,1) with constant + + 

6 ARIMA(0,2,1)or(0,2,2) without 

constant 

- - 

7 ARIMA(1,1,2) without constant + + 

8 Adoptive smoothing model + + 

9 Non linear model + + 

                     

 Table-6 represents the positive and negative signs. Here the 

comparison is made-up of  MAE  values of maximum 

temperature data with minimum temperature data. Also the 

RMSE values of maximum temperature data with minimum 

temperature data. Here the positive (+) sign indicates 

increasing trend and negative (-)  sign indicates decreasing 

trend. 

V. CONCLUSIONS 

In this paper we fitted nine models for temperature data in 

INDIA. The nine models are First order Auto Regressive 

model, Random Walk model, Differenced first order Auto 

Regression model, Simple Exponential Smoothing without 

constant, Simple Exponential Smoothing with growth, 

Linear Exponential Smoothing without constant, Damped-

Trend linear Exponential smoothing without constant, 

Adaptive Smoothing Model, and the Non linear model. An 

error criteria called Mean Absolute Error and Root Mean 

Square Error are listed out for choosing the best model 

among different models using temperature data for minimum 

and maximum. The equations for maximum and minimum 

Temperature data are fitted for nine models and are as 

follows. 

 

SNO 

Model used for 

minimum and 

maximum temperature 

data 

The equation  for the model 

1 ARIMA(1,0,0) 

1 1t tY Y 


   

2 ARIMA(0,1,0) 

1t tY Y


   

3 ARIMA(1,1,0) 
1 1 1 2( )t t t tY Y Y Y        

4 ARIMA(0,1,1)without 
constant 1 1 1t t tY Y e



    

5 ARIMA(0,1,1) with 

constant 1 1 1t t tY Y e 


     

6 ARIMA(0,2,1)or(0,2,2) 

without constant 1 2 1 1 2 22t t t t tY Y Y e e 


        

7 ARIMA(1,1,2) without 
constant 1 1 1 2 1 1 2 2( )t t t t t tY Y Y Y e e  



          

8 Adoptive smoothing 
model 1 (1 )t t t t tF Y F     ,

1 /t t tA M   ,

1(1 )t t tA e A     ,

1(1 )t t tM e M     ,

t t te Y F   

9 Non linear model 0 1( )

1

t

t t ty y ee
 

  

 

The Mean Absolute Error (MAE) and Root Mean Square 

Error (RMSE)  are listed out  for choosing best model , 

among different models using temperature data for minimum 

and maximum are as follows. 

SNO Model Minimum Maximum 

MAE RMSE MAE RMSE 

1 ARIMA(1,0,0) 3.291 3.741 2.540 2.940 

2 ARIMA(0,1,0) 4.538 5.014 3.079 4.041 

3 ARIMA(1,1,0) 4.543 5.143 2.985 3.921 

4 ARIMA(0,1,1)without 
constant 

3.839 4.374 2.658 3.258 

5 ARIMA(0,1,1) with constant 3.848 4.496 2.664 3.346 

6 ARIMA(0,2,1)or(0,2,2) 

without constant 

2.120 2.862 2.603 3.376 

7 ARIMA(1,1,2) without 
constant 

2.844 3.609 2.259 3.302 

8 Adoptive smoothing model 2.862 3.353 2.280 3.076 

9 Non linear model 4.069 4.136 2.814 3.280 

  

The best model for minimum temperature data for seasons 

from the above table  is  ARIMA(0,2,1)or(0,2,2) without 

constant and the equation for this model is 

         
1 2 1 1 2 22t t t t tY Y Y e e 



        

The best model for maximum temperature data for seasons 

from the above table using RMSE is ARIMA (1,0,0) or first 

order Auto Regressive model and the equation for this model 

is                           
1 1t tY Y 



 
 

By using the best models, the forecasted values for four 

seasons for 4 years are as follows. 

year Quarter/ 

season 

Minimum forecasted 

temperature 

Maximum forecasted 

temperature 

1 1 19.98 27.96 

2 17.56 28.72 

3 22.62 29.26 

4 17.71 29.98 

2 1 18.65 28.26 

2 18.33 28.98 

3 22.73 29.51 

4 17.30 30.23 

3 1 18.43 28.52 

2 18.17 29.22 

3 22.09 29.76 

4 17.37 30.49 
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4 1 18.73 28.78 

2 18.45 29.49 

3 22.31 30.03 

4 17.12 30.73 
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