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I.  INTRODUCTION  

Simple, finite and undirected graphs are considered 

throughout this paper. Let G be a graph with the vertex set 

( )V G  and edge set ( )E G  such that | ( ) |=V G n  is the order  

and | ( ) |=E G m is the size of G. The degree of a vertex 

( )v V G  is denoted by ( )Gd v . The degree of an edge 

=e uv  in G is denoted by ( )Gd e , and is defined by 

( ) = ( ) ( ) 2G G Gd e d u d v  . The maximum and minimum 

vertex degree of G are denoted by ( ) =G   and ( ) =G   

respectively. The vertices and edges of G are called its 

elements. Here, we denote the adjacency (or incidence) of 

elements by the symbol  and nonadjacency (or 

nonincidence) by . As usual ( )S G  is subdivision graph of 

G, ( )L G  is line graph and ( )T G  is total graph. The jump 

graph ( )J G  of a graph G is complement of line graph.  

      The partial complement of subdivision graph ( )S G  [9] is 

a graph with the vertex set ( ) ( )V G E G  such that two 

vertices of ( )S G  are adjacent if and only if one corresponds 

to a vertex v  of G and other to an edge e  of G and v  is not 

incident to e  in G. 

     The semitotal-point graph 
2 ( )T G  [15] is a graph whose 

vertex set is ( ) ( )V G E G  in which two vertices are adjacent 

if and only if (i) they are adjacent vertices in G or (ii) one is a 

vertex of G and the other is an edge of G incident to it. 

 

     The semitotal-line graph 
1( )T G [15] is a graph whose 

vertex set is ( ) ( )V G E G  in which two vertices are adjacent 

if and only if (i) they are adjacent edges in G or (ii) one is a 

vertex of G and the other is an edge of G incident to it. 

 

    The tadpole graph 
,n kT [7] is the graph formed by joining 

the end point of a path of length k to a n-cycle. The sum 

1nC K  of a cycle 
nC  and a single vertex is referred to as a 

wheel graph 1nW   of order 1n . The ladder graph 
nL  [7] 

is the product 2 nK P . For notations and undefined 

terminologies we follow [6], [11]. 

 

     Some Results on Contra Harmonic Mean Labeling of 

Graphs obtained in [13] and Anti-magic labeling for Boolean 

graph of path ( ), ( 4)nBG P n   is obtained in [16].  

 

    A molecular graph is a simple graph representing the 

carbon-atom skeleton of an organic molecule (usually, of a 

hydrocarbons). Thus, the vertices of a molecular graph 

represent the carbon atoms, and its edges the carbon-carbon 
bonds.  According to the IUPAC definition, a topological 

index (or molecular structure descriptor) is a numerical value 

associated with chemical constitution for correlation of 

chemical structure with various physical properties, chemical 

reactivity or biological activity. The significance of 

topological indices is usually associated with quantitative 

structure property relationship (QSPR) and quantitative 

structure activity relationship (QSAR) [10].  

 

http://www.isroset.org/


  Int. J. Sci. Res. in Mathematical and Statistical Sciences                                                Vol. 5(5), Oct 2018, ISSN: 2348-4519 

  © 2018, IJSRMSS All Rights Reserved                                                                                                                                   34 

     The first and second Zagreb indices are defined in [8] as 

 
1 1= ( )M M G =

2

( )

( )G

v V G

d v


  and   

      
2 2= ( )M M G =

( )

( ) ( )G G

uv E G

d u d v


 respectively. 

 

     The Randi𝑐́ index of a graph G is defined in [14] as  

 

1

2

( )

( ) = [ ( ) ( )]G G

uv E G

R G d u d v




 .  

 

     It has been extended to the general product-connectivity 

index defined in [5] as  

    

( )

( ) = [ ( ) ( )]G G

uv E G

R G d u d v 




 , 

      where   is any real number.  

 

     The first general Zagreb index of a graph G is defined in 

[12] as  

         
1

( )

( ) = [ ( )]G

u V G

M G d u 



 , 

      where   is any real number.  

 

The general sum-connectivity index defined in [19] as 

( )

( ) [ ( ) ( )]G G

uv E G

G d u d v 




  , 

      where   is any real number. 

 

  The general sum-connectivity index of some transformation 

graphs is obtained in [4], [17]. In section II, we obtain general 

product-connectivity index of subdivision graph, partial 
complement of subdivision graph, semitotal-point graph, 

semitotal-line graph and total graph. Also bounds for general 

product-connectivity index of some transformation graphs. 

 

II. GENERAL PRODUCT-CONNECTIVITY INDEX OF 

TRANSFORMATION GRAPHS  

Theorem 2.1 If G  is a graph and  , Then 

                   
1

1( ( )) = 2 ( )R S G M G 




.   

 

Proof. Since ( )S G  has n m  vertices and 2m  edges, 

( ) ( )

( ( ))

( ( )) = [ ( ) ( )] .S G S G

ue E S G

R S G d u d e 




   

Note that ( ) ( ) = ( )S G Gd u d u  for ( )u V G  and 

( ) ( ) = 2S Gd e  for = ( )e uv E G .    

Therefore,   

( ( ))

( ( ))

( ( )) = [ ( ) 2]

= 2 [ ( )]

G

ue E S G

G

ue E S G

R S G d u

d u





 








 

                  ( )

1

1

= 2 ( )[ ( )]

= 2 ( ).

G G

u V G

d u d u

M G

 

 






 

   

Corollary 2.2  If 
nP  is a path and  , then 

1( ( )) = 2 [1 ( 2)2 ]nR S P n 



   .  

 

Proof. From Theorem 2.1, we have  

                         1

1( ( )) = 2 ( ).n nR S P M P 



   

     Since the path nP  contains two vertices of degree one and 

( 2)n  vertices of degree two,  

     
1 1 1

1

( )

( ) = [ ( )] = 2 ( 2) 2n P
n

u V P
n

M P d u n    



   . 

Hence 
1( ( )) = 2 [1 ( 2)2 ]nR S P n 



   .  

 

Corollary 2.3 If 1nW   is the wheel graph and  , then    

            
1

1( ( )) = 2 [3 ]nR S W n n  





  .  

 

Proof. From Theorem 2.1, we have  

 
1

1 1 1( ( )) = 2 ( )n nR S W M W 





    

     Since the wheel 1nW   contains n  vertices of degree 

three and one vertex of degree n , 
1 1 1

1 1
1

( )
1

( ) = [ ( )] = [3 ].n W
n

u V W
n

M W d u n n     







     

Thus 
1

1( ( )) = 2 [3 ]nR S W n n  





  .  

 

Corollary 2.4 If 
,n kT  is the tadpole graph and  , then 

1 1

,( ( )) = 2 {3 ( 2) 2 1}.n kR S T n k  



        

 
Proof. From Theorem 2.1, we have  

 
1

, 1 ,( ( )) = 2 ( )n k n kR S T M T 




  

       The tadpole ,n kT  has 2n k   vertices of degree two, 

one vertex of degree three and one vertex of degree one. 

       
1 1

1 ,
,

( )
,

( ) = [ ( )]n k T
n k

u V T
n k

M T d u  



  

             
1 1= 3 ( 2) 2 1n k         
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1 1

,( ( )) = 2 {3 ( 2) 2 1}.n kR S T n k  



        

 

Corollary 2.5 If 
nL  is a ladder and  , then  

      
1 2 1( ( )) = 2 {2 ( 2) 3 }.nR S L n  



       

 

Proof. From Theorem 2.1, we have  

 
1

1( ( )) = 2 ( )n nR S L M L 




.  

       Since the ladder nL  has four vertices of degree two and 

2( 2)n  vertices of degree three, 

   
1 1 3 1

1

( )

( ) = [ ( )] = 2 2( 2) 3 .n L
n

u V L
n

M L d u n      



    

Hence 
1 2 1( ( )) = 2 {2 ( 2) 3 }.nR S L n  



       

 

Corollary 2.6 ([2]) If G  is a graph and  , then   

             
2 1( ( )) = 2 ( )M S G M G .   

 

Theorem 2.7 Let G  be any graph and   ℝ. Then  

1

( )

( ( )) = ( 2) [ ( )] .G

u V G

R S G n m d u 







 
  

 
   

Proof. Since ( )S G  has n m  vertices and ( 2)m n  

edges, we have 

    
( )

( ( ))

( ( )) = [ ( )
S G

ue E S G

R S G d u



  
( )

( )]
S G

d e 
 

          Note that 
( )

( ) = ( )GS G
d u m d u  for ( )u V G  and 

( )
( ) = 2

S G
d e n   for = ( )e uv E G . Hence 

    

( ( ))

( ( )) = [( ( ))( 2)]G

ue E S G

R S G m d u n 





   

     

( ( ))

= ( 2) [ ( )]G

ue E S G

n m d u 



   

                      
( )

= ( 2) ( ( ))[ ( )]G G

u V G

n m d u m d u 



    

Corollary 2.8 If nP  is a path and  , then 

 

1

1

( ( )) = ( 2) [2( 1)

( 2)( 2) ].

nR S P n m

n m

 









 

  
 

 

Proof. From Theorem 2.7, we have  

1

( )

( ( )) = ( 2) [ ( )] .n P
n

u V P
n

R S P n m d u 







 
  

  
   

     Since the path nP  contains two vertices of degree one and 

( 2)n  vertices of degree two, 

 
1 1 1

( )

[ ( )] = 2( 1) ( 2)( 2) .P
n

u V P
n

m d u m n m    



      

Hence 

1 1( ( )) = ( 2) 2( 1) ( 2)( 2) .nR S P n m n m  



         

 

Corollary 2.9 If 1nW   is the wheel graph and  , then  

1 1

1( ( )) = ( 2) [ ( 3) ( ) ].nR S W n n m m n  



 

      

 

Proof. From Theorem 2.7, we have  

1

1
1

( )
1

( ( )) = ( 2) [ ( )] .n W
n

u V W
n

R S W n m d u 











 
  

  
              

    Since the wheel 1nW   contains n  vertices of degree three 

and one vertex of degree n , 
1 1 1

1
( )

1

[ ( )] = ( 3) ( ) .W
n

u V W
n

m d u n m m n    






     

Hence 
1 1

1( ( )) = ( 2) [ ( 3) ( ) ].nR S W n n m m n  



 

      

 

Corollary 2.10 If ,n kT  is the tadpole graph and  , then 

1 1

,( ( )) = ( 2) [( 1) ( 3)n kR S T n m m  



      

         
1( 2)( 2) ].n k m      

Proof. From Theorem 2.7, we have  

1

,
,

( )
,

( ( )) = ( 2) [ ( )] .n k T
n k

u V T
n k

R S T n m d u 







 
  
  
          

    Since the tadpole 
,n kT  has 2n k   vertices of degree 

two, one vertex of degree three and one vertex of degree one, 
 

1 1 1

,
( )

,

1

[ ( )] = ( 1) ( 3)

( 2)( 2) .

T
n k

u V T
n k

m d u m m

n k m

  



  





   

   


                           

 

Corollary 2.11 If nL  is the ladder and  , then           

            

1

1

( ( )) = ( 2) [4( 2)

2( 2)( 3) ].

nR S L n m

n m

 









 

  
 

 

Proof. From Theorem 2.7, we have  

1

( )

( ( )) = ( 2) [ ( )] .n L
n

u V L
n

R S L n m d u 







 
  

  
   
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     Since the ladder 
nL  has four vertices of degree two and 

2( 2)n  vertices of degree three, 

    

1 1

( )

1

[ ( )] = 4( 2)

2( 2)( 3) .

L
n

u V L
n

m d u m

n m

 



 





 

  


 

  

Corollary 2.12 ([3]) If G is an ( , )n m graph and  , 

then 

 
2

2 1( ( )) = ( 2) ( 4) ( )M S G n m n M G     .  

   

Theorem 2.13 If G is any ( , )n m graph and  , then 

1

2 1( ( )) = 4 ( ) ( )R T G R G M G 

 

   . 

Proof. Since 
2 ( )T G  has n m  vertices and 3m  edges, 

 
2 ( ) ( )

2 2
( ( ))

2

( ( )) = [ ( ) ( )]T G T G

xy E T G

R T G d x d y 




                                

                    
2 2

2

( ) ( )

( ( )) ( )

= [ ( ) ( )]T G T G

uv E T G E G

d u d v 



     

                    
2 2

2

( ) ( )

( ( ) ( ( ))

[ ( ) ( )]T G T G

ue E T G E S G

d u d e 



  . 

     Note that 
( )

2
( ) = 2 ( )T G Gd u d u  for ( )u V G  and 

( )
2

( ) = 2T Gd e  for = ( )e uv E G . Hence 

2

( )

( ( )) = [2 ( )2 ( )]G G

uv E G

R T G d u d v 




  

                   [2 ( ) 2]G

u e

d u    

                  

( )

= 4 [ ( ) ( )] 4 [ ( )]G G G

uv E G u e

d u d v d u   



   

                  

( )

= 4 ( ) ( )[ ( )] .G G

u V G

R G d u d u 




 
 

 
  

 

Corollary 2.14  If 
nP  is a path and  , then  

1

2( ( )) = 4 [( 1) 2 ( 3) 4 2].nR T P n n  



       

Proof. From Theorem 2.13, we have  

    1

2 1( ( )) = 4 ( ) ( ) .n n nR T P R P M P 

 

   

    Since the path 
nP  contains two vertices of degree one and 

( 2)n  vertices of degree two, 

         
1( ) = 2 ( 3) 4nR P n 



     and 

1 1 1

1

( )

( ) = [ ( )] = 2 ( 2) 2 .n P
n

u V P
n

M P d u n    



    

Hence 
1

2( ( )) = 4 [( 1) 2 ( 3) 4 2].nR T P n n  



       

 

Corollary 2.15 If 1nW   is a wheel graph and  , then 

    
1

2 1( ( )) = 4 [9 (3 ) 3 ]nR T W n n n    





    .  

 

Proof. From Theorem 2.13, we have  

      1

2 1 1 1 1( ( )) = 4 { ( ) ( )}n n nR T W R W M W 

 



     

     Since the wheel 1nW   contains n  vertices of degree three 

and one vertex of degree n , 

        
1( ) = [9 (3 ) ]nR W n n 

    and 

  
1

1

1 1 1

1 1

( )

( ) = [ ( )] = [3 ].
n

n

n W

u V W

M W d u n n   





  





  

Hence 1

2 1( ( )) = 4 [9 (3 ) 3 ]nR T W n n n    





    .  

 

Corollary 2.16 If 
,n kT  is the tadpole graph and  , then  

1

2 ,

1

4 [3 6 ( 4) 4 3

[2( ) 3] 2 1] 1
( ( ))

4 [2 6 ( 2) 4 4 3

( 1) 2 1] 1.

n k

n k

n k if k
R T T

n

n if k

   



    







      


     
 

     
     

 

Proof. From Theorem 2.13, we have  

 1

2 , , 1 ,( ( )) = 4 { ( ) ( )}n k n k n kR T T R T M T 

 

   

     Since the tadpole ,n kT  has 2n k   vertices of degree 

two, one vertex of degree three and one vertex of degree one, 

,

3 6 ( 4) 4 2 > 1
( )

2 6 ( 2) 4 3 = 1
n k

n k if k
R T

n if k

  

   

      
 

    
  

and 

   
1 1 1

1 ,( ) = 3 ( 2) 2 1n kM T n k         .  

On substituting, we obtain the result.    

 

Corollary 2.17 If 
nL , > 2n  is the ladder and  , then 

2 1

3 1

2

1 1

4 {(3 8) 9 4 6 2

( ( )) 2 2( 2) 3 } > 2

4 {2 4 } = 2 .

n

n

R T L n if n

if n

   

 



  



 

 

     


    




  

Proof. From Theorem 2.13, we have  
1

2 1( ( )) = 4 { ( ) ( )}n n nR T L R L M L 

 

 .  

     The ladder nL  has four vertices of degree two and 

2( 2)n  vertices of degree three. 

Therefore,  

   

2 1

1

2 4 6 (3 8) 9 > 2
( )

4 = 2
n

n if n
R L

if n

  

 





     
 


 

 and 
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1 1 3 1

1

( )

( ) = [ ( )] = 2 2( 2) 3 .n L
n

u V L
n

M L d u n      



        

    On substituting we obtain the result. 

    

Theorem 2.18 If G is an ( , )n m graph and  , then 

 1

( )

( ( )) = [ ( ) ( ) ][ ( ) ( )]G G G G

uv E G

R T G d u d v d u d v  




          

       

( )
2

{[ ( ) ( )] [ ( ) ( )] },G G G G

uvw E G

d u d v d v d w 



          

where 
2( )E G  is set of all pairs of adjacent edges.   

Proof. Since 
1( )T G  has n m  vertices and 

1

1

2
m M  

edges,   

1 ( ) ( )
1 1

( ( ))
1

( ( )) = [ ( ) ( )]T G T G

xy E T G

R T G d x d y 




  

       ( ) ( )
1 1

( ( )) ( ( ))
1

= [ ( ) ( )]T G T G

ue E T G E S G

d u d v 



  

                 
( ) ( )

1 1
( ( )) ( ( ))

1

[ ( ) ( )]
j

T G i T G j

e e E T G E L G
i

d e d e 



   

     Note that 
( )

1
( ) = ( )T G Gd u d u  for ( )u V G  and 

( )
1

( ) = ( ) ( )T G G Gd e d u d v  for = ( )e uv E G . 

1

, =

( ( )) = [ ( ){ ( ) ( )}]G G G

u e e uv

R T G d u d u d v 

        

 [ ( ) ( )][ ( ) ( )]
, ,

G G G G

e e e uv e vw
i j i j

d u d v d v d w


 

        

( )

= ([ ( ){ ( ) ( )}]G G G

uv E G

d u d u d v 



  

      [ ( ){ ( ) ( )}] )G G Gd v d u d v    

 
, ( )

{[ ( ) ( )][ ( ) ( )]} .G G G G

uv vw E G

d u d v d v d w 



    

 

Theorem 2.19 If G is an ( , )n m graph and  , then  

 
 

( )

( ( )) = 4 ( )

2 [ ( ) ( ) ][ ( ) ( )]G G G G

uv E G

R T G R G

d u d v d u d v



 

   



  
          

     

2 ( )

{[ ( ) ( )] [ ( ) ( )] },G G G G

uvw E G

d u d v d v d w 



    

where 
2( )E G  is set of all pairs of adjacent edges.   

Proof. Since ( )T G  has n m  vertices and 
1

1
2

2
m M  

edges, 

( ) ( )

( ( )) ( )

( ( )) = [ ( ) ( )]T G T G

uv E T G E G

R T G d u d v 




  

                    
( ) ( )

( ( )) ( ( ))

[ ( ) ( )]T G T G

ue E T G E S G

d u d e 



    

            
( ) ( )

( ( )) ( ( ))

[ ( ) ( )]T G i T G j

e e E T G E L G
i j

d e d e 



   

    Note that 
( ) ( ) = 2 ( )T G Gd u d u  for ( )u V G  and 

( ) ( ) = ( ) ( )T G G Gd e d u d v  for = ( )e uv E G .  

( )

( ( )) = [2 ( ) 2 ( )]G G

uv E G

R T G d u d v 




  

     

,

[2 ( ){ ( ) ( )}]G G G

u e e uv

d u d u d v 



                    

     [ ( ) ( )][ ( ) ( )]
, ,

G G G G

e e e uv e vw
i j i j

d u d v d v d w


 

     

    ( )

= 4 ( ) 2 ([ ( ){ ( ) ( )}]

[ ( ){ ( ) ( )}] )

G G G

uv E G

G G G

R G d u d u d v

d v d u d v

  







 

 


 

    

, ( )

{[ ( ) ( )][ ( ) ( )]}G G G G

uv vw E G

d u d v d v d w 



   .  

 

Theorem 2.20 If G is an ( , )n m graph and < 0 , then 

2 1( ( )) 4 ( 1)
2

M
R L G m 

 
 

   
 

 

2 1( ( )) 4 ( 1)
2

M
R L G m 



 
    

 
 

the equalities hold if and only if G is a regular graph.  

 

Proof. The line graph ( )L G  has m  vertices, 1

2

M
m  

edges and 
( ) ( ) = ( ) ( ) 2L G G Gd e d u d v   for = ( )e uv E G . 

Therefore, 

( ) ( )

( ( ))

( ( )) = [ ( ) ( )]L G i L G j

e e E L G
i j

R L G d e d e 




         

                   

= {[ ( ) ( ) 2]
, ,

[ ( ) ( ) 2]}

G G

e e e uv e vw
i j i j

G G

d u d v

d v d w 

 

 

 


 

      Note that ( )Gd u    and ( )Gd u   for any vertex 

( )u V G . The equalities hold if and only if G  is a regular 

graph. Also given that < 0 , we have     

   2 2 1( ( )) [2 2] = 4 ( 1) .
2e e

i j

M
R L G m  

  
 

    
 

  

Similarly, we can prove the other side inequality.    
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Theorem 2.21 If G is an ( , )n m graph and < 0 , then 

2

1

1 1
( ( )) ( 1 2 )

2 2

m
R J G m M

 
   

     
  

2

1

1 1
( ( )) ( 1 2 )

2 2

m
R J G m M



   
      

  

 

   the equalities hold if and only if G is a regular graph.   

 

Proof. The jump graph  has m  vertices, 
1

1 1

2 2

m
M

 
 

 

 

edges and 
( ) ( ) = 1 ( ) ( )J G G Gd e m d u d v    for = ( )e uv E G .   

      Therefore, by using definition of ( )R G
 and above 

information, we obtain the inequalities. 

 

     

      Wu and Meng in [15] defined total transformation graphs 
xyzG . 

Definition 2.1 Let = ( ( ), ( ))G V G E G  be a graph and x , 

y , z  be three variables taking values   or  . The total 

transformation graph 
xyzG  is the graph having 

( ) ( )V G E G  as the vertex set, and  , ( ) ( )V G E G  , 

  and   are adjacent in 
xyzG  if and only if one of the 

following holds: 

     (i) , ( )V G   ,  ,   are adjacent in G if =x   and 

 ,   are not adjacent in G if x   .  

     (ii) , ( )E G   ,  ,   are adjacent in G if =y   and 

 ,   are not adjacent in G if =y  .  

     (iii) ( )V G  and ( )E G  ,  ,   are incident in G if 

z    and  ,   are not incident in G if z   . 

       Since there are eight distinct 3permutatoins of { , } 

, there are eight different transformations of a given graph G. 

It is interesting to see that G
 is just the total graph ( )T G

, G  is the complement of ( )T G  and G
 is quasi-total 

graph [1]. Also note that =G G    , =G G    , and 

=G G  . 

 

Theorem 2.22 If G is an ( , )n m graph and  , then 

  

2( ) = ( 1) 2( 1) ( )
2

n
R G n m n G 

 


  
     

  
 

      

2 ( )

{[ ( ) ( )] [ ( ) ( )] },G G G G

uvw E G

d u d v d v d w 



    

where 
2( )E G  is set of all pairs of adjacent edges. 

Proof.  The graph G
 has n m  vertices,

1

1

2 2

n
M

 
 

 

edges, ( ) = 1
G

d u n   for ( )u V G  and 

( ) = ( ) ( )G G
G

d e d u d v   for = ( )e uv E G . 

Therefore, 

( )

( ) {( 1)( 1)}
uv E G

R G n n 







    

 

, =

[( 1){ ( ) ( )}]G G

u e e uv

n d u d v     

 [ ( ) ( )][ ( ) ( )] .
, ,

G G G G

e e e uv e vw
i j i j

d u d v d v d w


 

    

 

Theorem 2.23 If G is an ( , )n m graph and < 0 , then   

1 2( )R G   , where  

 

 2 1 1

1

2

1

= ( 2) 4 2

1
[ 4 2 ]

2

m m n n

M m n

 



      

 
     
 

  

 

 2 1 1

2

2

1

= ( 2) 4 2

1
[ 4 2 ]

2

m m n n

M m n

 



 



    

 
    
 

 

   the equalities hold if and only if G is a regular graph.   

 

Proof.  The graph G  
 has n m  vertices, 

1

1
( 2)

2
m n M   edges, ( ) =

G
d u m

 for ( )u V G  

and ( ) = 4 ( ) ( )G GG
d e n d u d v     for 

= ( )e uv E G . Therefore, 

( ) = [ ]
u v

R G m m 



   

                 
, =

[ ( 4 ( ) ( ))]G G

u e e vw

m n d v d w      

                 {[ 4 ( ) ( )]
, ,

G G

e e e uv e vw
i j i j

n d u d v
 

     

                     [ 4 ( ) ( )]}G Gn d v d w     

       Note that ( )Gd u    and ( )Gd u   for any vertex 

( )u V G . The equalities hold if and only if G  is a regular 

graph.  

  2( ) ( ) [ 4 2 ]
u v u e

R G m m n




        

                  
2[ 4 2 ]

e e
i j

n      as < 0  



  Int. J. Sci. Res. in Mathematical and Statistical Sciences                                                Vol. 5(5), Oct 2018, ISSN: 2348-4519 

  © 2018, IJSRMSS All Rights Reserved                                                                                                                                   39 

 

 2 1 1

2

1

( ) ( 2) 4 2

1
[ 4 2 ]

2

R G m m n n

M m n

 





       

 
     
 

. 

Similarly, we can compute the other side inquality. 

  

Theorem 2.24 If G is an ( , )n m graph and < 0 , then 

1 2( )R G   , where 

            

2

1

2

1

= ( 1 2 )
2

1
( 4 2 )

2

n
n m m

n M m






  

      
  

 
     

 

 

           ( 2)( 1 2 ) ( 4 2 )m n n m n               

         

2

2

2

1

= ( 1 2 )
2

1
( 4 2 )

2

n
n m m

n M m





 



  
     

  

 
    

 

 

      ( 2)( 1 2 ) ( 4 2 ) ;m n n m n          

the equalities hold if and only if G is a regular graph.  

Proof. The graph G 
 has   1

1
( 4)

2 2

n
M m n

 
   

 
 

edges, ( ) = 1 2 ( )G
G

d u n m d u     for ( )u V G  

( ) = 4 ( ) ( )G G
G

d e n d u d v     for = ( ).e uv E G  

Therefore, 

( )

( ) = {[ 1 2 ( )]

[ 1 2 ( )]}

G

uv E G

G

R G n m d u

n m d v









  

  


 

 

                 

{[ 4 ( ) ( )]
, ,

[ 4 ( ) ( )]}

G G

e e e uv e vw
i j i j

G G

n d u d v

n d v d w 

 

   

  


                      

            

                , =

{[ 1 2 ( )]

[ 4 ( ) ( )]} .

G

u e e vw

G G

n m d u

n d v d w 

   

  


 

           

    Note that ( )Gd u    and ( )Gd u   for any vertex 

( )u V G . The equalities hold if and only if G is a regular 

graph. On simlifying we get the desired result.  

 

Theorem 2.25 If G is an ( , )n m graph and < 0 , then 

(1) 1 2( )R G   , where 

 

 2 1 1

1

2

1

= ( 2) 1 2

1 1
( 1 2 ) ,

2 2

m m n n m

m
n m M

 



       

   
       

  

 

 

 2 1 1

2

2

1

= ( 2) 1 2

1 1
( 1 2 ) .

2 2

m m n n m

m
n m M

 



 



     

   
      

  

 

 

(2) 1 2( )R G   , where               

2

1 1

2

1 1
= ( 3 2 )

2 2

( 1) 2 ( 1) ( 3 2 ) ,
2

m
m M

n
n m m n m



  


   

     
  

  
         

  

2

2 1

2

1 1
= ( 3 2 )

2 2

( 1) 2 ( 1) ( 3 2 ) .
2

m
m M

n
n m m n m



  

 



   
    

  

  
        

  

      

     . 

(3) 1 2( )R G    , where  

  

2

1 1

1

1 1
= 4 ( ) ( 3 2 )

2 2

2 [ ] ( 3 2 ) ,

m
R G m M

m m

 



  





   
      

  

    

 

  

2

2 1

1

1 1
= 4 ( ) ( 3 2 )

2 2

2 [ ] ( 3 2 ) .

m
R G m M

m m

 



  

 

 

   
     

  

  

  

 

(4) 1 2( )R G   , where  

    
2

1 1

1
= 1 2 ( 2) ,

2 2 2

n m
n m m n M




    
           

    

                    

   
2

2 1

1
= 1 2 ( 2) .

2 2 2

n m
n m m n M


 

    
          

    

  

   The equalities hold if and only if G  is a regular graph.  

 

III. CONCLUSION 

In this paper, we have obtained the closed formulae for general 

product-connectivity index of subdivision graph, partial 

complement of subdivision graph, semitotal-point graph, 
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semitotal-line graph and total graph. Also bounds for general 

product-connectivity index of line graph, jump graph, and 

total transformation graphs. Note that, if > 0 , then the 

opposite inequality is valid for all graphs. However obtaining 

the closed formulae for some 
xyzG graphs is difficult. 
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