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Abstract— In this paper we study Error analysis of numerical methods for second order hybrid fuzzy fractional differential

equations.

We solve the hybrid fuzzy fractional differential equations with a fuzzy initial condition by using variational

iteration method. We consider a second order differential equation with fractional values and we compared the results with
their exact solutions in order to demonstrate the validity and applicability of the method. We further give the definition of the
Degree of Sub element hood of hybrid fuzzy fractional differential equations with examples.
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l. INTRODUCTION

With the rapid development of linear and nonlinear science,
many different methods such as the variational iteration
method (VIM) [1] were proposed to solve fuzzy differential
equations.  Fuzzy initial value problems for fractional
differential equations have been considered by some authors
recently [2, 3]. To study some dynamical processes, it is
necessary to take into account imprecision, randomness or
uncertainty. The uncertainty can be modelled by
incorporating it into the dynamical system and considering
fuzzy differential equations. The origins of fractional
calculus go back to 1695 when Leibniz considered the
derivative of order 1/2. In particular, fractional differential
equations have received much attention and a number of
recent works concern their numerical solution. As another
development, hybrid systems are dynamical systems that
progress continuously in time but have formatting changes
called modes at a sequence of discrete times. Some recent
papers about hybrid systems include [6]. When the
continuous time dynamics of a hybrid system comes from
fuzzy fractional differential equations the system is called a
hybrid fuzzy fractional differential system or a hybrid fuzzy
fractional differential equation. This is one of the first papers
to study hybrid fractional differential equations. The aim of
this paper is to study their numerical solution.

This paper is organized as follows. In Section 2, we provide
some background on fuzzy fractional differential equations
and hybrid fuzzy fractional differential equations. In Section
3 we discuss the numerical solution of Second order hybrid
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fuzzy fractional differential equations by Runge Kutta 4"
order & Runge Kutta 6™ order Fehlberg method. The method
given uses piecewise application of a numerical method for
fuzzy fractional differential equations. In Section 4, as an
example, we numerically analyzed the error between the
methods for Second order hybrid fuzzy fractional differential
equations. The objective of the present paper is to extend the
application of the variational iteration method, to provide
approximate solutions for fuzzy initial value problems of
differential equations of fractional order, and to make
comparison with that obtained by an exact fuzzy solution.

Il. HYBRIDFUZZY FRACTIONAL
DIFFERENTIAL EQUATIONS

Preliminaries

In this section the most basic notations used in fuzzy calculus
are introduced. We start with defining a fuzzy number.

We now recall some definitions needed through the paper.
The basic definition of fuzzy numbers is given by R, we
denote the set of all real numbers. A fuzzy number is

a mapping u : R — [0; 1] with the following properties:

(a) u is upper semi-continuous,

(b) u is fuzzy convex, i.e., u(Ax + (1 — 2)y) > min{u(x); u(y)}
forallx;y € R; 2 € [0; 1],

(c) uisnormal, i.e., 7Xo € R for which u(xo) = 1,

(d) supp u ={x € R | u(x) > 0} is the support of the u, and its
closure cl(supp u) is compact. Let E be the set of all fuzzy

number on R. The r-level set of a fuzzy number
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u € E,0<r <1, denoted by [u],, is defined as
[u],:{x ERJuX) >r} ifo<r<i
cl(supp u) ifr=0
It is clear that the r-level set of a fuzzy number is a closed
and bounded interval [U (r); U (1],

where U (r) denotes the left-hand endpoint of [u], and a(r)

denotes the right-hand endpoint
of [u],. Since each y € R can be regarded as a fuzzy number
Y defined by

Y(t) = lift=y

0ift~Fy
Definition 1.
A fuzzy number (or an interval) u in parametric form is a pair
(u,u) of functions
u(r),u(r) , 0 < r < 1, which satisfy the following
requirements :

1. u(r) is a bounded non-decreasing left continuous function

in (0, 1] and right
continuous at 0.

2. U (r) is a bounded non-decreasing left continuous function
in (0, 1] and right
continuous at 0.

3.U (N<U()0<r<l.

Let us consider the following fractional differential equation:
c Daﬂx(t) = f (t! X(t)’ﬂ’k (Xk ))1 t € [tk 7tk+l] (1)

Where, 0<t, <t <...<t, >
f EC[R+ x E x E,E],/lk eC[E,E]

Here we assume that the existence and uniqueness of
solution of the hybrid system hold on each [t,,t,,,] to be
specific the system would look like:

: DI x(1)
(e Dfxo(t) = (% (1), 4, (X)), X(ty) = %o, t €[ty ;]

DIx )= ftx (1), 4%)).x(t) =x,telt,t,]

c Dka (t) :
9 f (t’ Xk (t)’ﬂ'k (Xk))vx(tk) = Xk’t € [tk’tk+1]
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By the solution of (1) we mean the following function:

Xy () te [to ’tl]
Xl(t)1t € [t11t2]
X(t)= X(t,to,X0)= .

Xy .(t)’t € [tk !tk+1]

We note that the solutions of (1) are piecewise differentiable
in each interval for t €[t ,t, ;] for a fixed X, € E and k

=0,1,2.....
We can also represent a fuzzy numbers x € E by a pair of
functions

DIX(®) = DY [x(t:n). x(t:1)

= [.D/x(®),,DIX(1) ]
Using a representation of fuzzy numbers we may represent x
¢ E by a pair of functions ()_((r), )_((r)) 0 <r <1 such that:
1.5(?‘] is bounded, left continuous and non decreasing,
2.%(r) is bounded, left continuous and non increasing and
3x(r)=x(r),0=r=1

Therefore, we may replace (1) by an equivalent system
equation (2):

DI x(1) = £ (t,% 4 (%) = F (6. %, %), X(t,) = X,
« DIX(E) = F (X A (%) =G (6%, ), X(t) = X,
This possesses a unique solution (xi) which is a fuzzy

function. That is for each t, the pair [)_((t; r), X(t; I’)] is a

fuzzy number, where [)_((t;r),>_<(t;r)] are respectively the
solutions of the parametric form given by Equation (3):

D2 X(t) = F, (t, X(t; 1), X(t; 1), X(t, ;1) = X, (r)
DZX(t) = Gy (t,X(t; 1), X(t; 1), X(t ;1) = X, (1)

forr [0, 1]

25



Int. J. Sci. Res. in Mathematical and Statistical Sciences Vol. 5(3), Jun 2018, ISSN: 2348-4519

I1l. THEFOURTH ORDER RUNGE KUTTA METHOD WITH HARMONIC MEAN FOR SECOND ORDER
DIFFERENTIAL EQUATIONS

For a second order hybrid fuzzy fractional differential equation we develop the fourth order Runge Kutta method with
harmonic mean when f and A in (1) can be obtained via the Zadeh extension principle from:
fe[R* XR X R, R] and A € C [R,R]

we assume that the existence and uniqueness of solutions of (1) hold for each [ty, tx.1]. For a fixed r, to integrate the system in
3) [tot1lL.[te.ta],. ... [totkea]- - ... we replace each interval by a set of Ny, discrete equally spaced grid points (including the end
points) at which the exact solution

x(t; )=(X(t; 1), X(t; r) ) is approximated by some (y(; N, y(t;r) &(z(t;r),z(t;r)) .

. —t
For the chosen grid points on [ty, tei] at tn = t + nhy, he= —<2—X  0<n<N.

Let (Y, (& 1), Y (1) = (X (G 1) X (G 1)), (Y, 61, Vi (&), 2(t 1), 26 ) and (y, (1), Y, (1) ) may be
denoted respectively by (Y , . (t; r),?k,n (t;r)) and (Xk‘n (t; r)S/k’n t;r)).

We allow Ny’s to vary over the [ty, tx.1]’s so that the hy’s may be comparable.
The Fourth Order Runge Kutta method for (1) is given by:

Y G 0)Y, G 0)) = (X G0 X G ), (Y, G, Y, G, 2 1),2(6T))

Where
h f(t, . u, A4 (Uy))

Ky (s Yien (1) 2 (0) = min\u €y, (1), Yy (N1 [200 (1), Zn (1]}
U €Iy, (1), Vi (D112 (), Zkn (1]}
he f (e U, A (Uy))

1y (s View (1) 2 (1) = min\u € {ly, (1), ¥y, (N1[Z¢n (1), 2 (]}
U &€0Y, , (N Yien (0120 (1), Zkn (NI}
h f(t...u, 4, (u,))

Ky (s Yin (13 2 (0) = maxs \u €41y, (1), Yieo (N1[2ia (1), Z0n (013,
U &€IY, , (N Yien (D112 (1), Zin (N}
h f(t ..u, 4 (u))

Iy (o Vien (1); 20 (M) = maxi\u e{[y, (1), Yy (N2 (1), 26 (N1},
U &€IY, , (N Yien (120 (), Zn (1]}

© 2018, IISRMSS All Rights Reserved 26



Int. J. Sci. Res. in Mathematical and Statistical Sciences

k2 (tk,n; yk,n (r)’ Zk,n (r)) =min

I2 (tk,n ’ yk,n (r); Zk,n (r)) = min

Ez (tk,n , yk,n (r)! Zk,n (r)) = max

[ (s Yien (1324, (1)) = max

Like we can arrange

F (G 5 (004, (0,))
{@kl (tk,n! yk,n)j|
\ue| _
(Dkl (tk,n' yk,n)
U €ly, ,(N.Yo(N]

B o+ 2 (0004 (1))

@kl (tk,n ’ yk,n)
ue| —
(I)kl (tk,n ' yk,n)

U €Ly, (1), Yo ()]

—

F G+ (0.0 %)
|:@k1 (tk,n’ yk,n):|
\ue| _
(Dk1 (tk,ni yk,n)
U ely, o (0 Yio ()]

F G 5 (004, (4,))
|:@k1 (tk,n! yk,n):|
\ue| —
q)k1 (tk,n! yk,n)
U, €13, o1, Yeo ()

Vol. 5(3), Jun 2018, ISSN: 2348-4519

Ks (ten Yien (13 Zen (0 1 i Vien (032 (0 K (i Vien (1520 () s (s Yien (03 240 (1),
&(tk,n; Yin ()20 (1)), I_4(tk,n; Yin (1);Z, 0 (1), k_4(tk,n; Yin (r); Z, (r) &E(tk,n; Yin (r); Zyn (r).

Where

@4, (e Y26 (1) = ¥, )+ (Ko Yo (0,2 (DD i (1), 2, ()

(. yk,n(r),zk,n(r»=§k,n(r)+%(R1(tk,n. Vi (N Zen (D) 11ty Vien (1), 2, (1))

;. (e Yen ()2 (M) =Y, (1) +§(kz(tk,n,yk,n(r),zk,n(r)),lz(tk,n, YVen(0),2,,(1)

5kz (tk,n ' yk,n (r)1 Zk,n (r)) = 9k,n (r) + %(RZ (tk,n ' yk,n (r)1 Zk,n (I’)),I_z (tk,n ' yk,n (r)’ Zk,n (r)))
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D, (tns Yin(1,2,,(r) = Yin (1) + (Kt s Yin (0,20 (D) l5 10 Vi n (0, 2,(1)))
q_)ks (tk,n ' yk,n (r)’ Zk,n (r)) = 9k,n (r) + (R3 (tk,n ' yk,n (r)i Zk,n (r))’i3 (tk,n ’ yk,n (r)’ Zk,n (r)))

Next we define:

Seltin ¥y (N3 Yien (0,2 (1), Zkn (N] =

%{Kl(tk,n; Yien (012 (0)+ 20K, (b7 Yien (02 (0) 4K (i Vion (1,24 (NI K (bt i (020 ()
Tltin ¥, , (1) Yien (1,26 (1), Zen (1] =

%{El(tk,n;yk,n(r),zk,n(r))+2[Ez(tk,n:yk,n(r),zk,n(r))+R3(tk,n; Vin (1), 2 (M1 Ka (i ¥ien (1,2, (N}
Siltin, ¥y, (DY (1,2 (). Zen (1] =

Yo (020 ) 2 Y (.20 )1 i (0,2 O L Vi (), 20, ()
Tltn Yy, (DY (0240 (0, 2 (M)] =

%{h(tk,n;yk,n(r),zk,n(r))+2[|'z(tk,n:yk,n(r),zk,n(r»+is(tk,n:yk,n(r),zk,n<r))]+i4<tk,n;yk,n(r),zk,n(r))}

The exact solution at t, ., is given by:

Fena (N =Y 10 (04 Selten Y, (0 Yien (0,2 (0, Zin (0],
Gna (1) =Y kn (N +Tlte ¥, (N, Y10 (1,2 (1), 2k ()]

THE SIXTH ORDER RUNGE KUTTA FEHLBERG METHOD WITH HARMONIC MEAN

For a hybrid fuzzy fractional differential equation we develop the sixth order Runge Kutta Fehlberg method with harmonic
mean when fand Ay in (1) can be obtained via the Zadeh extension principle from:
f ¢[R" XRXR,R]and i e C[R,R]

we assume that the existence and uniqueness of solutions of (1) hold for each [ty, t«1]. For a fixed r, to integrate the system in
3) [totilL.[tutol,. .. [totcea]. . ... we replace each interval by a set of Ny, discrete equally spaced grid points (including the end

points) at which the exact solution x(t; r)=( X(t; r), x(t;r)) is approximated by some ( y(t; r),)_/(t; I')). For the chosen grid

. _ _ tk+1 _tk
points on [ty tw1] at te,n = te + nhy, hy= ———, 0<n<Nj.

k
Let (Y, (t; r),Y_k(t; r)=(x,(t; r),X_k(t; N). (Y, (t; r),y_k(t; r))and (y, (t; r),y_k(t; I') ) may be denoted respectively by

(Y a6 0).Y kn(tir)) and (Y, (61, Yy, (E1)).

We allow Ny’s to vary over the [ty, tx.1]’s so that the h,’s may be comparable.
The Sixth Order Runge Kutta Fehlberg method for (1) is given by:

(Y, (6., 1) =(X, G 1), % G0 (Y, G, Y, G)
Where
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h f(t, . u, A4 (uy))
Ky (s Yien (1): 20 (1)) = min\u e{Ly, (1), Yoo (012 (1), Zen (013,
U €41y, (0, Yin (N1[2ia (1), Zen (D]}
h f(t ,.u, 4 (u))
Iy (s Yien (13 2 (1)) = min\u e {y, (1), ¥y, (D120 (1), 21 (N3,
U eIy, (1), Yion (NLLZ40 (1), Zkn (D]}

h f (60U, (U))
K (ens Yien (0520 (1) = maxs\u e {Ly, | (1), Yo (N1[2ca (1), 26a (NI},
U {1y, , (0, Yin (NLIZin (1), Zin (D]}

hy f (t 00U, 4, ()
It Yien (120 (1)) = maxs \u e{Ly, (1), Yy (D124 (1), Z6n (D1},
Uy €41y, (0 Yien D12 (), Zen (O]}

L F (G 5 (004 (4,))

—

Ko (bt Yo (12,0 (1)) = min 0 Fh(tk,myk,n)}
2Vt T 35S Tk = el —
o | | (Dk1(tk,n’yk,n)

U ely, (N.Yo (]

T (G 2 ()04, (1))

I, (t (r);Z»(r)) = min{\u Pl Yio)
n; n ; n - “ o
2\, yk, k, ®k1 (tkynl yk,n)

U ely, (0 Yo (]

F b5 (002 )
Ka(t, Y. (r):2, () = maxi\u Fkl(tk'”’yk’“)}
k,n? Jk,n 1 5k,n akl(tk’nayk,n)

U €[y, (1), Yo ()]
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1

M f (b (00,2, )

_ ) ] @kl (tk,niyk,n)

I (tk.n ) yk,n (r)’ Zk,n (r)) =max<\ue| _

(Dk1 (tk,n! yk,n)
U €y, (N.Ys(N]

Like we can arrange

K (b ni Yien (0 Zin (1) D3 i View (0 Zin (1), Ks (b o3 Yion (0 20 (1) Lo (3 Vi (13240 (1)),

Ka @i Yien (13 Zen () LGt Vien (02400 (0 K i Yion (0320 (0) 1 (b s Vi (02, (1),
Ks et Yien (03 Zin (0) . L5 (i Yien (0 Zen (1) Ks Qi Yien (13240 (1) &l (ty 3 Vi (1) 2o (1))

D, (tens Yin (), 2, ,(r)) = i(tk,n +1/4*h1¥k1n () + Kyt s Yin (1,2 ,(0), 2o (1) + 1 (L Vi (0,2, () *h)

q_)kl (tk,m yk,n (r)’ Zk,n (r)) = ?(tk,n +1/4* h’ 9k,n (r) + El(tk,nf yk,n (r)’ Zk,n (r)),Ek,n (r) + il(tk,n’ yk,n (r)’ Zk,n (r))*h)

Dy (b Yien (1) Zn (M) = F (e +3/8%0y, (1) +(3/32)*h* (Ky(te 1, Yien (1), 2 (1) +

3% Ky (s Yien (1), 240 (1)), 2y n (1) + (B/32) * > (L (ty 1, Yien (1), 2o (1) + 3% L, (e s Vi (1), 24,0 (1))

D, (L s Vien (1), 20 (M) = Tt +3/8%h,y, (1) +(3/32) *h* (Ka(te o, Vien (1), 240 (1) +

3%Ka(t s Yien (1), 2 n (1)), Zkn (1) + (3/32) * h* (Iu(ty s Vi o (1), 24 o (1) + 3% 2ty o, Vi o (1), 2 1 ()))
Dy (s Viea (1), 2 (M) = F (&, +(12/13)*h,y, (1) +(12/2197)*h*
(161K, (t 1y Vin (1), 2 (1) =600 K, (ty 1, Vien (1), Zic o (1) + 608K (K 1, Vi (1), Zic 0 (1)),
2, (1) +@12/2197)*h>@61* 1, (t, s Yien (1), 240 () =600 1, (t s Vi (1), 2400 (1)
+608l, (tk,n1 Yin (), Zy o (r))

D, (b, Vien (1), 20 (M) = T, + (@12/13)*h, y, (1) + (12/2197) *h*

(161*E1 (tk,n ' Yin (I’), Zyn (r) — 600 *EZ (tk,n ' Yin (r)’ Zyn (r) + 608E3 (tk,n ' Yin (I’), Zyn (r))’

Zin (1) + (127 2197) *h* (161 * 11(t, ., Vi 0 (1), Z o (1) =600 * 12 (8, ., Vi 0 (1), Z4 o (1)

+608l5 (tk,n’ Yin (r), Zyn (r))

Dy, (tn Yin (N, 20 (M) = £t +hyy, (1) +(1/4104)*h>(8341*K, (t, 1, Yy o (1), 2, ()

—328327%K, (t ns Yien (1), 2 (1) + 29440 % K, (t s Vien (1), 2400 (1) =845 K, (ty 1, Vi (1), 241 (1)),

2, (r)+(1/4104) *h*(8341* 1, (t, 1, Vi (1), 24, (r) =32832* 1, (t, 10 Vi n (1), 2 (1) +

2944015 (t, s Yien (1), 2, (r) =845% 1, (t, ., Y, n (1), 2, (1))

© 2018, IISRMSS All Rights Reserved 30



Int. J. Sci. Res. in Mathematical and Statistical Sciences Vol. 5(3), Jun 2018, ISSN: 2348-4519

D, (ty s Vien (1), 2k (1)) = T (G + N, Y (1) + (L7 4104) *h* (8341% K (ty , Vi (F), Zic o (F)
~32832%Ka(ty s Vi (1)s Zi o (1) + 29440 % Ka (L, 1, Vie o (1), 2 0 (1) =845 %Ki (s Vi o (1), Z (1)),
Zin (r) + (11 4104) *h* (8341 * 11 (t, , Vi (1), 2o (1) =32832* L2 (&, Vien (1), 2 (1) +
29440 * 13 (t, , Vi o (1), 2o (1) =845* 14 (8, 1, Vi (1), 2 1 (1))

Dy, (tens Yin (N, 2n () = £, +(0.5)h,y, (1) +h*(=(8727)* K, (ty 1 Yin(F), 2, ()

+ 25K, (te s Yien (1), 2, (r) — (3544 2565) * K4 (t, ) Vi (1), 2, , (1) + (18597 4104)

*K4 (tk,n ' yk,n (r)! Zk,n (r) - (11/ 40) *KS (tk,n ' yk,n (r)! Zk,n (r))’zk,n (r)
+h* (=@ 27)* L (t o+ Yien (1) 20 (1) + 2%, (8 Vi n (0, 24 (1) — (35447 2565) *

Lt s Yien (), 2, (r) +(1859/4104) *1, (t, ., Vi n (1), 2, (r) — (@17 40) * 15 (t, s Vi n (1), 2, (1))
@i (b s Vien (1), 2k (M) = T (G, + (0.5)N, Y, (1) +h* (=87 27) *Ka(ty s Vien (1), Z4 o (F)
+2%Ka (ty oy Yien (1), Zi o (1) = (35441 2565) * Ks (ty ., Vi o (1), Zi o (1) + (1859 4104)

*Katens Yien (1) 20 (1) = 01/ 40) *Ks (t, Vi (1), 2o (1)),

Zin () + N> (=87 27) * 11ty 1, Vien (1) Z o (1) + 2% L2 (ty s Vi (1), 2 (V) —

(3544/2565) *1s(t, s Vi n (1)s Zi o () + (18597 4104) * L4 (t, 1, Vi o (1), 2, 0 (F) —

(11/40) *Is(t, ., Yien (1), 2 o (1))

Next we define:

Slten Y, (N, Yien (1) Zin (1), Zka ()]
_ g {167 27)k, (t, 1; Vi (), 2, (1)) + (6656 / 2565)Ks (t, 1; Vi o (F), Z4 () + (28561/11286)
Ko (s Yin (1), 20 (1) = (9710)Ks (ty 3 Vi (1), 2y (1) + (A2/1D)Kg (8 3 Vi (1), 240 (1))}
T ltn Y, . (0, Yien (1) Zin (1), Zkn ()]
:g{(16/27)E1(tk,n; Yien (1), Z4 (1) + (6656 / 2565)Ks (t, ,; Vi (), Z, o () + (28561/11286)

R“ (tk,n; yk,n (r)' Zk,n (r)) - (9/10)R5 (tk,n; yk,n (r)7 Zk,n (r) + (12 /11)R6 (tk,n; yk,n (r), Zk,n (r))}

The exact solution at t, ., is given by:

Fena (M) =Y (D +Sclten ¥, (N, Yion (1), Zen (1), 2 (D],
Gk,n+1(r) = ?k»” (r) +Tk [tk,n,Xk’n (r)iyk,n (r)!Zk,n (r)’zkv” (r)]

Degree of Sub Element hood:

Let X be a Universal, U be a set of parameters and let ( F,
Then the degree of sub element hood denoted by
S(Fni1r Oy .y ) is defined as,

) and (G, .., ) are two fuzzy elements of X.

k,n+ k,n+
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é( I:k,n+1’ Gk,n+1) =

1

((F )

k.ol

Where ‘(kal)

= Z e; €A exp(F 1)

IV. ERROR ANALYSIS

In this section, we present the example for analysing the
error of the hybrid fuzzy fractional differential equations
between Runge Kutta 4" order & 6" order Fehlberg Method.
Consider the following second order hybrid fuzzy fractional
differential equation:

Dl x =z
& Dz () = xz2-Y?
...... (6)
X (0) = Xo

where /3 € (0,1] 't > 0 and Xoisany triangular fuzzy

number.

This problem is a generalization of the following hybrid
fuzzy fractional differential equation:

We can find the solution of the hybrid fractional fuzzy
differential equation, by the method of Runge Kutta 4™ order
& Fehlberg 6" order Methods. We compared & generalized
the error of the hybrid fractional fuzzy differential equation,
also we illustrated the figure and in the table for this
generalization by using Matlab.

| {|(Fnd| - Zmaxfo,(£) - (G )3
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Fig.1. Error Analysis for Y values of the Example

YF Gralues

Enror between RK 2nd and 6t arde Method for 2= y*

Fig.2. Error Analysis for Z values of the Exampl

th th
S.No - RK 4™ RK 6" Error T)rKdgr T)FdSr Error
order (W) order (W) (W) 2 2 2
1 0 0 0 0 1.3 1.3 0
2 0.1 1.391266317 1.38252921 0.008737 | 0.822369471 | 0.843479358 -0.02111
3 0.2 1.463836926 1.45043447 0.013402 | 0.625779615 | 0.672041993 -0.04626
4 0.3 1.515773725 1.50232107 0.013453 | 0.409924119 | 0.484592947 -0.07467
5 0.4 1.545284394 | 1.53679615 0.008488 | 0.178164727 0.2823831 -0.10422
6 0.5 1.551126301 | 1.55270406 -0.00158 | -0.06180337 | 0.069581679 -0.13139
7 0.6 1.533042361 | 1.54940226 -0.01636 | -0.29809153 | -0.14644294 -0.15165
8 0.7 1.492116438 | 1.52703428 -0.03492 | -0.51615286 | -0.35553489 -0.16062
9 0.8 1.430901028 | 1.48672389 -0.05582 | -0.70172741 | -0.54612954 -0.1556
10 0.9 1.353215407 | 1.43060781 -0.07739 | -0.84426266 | -0.70745571 -0.13681
11 1.0 1.263641534 | 1.36166109 -0.09802 | -0.93929549 -0.8318705 -0.10742
Table.1. Error Analysis for Y & Z values of the Example
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V. CONCLUSION AND FUTURE SCOPE

In this paper, we have discussed the error analysis of the
hybrid fuzzy fractional differential equation by Runge Kutta
4™ order method & 6" order Fehlberg method. Final results
showed that the solution of hybrid fuzzy fractional
differential equations approaches the solution of hybrid fuzzy
differential equations as the fractional order approaches the
integer order. The results of the study reveal that the
proposed error analysis method with fuzzy fractional
derivatives is efficient, accurate, and convenient for solving
the hybrid fuzzy fractional differential equations. We can
develop the error analysis for higher order system.
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