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Abstract- In the present study the optimal order quantity and the time of optimal cycle of an inventory model are determined. 

Here the rate of demand depends on the stock. The holding cost per unit of the item per unit time is taken to be linear function 

of the quantity in storage. Here, it also considered that the shortages in stock are allowed. In traditional inventory models, the 

rate of demand and holding cost are considered to be constant. There are so many inventory models, where the holding cost 

was taken to be constant for the whole inventory cycle without shortages. But here the holding cost is considered as a variable 

which is an increasing step function of the time due to storage. This study provides the basis for further extensions like the 

incorporation of deteriorating items, shortage cost and stochastic lead time in order to develop more complex and realistic 

inventory models. 
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I. INTRODUCTION 

 

As we know that in all conventional studies of inventory, the rate of demand is taken to be a constant. There are several 

inventory models which have been proposed for dealing with deterministic and probabilistic demand. In all these models it is 

assumed that the rate of demand is independent and an outside parameter is not affected by any internal policy of inventories. 

In our real life, however, it is generally, noticed that the demand for any particular product can be affected by internal reasons 

such as price and availability of the inventory. All the models, in which variation demand is considered in response to 

inventory level, follow the constant holding cost for whole cycle of inventory, where shortages not allowed. The present paper 

proposes an inventory model in which the rate of demand depends on a linear stock, holding cost is variable and shortages are 

allowed- depend. Here the holding cost is considered as an increasing step function of the time due to storage. This study is 

shows many  our real-life conditions in which different  unit holding cost comes and depends on the stock, stored in 

warehouse. It is especially true in the storage of perishable and decaying (deteriorating) items such as fruits in which quantity 

decreasing every time so the holding cost. Key Words: Inventory, demand, stock, costs. 

 

The first inventory model studied by Harris In 1995 and it was generalized by Wilson in 1934; he proposed a formula for 

economic order quantity. In 1957 Whit gave an inventory model about the deterioration of the fashion related goods at the end 

of the agreed shortage period. In 1963, model for Ghare and Schrader proposed a model for exponentially decaying items. In 

1981, Dave and Patel gave the first inventory model to study a deteriorating inventory for linearly increasing demand without 

shortages. After that in 1993, Chung and Ting gave many inventory models in this field; they divided inventory models with 

different parameters such as stock-level and variation demand. An inventory model presented by Ouyang and Cheng in 2007 

for decaying items with partial backlogging and exponential decaying demand.  In 2007, Alamri and Balkhi studied some 

inventory models on the effects of learning and forgetting on the optimal production lot size for deteriorating items with time-

varying demand and deterioration. In 2007, Dye et al also proposed an optimal selling price lot size model with a variable 

deterioration and exponential, shortages and partial backlogging.  In their study they consider that a part of customers who 

backlog their orders increases exponentially as the waiting time for the next replenishment decreases. In 2008, Roy presented 

an inventory model where the rate of deterioration rate was proportional to time. In 2009, Pareek et al. proposed an inventory 

model for perishable with shortages and re-sale value. In 2013, Mishra and Singh studied an inventory model for quadratic 

demand, time-dependent perishable items with recover value and shortages. And perishable time dependent inventory model 

with variable (time) holding cost wand partial backlogging. An inventory model with common type of demand, deterioration 
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and backlogging proposed by Hung in 2013. In 2013, Mishra et al. also proposed an inventory model for perishable items with 

time-dependent demand, time-varying holding cost and partial backlogging. In 1990, Datta and Pal was studied the models on 

same pattern. In 1997, Sarker, Mukherjee and Balan considered inventory-level dependent demand and introducing a totally 

new concept of decrease in demand. In 1973, Montgomery, Bazarra and Keswani proposed both deterministic and probabilistic 

models considering the situation in which, during the stock-out period a part of demand is backordered and rest is lost forever. 

In 1997, Rosenberg proposed a lot-size inventory model with partial backlogging and taken fictitious demand rate that helps to 

understand the previous proposed inventory models. In 1995, Padmanabhan and Vrat proposed an inventory model for 

perishable items by taking constant deterioration rate, introducing the three cases of complete, partial and without backlogging. 

In 2001, Zeng studied an inventory model and optimised the total cost by using the concept of partial backordering.  

 

In traditional inventory models, the rate of demand and holding cost are considered to be constant. In real life situations the rate 

of demand and holding cost for physical items may be considered time dependent or stock dependent. As we know that the 

time has very important role in the study of inventory theory, so, in the present study, the demand is considered as stock 

dependent up to reorder point and holding cost is taken as an increasing function of time. In this study, holding cost is assumed 

per unit of the item per unit time to be linear function of the quantity in storage.  

  

II. ASSUMPTIONS AND LIMITATIONS 

 

The mathematical model in this paper is developed on the basis of the following assumptions and limitations. 

1. Lead time is considered as zero 

2. The rate of replenishment is infinite. 

3.  The size of replenishment is finite. 

4.  The shortages are allowed. 

5. A single item is considered.  

6.  At time kt  the stock level reaches to zero shortages come after it.  

7. The rate of demand (P) rate is increasing linear function of the stock- level I(t).  

8. There is varying holding cost and is considered as an increasing step function of the storage quantity. 

9. Every time we place the order of Q quantity units at the beginning of the cycle is such that the order    level reaches to the 

pre-specified value L and after fulfilling the backorder quantity Q-L.  

10. The rate of demand (L) is a linear function of the inventory level. 

 
III. NOTATIONS 

 

The mathematical model in this paper is developed on the basis of the following notations. 

 I(t) = The inventory at time t. 

 M =  Number of different time periods with different holding cost rates. 

   = Demand parameter, which indicates elasticity in relation to the inventory level 

 B = Ordering cost per order 

 L = Order level 

 Q = Quantity ordered 

 T = Cycle time. 

 it   = End time of period i, where i = 1, 2, 3, ......, n., 0t 0 and nt   . 

 ih
 

= At period i, the holding cost of the item. 

 h(t) =  h(t) = ih if 
ii 1t t t    and it is holding cost of an item at time t, 

 C = Shortage cost per unit time. 

 P =  Constant rate of demand, which is a linear function of inventory level I(t), expressed as  

                   P ((I(t)) = P +     I(t), P>0, 0 1   

 
IV. MATHEMATICAL FORMULATION AND SOLUTION OF THE MODEL 

 In the present paper our aim is to optimize (minimize) the total inventory cost (TIC) per unit time, which have three 

components: The holding cost, the ordering cost, and the shortage cost. As it is made one order per cycle, therefore the per unit 

time, ordering cost is as follows. 
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Ordering cost per cycle = 
B

T
 

It is assumed that st i.e I( st ) = 0 

Now we obtain holding cost (HC) per cycle as follows 

   

st

0

HC h(t)I(t)dt           (1) 

The quantity ordered Q and realized in stock and after fulfilling the back orders Q-L the order level reaches to the order level 

L. At the end of the cycle the inventory level reaches to Q-L.  

The instantaneous states of I(t) in the interval (0, T) is given by 

s

s

(P I(t)),  0 t<tdI(t)

P               t t< T  dt

  
 

 
       (2) 

The solution of the above differential equation is 

dI(t)
dt

(P I(t))
 


 

On integrating, we have 

 

1 P I(t)
[ln(P I(t)) ln(P I(0))] t ln t

P L


  

 

 
        

   

tP I(t) (P L)e        

t

s

1
I(t) [(P L)e P],  0 t<t



           (3) 

Now, from equation (2):  
dI(t)

P
dt

  , solving it, we have 

s sI(t) P(t t ),  t t T             (4) 

Now from the equations (3) and (4), put the values of I(t) in equation (2) 
 

t

s

s s

1
[(P I(t))e P],  0 t<t

I(t)

P(t t ),                        t t< T  





   

 
  

       (5) 

Now from (5), sI(T) P(T t ) Q L     , so we have 

s

Q L
T t

P


   and sQ L P(t t )          (6) 

At st t , I(t) = 0, using this in equation (5), we have 

st
P P

L e P(0) 0


 

 
    

 
 

s

P P
t ln L

 

  
    

  
        (7) 

Now we determine cost of shortages 
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s s

T T

s

t t

SC C I(t)dt C P(t t )dt      

Solving it, we have 

2

s(T t )
SC CP

2

 
   

 
             (8) 

Now we determine retroactive holding cost and it is the holding cost of last storage period applied retroactively to all previous 

cycles as after the cycle s 1t  to st shortages take place. 

Holding cost = 
s st t

t

s s

0 0

P P
h I(t)dt h L e dt

 

  
    

  
   

                = t

s

1 P P
h L (1 e )

  

  
    

  
          (9) 

Total inventory Cost (TIC) = Ordering Cost + Shortage Cost + Holding Cost 

2
ts

s

(T t )B 1 P P
CP h L (1 e )

T 2



  

    
        

  



       (10) 

Now put the value of T from equation (6), we have 

2

s

s

P C(Q
TIC

L)
B h Z

Pt q L 2P

 



  

  
            (11) 

Where t

s

1 P P
Z L (i e ) t

  

 
    

 
 

Differentiating (11) with respect to Q and equating to zero, we have 

2

s s

C(Q L)
C(Q L)(Pt Q L) P B h Z 0

2P

 
       

 
 

Solving it for Q, we have 
1

2
2 2

s s s

2
Q L Pt P t (PB PMh )

C

 
     

 
      (12) 

 

V. CONCLUSION 

 

The model presented here obtained an optimal order quantity for stock-level dependent demand, where the holding cost is a 

decreasing step function of the storage quantity. In the present model retroactive increase holding cost is used to find the 

optimal result.  The model shows that both the optimal order quantity and the time of optimal cycle. When the holding cost 

increase, the time of one cycle is decreased. This study provides the basis for further extensions like the incorporation of 

deteriorating items, shortage cost and stochastic lead time in order to develop more complex and realistic inventory models. 

Although this paper does not include any statistical inventory models but it still puts a platform for developing statistical 

optimal inventory policy if demand or lead time uncertainties are incorporated. In this study the consideration of decreasing 

holding cost also applies the facilities of rented storage, where the rates of lower rent are generally found for long term leases. 
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