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Abstract - The onset of penetrative convection in a variable-viscosity flow bounded by slabs of finite thermal conductivity and 

finite thickness has been investigated by means of linear stability analysis. The relationship between the viscosity and the 

temperature is assumed of exponential type. The asymptotic solutions of the long wavelength, for small values of the 

conductivity and thickness of the solid, are achieved. The values of critical Rayleigh numbers for different values of thermal 

conductivity ratio and viscosity parameters and, consequently the critical Rayleigh numbers at which the onset of convection 

starts, are computed analytically. The effects of various parameters (namely, viscosity parameter, thermal conductivity ratio , 

depth ratio and the presence of internal heat source strength  on the onset of stationary convection) are computed analytically 

and depicted graphically.  It is observed that both stabilizing and destabilizing factors can be enhanced because of the presence 

of a heat source, thermal conductivity ratio,  depth ratio,   and variable viscosity .As a result, it is possible  so that  to postpone 

(or advance) significantly the onset of motion.  

 

Keywords:  variable viscosity: internal heat source: thermal conductivity: Stability. 

 

I. INTRODUCTION 

 

It is well known that the temperature dependence of fluid properties in flows with heat transfer can change the flow 

behaviour: especially its stability characteristics. For most of the realistic fluids, the viscosity shows a rather pronounced 

variation with respect to temperature, as viscosity is more sensitive to temperature than heat capacity and thermal conductivity. 

Rossby [1] computed the values of viscosity and thermal conductivity for water between 20  and 25 °C and observed that the 

variation in kinematic viscosity is approximately 10 % between 20 to 25°C, whereas the thermal conductivity of water varies 

only by 1.5%. Torrance and Turcotte [2] noted that the viscosity of fluids decreases with increasing temperature, whereas a 

reverse trend is observed in gases. In recent years, many authors investigated the influence of temperature dependent viscosity 

in the problems of Rayleigh–Benard convection. Booker [3] has studied Rayleigh–Benard convection with strongly 

temperature-dependent viscosity. Booker and Stengel [4] have shown that there is a decrease in convective heat transport due 

to the increase in the critical Rayleigh number with variable viscosity. Early studies related to the convection in fluids with 

temperature dependent viscosity are those of Palm [5], in which the linear dependence of viscosity with the temperature is 

adopted, and of Stengel et al. [6], in which they considered viscosity depending exponentially on temperature. 

 

Jenkins [7] considered the general dependence of viscosity on temperature and studied both linear and exponential 

dependence of viscosity, and he concluded that the linear dependence is realistic for fluids with small values of viscosity, 

whereas exponential dependence is more realistic for fluids with high viscosity. Recently, Dhiman and Kumar [8] investigated 

the onset of stationary Rayleigh–Benard convection with variable viscosity for all combinations of rigid and dynamically free 

boundaries using the Galerkin method and concluded that the positive values of the temperature-dependent viscosity parameter 

have a stabilizing effect on the onset of stationary convection, whereas negative values have a destabilizing effect. Many other 

authors, who include Selak and Lebon [9],Nield [10]and Straughan [11], have also investigated the onset of convection for the 

ordinary fluids with strongly temperature-dependent viscosity. Palm [5] discussed the effect of a variable viscosity on the 

Benard convection problem and, from the observed results, he explained theoretically that the cells in steady convection 

http://www.isroset.org/
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approach a hexagonal form, and the occurrence of ascent or descent in the middle of the cells depends on how the viscosity 

varies on the Rayleigh‟s result. Stengel et al. [6] compared Palm‟s results [5] with those arising from the selection of an 

exponential viscosity variation law. Further, this problem was also studied by Busse and Frick [12] for low-viscosity fluids 

with a linear dependence of the viscosity on temperature. According to  Solomatov [13], when the viscosity ratio exceeds 3000, 

a stagnant lid regime occurs, where a thick cold boundary layer develops at the top plate. Such regime was observed for ,aR  

up to 108 by Davaille and Jaupart [14]. 

 

We examine the linear stability of variable-viscosity flow between slabs of finite thermal conductivity and finite 

thickness due to an applied pressure gradient in the presence of an applied vertical temperature gradient and uniform internal 

heat source. We believe that this problem is paradigmatic to the very general problem involving the interaction between a non-

uniform applied temperature gradient and a variable-viscosity flow. The results are relevant to current industrial applications 

involving chemical vapour deposition or the cooling of electronic equipment; see e.g. ([15-19]).  

  

The objective of the present study is to investigate the influences of the varying viscosity with internal heat generation 

between the solid plates of finite thickness and of finite conductivity. The linear stability theory is applied and the resulting 

eigenvalue problem is solved by analytically using regular perturbation technique. The critical Rayleigh number cR , which 

depend on related physical parameters, are investigated.  This paper is organized as follows. First, mathematical formulation of 

the problem and the linear stability theory is used in order to predict the critical Rayleigh number ,cR  for the onset of 

convection is presented in Sec. 2. Finally, the results from the analytical computations are discussed and conclusions are drawn 

in  Sec. 4 and  Sec. 5. 

 

II.  PHYSICAL CONFIGURATION AND EIGENVALUE PROBLEM 

 

The system under investigation is shown schematically in Fig. 1. An infinite horizontal fluid layer of thickness ,d  confined 

between two identical homogeneous, isotropic solid plates of thickness ,sd  thermal diffusivity sD  and thermal conductivity 

,sk  above and below the fluid. A uniform internal heat generation per unit volume ,q is applied on the layer.  

 

 

 

 

 

 

 

 

 

Figure 1:  Physical configuration 

The 
„‟
governing equations for the fluid and the solid layers are

‟‟
: 

Fluid layer  0 z d  : 
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
    


.                (3) 

Solid layer  0 ands sd z d z d d      : 

2 .s
s s

T
D T

t


 


                   (4) 

where 

 0 0exp A T T                         (5) 

and 
0  is the dynamic viscosity corresponding to a temperature equal to the mean of temperature at the boundaries, 

( , , )V u v w  is the velocity vector, p  is the pressure, T is the temperature, g  is the acceleration of gravity , 0  is the 

reference fluid density.  

The basic state is quiescent and is of the form  

 

     0, , , , 0,0, , ,b bu v w p T W p z T z                    (6) 

 
The basic steady state is assumed to be quiescent and temperature distributions are found to be  

 
 0 2

0
2 2

u

b

T T q d q
T z T z z

d  

  
     

   

                (7) 

The governing equations are nondimensionalized by scaling the length with ,d time with 
2 / ,d  velocity with / ,d  and 

temperature in the fluid layer 0 uT T . In order to investigate the stability of the basic solution, infinitesimal disturbances are 

introduced in the form 

 

, , , ,b b b bV V T T T p p p                                (8) 

  

Using these scales,  Eqs. 2–4 can be transformed to the following dimensionless form: 

 

 
2

2 4 2 2 2 2
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1
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f w f
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   
                          (9) 
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where   3

0 /uR g T T d     is the Rayleigh number,  2

0/ 2 uQ q d T T  is the dimensionless heat source strength 

and 
2 2 2 2/h z      is the Laplacian operator with 

2 2 2 2 2/ / .h x y      The function f  representing the 

temperature dependence of viscosity, is defined as 

 

max

min

1
exp , .

2
f B z B





   
      

    
                                         (12) 

 

We assume that the perturbations , and sw T   have the forms : 

 

         , , , , exps sw T W z z z i lx my           
                         (13) 

 

and substituting them in Eqs.    9 11  (with 0t   ), we obtain the following ordinary differential equations 

 

     
2

2 2 2 2 2 2 2 22f D a W Df D a DW D f D a W Ra      
   

                     (14) 

 

   2 2 1 1 2D a W Q z         
                                                      (15) 

 2 2 0.sD a  
 

(16) 

The boundary conditions are: 
2 0D w                                at                  1.z                                                              (17) 

0,w  0,Dw                    at                  0,1z       (18) 

,s r sD k D                 at                  0,1z      (19) 

0sD                                 at                 , 1 .r rz d d    (20)
 

 

Here, 
r sd d d is the ratio of the solid plate thickness to the liquid layer thickness and  

r s fk k k  is the ratio of the 

thermal conductivity of the solid plate to that of the fluid layer. Solving Eq.  16  for the solid layer, together with the 

boundary conditions    19 and 20 , the thermal boundary condition at the solid-fluid interface becomes 

 tanh .r rD k a a d          at 0z              (21) 

  tanh 2 .r rD k a a d    at 1z              (22) 

  
 

 

III.  LONG WAVELENGTH ASYMPTOTIC ANALYSIS 

 

The solution of the governing Eqs. 14–16 and boundary conditions Eqs. 17–20 is obtained  using a regular perturbation 

technique with wave number a  as a perturbation parameter.  

For studying the validity of the small wave number analysis, the variables  andW    

are expressed in terms of the small wave number a , 
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     2

0

, ,
N

i

i i

i

W a W

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             (23) 

Substitution of Eqs. (22) into Eqs.  (14) 16 and the boundary conditions  (17) 20 ,  and collecting the terms of 

zeroth order, we obtain 

 
4 3 2 2

0 0 02 0f D W Df D W D f D W                 (24) 

 2

0 01 1 2D Q z W                      (25) 

The boundary conditions are  

     2

0 0 01 1 1 0w D w D                (26) 

     0 0 00 0 0 0w Dw D                (27) 

Then solutions to above equations are 

 

0 00 and 1W   
               

(28) 

First- order equations  are 

 

 4 3 2 2

1 1 12 [ 1 2 ]D W B D W B D W R Exp B z                 (29) 

 2

1 11 1 1 2 .D Q z W                      (30) 

The boundary conditions are  

 2

1 1 0D w                   (31) 

     1 00 tanh 0r rD k a a d                 (32) 

      1 01 tanh 2 1 .r rD k a a d                (33) 

The general solution of (30)  is 

 
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1 2

1 1 2 3 4 22

B zBz Bz z
W R C C z C e C ze e

B

   
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 
            (34) 
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B B
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2

3 2 2 2

1
,

2 1 2

B B

B B B

e e B
C

c e e B e

  
  

   
    

2 2

4 2 2 2

2 2 2
.

2 2 1

B B

B B B

e e B B
C

B e e B e

   
  
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The differential Equation (30) involving 
2

1D   provide the solvability requirement which is given by 
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   
1

1

0

1 1 2 1 2r rQ z W dz k d                    (35) 

The expressions for 1W  is back substituted into Eq. (35) and integrated to yield an expression for the critical Rayleigh number

,cR which is given by  

 

   

     

2

6 22

1 2 3 4 1

12 1 2 2 2cosh
.

1
1 1 4 1

2 6

B

r r

c
B B B

r

B e d k B B
R

Q
C C C e B Q C e Qe L

   


 
          

 

                   (36) 

where 

    2 2 2 2

1 3

1
2 2 2 2 2 2 .

2

B B B BL B e e Ns B e e
B

       
 

 

IV. RESULTS AND DISCUSSION 

 

Thermal convective motion of fluid with  internal heat generation and variable viscosity  affected by walls of finite 

thickness and of finite conductivity were investigated by the linear analysis.  The variable viscosity was assumed of 

exponential type. The resulting eigen value problem is solved  analytically using a regular perturbation technique with wave 

number a as a perturbation parameter. The marginal stability of the system considered in this investigation is given by 

equation
‟‟
 (36). 

„‟
We can check this formula against known results for the following limiting case:  

In the limit 0Q   and 0B ,  equation (36)  is simplified to the following result, which is the case  of a constant-viscosity 

and absence of internal heating in   fluid layer between a  solid walls of finite thickness and of finite conductivity, 

  720 1 2 .c r rR d k                                                                                          (37) 

As 0 or 0,r rk d   equation (37) can be reduced much further to the result  720cR     which is the known exact value 

(Nield [20]). 

 

  Figure 2 depicts the perturbed vertical velocity profiles for different values B  for 0 and 0r rQ k d   . It shows 

that the appearance of newly formed sub layer, which first occurs at the maximum cR   with associated viscosity parameter B , 

continues to manifest itself after then, becoming dominant at the critical state. As viscosity parameter  is further increased, the 

viscously suppressive effects of main fluid flow above shorten the depth of sub layer and cR  then decreases with viscosity 

parameter .B  For the larger values of viscosity parameter B  the velocity profile vanishes at the lower part of fluid layer. 

Figure 3 shows the evolution of the maximum (minimum) value of vertical velocity,  max min ,W W    

predicted by the analytical solution of the full governing equations, as a function of time for different values of heat source 

strength  Q  for viscosity parameter  3.B   It is observed  that the convection is closer to upper boundary with an increase of 

heat source strength  Q . To gain physical insight into the onset of the convection, we illustrate the velocity profile for different 

cases for , , and .r rQ k d B  Similarly, from Figs.4,5,6 and 7, we observed that with increasing  , , andr rQ k d B  and the 

points where the maximum value of  W z takes place is near the bottom of the layer where the fluid is less viscous. 

 

Figure 8 depicts the influence of the differential heat source strength   Q  on the marginal stability curve, namely 

the critical  Rayleigh number cR  versus the viscosity parameter B  at the onset of motion, for 0r rk d  ,  it is observed that 

in the absence of internal heating( 0Q  ) the  critical Rayleigh number cR   increases initially,  with ,B reaches maximum 

and then decreases with further increase in  the value of B  and thus three regions are distinguished as observed in the case of 
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isothermal boundary (see Stengel et al. [6]) cR increases only negligibly with B  for small values of ;B increases significantly 

for B up to  about 8 or 9, at which maximum values cR  are reached; rapidly decreasing trends are found for  values  of B

above 9.Furthur increasing the internal heat source, loss of stability occurs into a time dependent motion, as also indicated by 

Fig. 8. 

Figures 9 and 10 reveals the effect B  on the values of  
cR for various values of thermal conductivity ratio rk  and    

depth ratio rd   with  0 and 2Q Q  . It is clear from these figures that cR increases only negligibly with B  for small 

values of ;B increases significantly for B  up to  about 8 or 9, at which maximum values cR  are reached; rapidly decreasing 

trends are found for  values  of B above 9. Further increasing thermal conductivity ratio   ,rk     depth ratio  rd  and 

internal heat source strength  Q , system become more unstable. Figure 11 shows the variation of critical Rayleigh number 

cR  with   thermal conductivity ratio rk  for  different values depth ratio rd with 0 5, 2B Q and B Q    . It is clear 

from the figure that cR decreases for both cases, where the influence of the conductivity ratio rk  is completely negligible. 

Further increasing , andrB d Q  system become more unstable. 
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Figure 9:  Influence of variable viscosity parameter B      

for different values of andr rK d   with 0Q   on 

thermal convection. 

 
Figure 10:  Influence of variable viscosity parameter B   

for different values of andr rK d   with 2Q    on 

thermal convection. 
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Figure 11:  Influence of   thermal conductivity ratio rK   for different values of  depth ratio rd  on thermal convection. 

 

V. CONCLUSIONS 

The onset of penetrative convection via internal heating in a fluid layer bounded by solid plates is studied with an 

exponential viscosity variation. The asymptotic analysis of the long wavelength is performed and the results are compared with 

those for the case of constant-viscosity fluid. In the absence of internal heating( 0Q  ), the  cR increases only negligibly with 

viscosity parameter  B  for small values of viscosity parameter  ;B increases significantly for B  up to  about 8 or 9, at which 

maximum values cR  are reached; rapidly decreasing trends are found for  values  of B above 9. Additionally, the 

characteristics of stability of the system are strongly dependent on the viscosity parameter B .  A larger thermal conductivity 

ratio rk  and  depth ratio rd is  destabilizing, the critical Rayleigh number cR  decreases with increasing  thermal 

conductivity ratio rk  and  depth ratio rd  because   an increase in the thermal conductivity ratio rk  results in a destabilizing 

state, since thermal disturbances are easily dissipated deep into the solid layer, and the critical Rayleigh number cR  decreases.  
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