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Abstract — The coefficient of determination R
2
 is a general measure of usefulness of the regression model. It shows the 

percentage of the total variation in the response variable which can be explained by the explanatory variable and is considered 

as the most commonly used measure of goodness of fit for regression models. It is demonstrated by many statisticians and 

practitioners that expression for the coefficient of determination is generally not equivalent. However it is widely misused. The 

primary source of the problem is that except for linear models with an intercept term, the several R
2
 statistics are not 

equivalent.  
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I.  INTRODUCTION  

For fitting models to some data, a data analyst is likely to use 

the coefficient of determination R
2 

to assess the goodness of 

fit of the models. If the model is anything but linear with an 

intercept term, it is not unlikely that, the use of R
2
statistic 

will be inappropriate and ends up with possibly misleading 

results. We have encountered some of these and identify 

them in this paper. The underlying problem appears to be 

essentially two folds. First the data analyst is confused with 

possible variety of R
2
 statistics. For the case of linear least 

squares regression models with an intercept term, the 

majority of the R
2 
statistics are equivalent. Secondly the other 

types of models, such as linear no-intercept models or 

nonlinear ( in the parameters) models, the various R
2
statistics 

represent different values. This paper aims at discussing 

various considerations and potential pitfalls in using the R
2
s. 

The work is carried out in the line of Hahn [2,3], Hawkins 

[4], Kevalseth [6], Willet and Singer [11] and Scott and Wild 

[9]. A non linear model is one in which at least one of the 

parameters appears nonlinearly. Sometimes the relationship 

between response and explanatory variables is not linear. In 

some cases a nonlinear function can be lineralized by using a 

suitable transformation. Such non linear models are called 

intrinsically or transformably linear. In practice, we are not 

so fortunate about our data. Some theory may suggest that 

the relationship between certain pairs of variables can 

adequately represented only by a non linear function. In such 

situation we are faced with two possibilities (i) apply 

appropriate non linear relationship directly to data or (ii) 

transform the nonlinear relation so that standard technique of 

the linear model may be applied to the transformed data. 

Logarithmic and reciprocal are the most commonly used 

transformation.  

       An attempt is made here to answer the question, why 

values of R
2
 mislead in various regression models? The 

answer of this question is exemplified here by two numerical 

examples along with following basic related concepts. These 

are:        

a)Identify the problem generally related to the use of R
2
, 

      

b) Compare the various statistics for different types of R
2 

models,       

c) Find out some possible shortcomings of use of R
2
.  

       

Few cautionary comments have been made in the literature 

(e.g., Hahn [2,3], Marquardt and Snee [8],  Montgomery and 

Peck [7] ), but these appear to be confined to linear-no-

intercept models or their special case of so-called “ mixture 

model ”and cover only a part of the problem. But, Kvalseth 

[6 ] addressed the problem in general and made comparison 

of  various R
2
 for different types of models. He proposed for 

an appropriate and generally applicable R
2
 statistics. The 

work in this paper is done in the line of Kvalseth [6]. 

II.     REGRESSION MODELS 

In general, scholars use one particular method of obtaining a 

mathematical relationship between explanatory variable(s) 

and response variable. In much experimented work we use to 

http://www.isroset.org/
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investigate how the changes in explanatory variables affect 

response variable. The mathematical relationship model 

between explanatory variable(s) and response variable may 

be of any degree of polynomial or exponential, or others in 

the explanatory variable(s).The models considered in this 

study are. 

(a)Simple linear regression model with intercept term i.e

   

    E(y)   
 
 ∑  

j
xj

k
j                         

where y is the response variable, xj is the j
th 

explanatory 

variable and  is the intercept of the regression plane. This 

model describes a hyper plane in the k dimensional space of 

the explanatory variables xj, 

(b) Simple linear no-intercept regression model, i.e. 

E(y) ∑  
j
xj

k
j   ,where the data lie in a region of  x space 

remote from origin, which is a particular case of simple 

linear regression model with intercept term, assuming the 

intercept term is equal to 0,  

 

 (c) Power model i.e.      

 E(y)   
 
x
    ,where and   are parameters, 

 

 (d) Exponential model i.e. 

E(y)    
 
e  x 

  ,where  and 1 are parameters and 

 

 (e) Reciprocal model i.e. 

E(y)    
 
  

 

 

x
 

Where and   are parameters. These models are first 

lineralized by using appropriate standard technique to the 

transformed data. Logarithmic and reciprocal are the most 

commonly used  transformation and then fitted to data by 

using ordinary least squares  method. 

III.    SOME COMMON MISTAKES GENERALLY 

RELATED TO THE USE OF R
2   

y
i
,ŷ

i
y
i
,ŷ

i
log

e
y
i
, log

e
ŷ
i
  ̂y

i
,ŷ

i
y
i
,ŷ

i
One of the most frequent 

mistakes occurs when the fits of a linear and nonlinear model 

are compared by using the same R
2
 expression but different 

variables and y and     fitted for the linear model and 

transformed variables for the non linear models. Thus, for 

example, a power model  E(y)    0x
 

1 or  or an exponential 

model E(y)    0e
 
1

x
 may first be linearized by using 

logarithmic transformation and then fitted to data by using 

ordinary least squares method. The R
2
 value is often 

calculated using the data points (                 )    and 

interpreted as a measure of the goodness of fit of the non 

linear model and compared with the fit of linear model that 

R
2
 is determined by the same  R

2
 expression but using the 

data points (        ). The  R
2
 value based on the transformed 

data points,  however, provides a measure of fit for the 

linearized model and not for the nonlinear model. To make 

sensible comparison between the fits of a linear and 

nonlinear model to the same set of data, comparable data 

points (       ) and R
2
  expressions have to be used otherwise 

misleading results may be obtained. 

IV. SALIENT POINTS OF R
2
 STATISTIC 

    ̂ To make a correct choice of R
2 

statistic, it is essential 

to impose some basic priory requirements relating to the 

properties of a good statistic. Such as follows   

(i) R
2 
must possess utility as a measure of goodness of fit and 

have perceived by the mind reasonable interpretation.  

(ii) R
2 

should be independent of the units of measurement of 

the model variables.     

(iii) The coefficient of determination ranges from 0 to 1, i.e.0 

≤ R
2
 ≤ 1, should be well defined with end points. An R

2
 of 

zero means that the predictor accounts for none of the 

variability of the response variable and there is no regression 

prediction of y by x. An R
2
 of 1 means perfect prediction of y 

by x and 100% of the variability of y is accounted for by x 

and R
2
 of greater than 0 is for any reasonable model 

specification.     

(iv) R
2
should not be confined to any specific model fitting 

technique.      

(v) R
2 

should be such that its values for different models 

fitted to the same data set are directly comparable.  

(vi) Relative values of R
2
 ought to be generally compatible 

with those derived from other acceptable measures of fit (e.g. 

standard error prediction and root mean squared residual) 

(vii) Positive and negative residuals (    ) should be weighted 

equally by R
2
. 

V. ALTERNATIVE STATISTICS 

Goodness of fit of a model is generally assessed by 

the coefficient of determination, R
2
. However, as pointed out 

by Kvalseth (1985), eight different expressions for R
2
 appear 

in the literature, 

∑  
 ∑(    ̂ )

 R1
2 

= 1 -  ∑(   ̂) ∑(    ̅⁄ )  

= 1- 
               

               
      (1)    R2

2 
=  

∑( ̂   ̅)
 ∑(    ̅⁄ )   =  

                      

                

      (2) R3
2
 = ∑( ̂   ̂)

 
∑(    ̅⁄ )  

       (3) R4
2
 = 1 -  
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∑(    ̅ ) ∑(   ̅⁄  )  ,   =     ̂,  and      (4)

          =   

R5
2
 = squared multiple correlation coefficient between the 

response and the explanatory variables, i.e. 

{∑  ŷi-ŷi)  yi-y̅)}
 

{∑  yi-ŷ )}
 
{∑ yi-y̅)}

   ̂= 
   
 

      
  

       (5)     R6
2
 = squared correlation 

coefficient between the response      y  and ŷ ̂ . i.e, 

  =         (6) 

 

∑  y-y ̂ )
 
∑ y ⁄        

 R7
2
 =1-           (7) 

 

∑ ŷ
 
y ⁄  

 R8
2
 =            (8) 

 

 

Numerical Example  1. 

To exemplify the differences between the various R
2
 

statistics and some of the problems outlined earlier, two sets 

of data are used.  

Considering the height in inches (y) and base diameter in 

inches (x) of 8 teak wood trees of a certain variety 

respectively, produced the first data set as follows. 

 

x, 

diameter 

in(Inches) 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

y, height 

in(Inches) 

 

37 

 

72 

 

97 

 

105 

 

147 

 

155 

 

191 

 

206 

 

 

(Data source: Student research project Department of 

Botany, Kaliabor college, Kuwaritol,  Nagaon, Assam )  

                  Table 1. Comparing the various Statistics for 

different types of models (Numerical Example 1) 

Parameters/ 

Statistics 

  ̂ b0+

b1x 
  ̂ b
1x

  ̂   

b x
b 

 

  ̂ 

b e
b x

  ̂ b0 

 b 
 

x
 

b0     

b1     

R1
2     

R2
2     

R3
2     

R4
2     

R5
2     

R6
2     

R7
2     

R8
2     

RMSE     

MAE     

MSE     

Numerical Example  2. 

The second data set is of one of the algal growth studies. 

The dry weights of the alga were measured in relation to varied 

doses of a pesticide. 7 observations are recoded as per different 

doses of pesticide concentration in (ppm) . Considering the 

pesticide conc. in (ppm) as x and variation in algal dry weight  

(mg/flask) as y respectively, the second data set is as follows.

  Data source: “Biostatistics Theory and Applications” by G. B. N 

Chainy, G. Mishra, P. K. Mohanty, second edition, 2008, Example 
11.4, Page no, 287.) 

Table 2. Comparing the various statistics for different types 

of models (Numerical Example  2. ) 

Parameters/ 

Statistics 

  ̂= b0+b1x   ̂= b1x   ̂= b e
b x 

b0 594.929 ------ 657.207 

b1 -9.507 4.2219 -.0322 

R1
2 0.875 -1.7610 0.977 

R2
2 0.875 0.9837 0.856 

x, 

Pesticide 

Conc. In 

(ppm) 

 

0 

 

10 

 

20 

 

30 

 

40 

 

50 

 

60 

y,  Algal 

dry wt. in  

(mg/flask) 





     
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R3
2 0.875 0.1725 0.856 

R4
2 0.875 -0.9499 0.977 

R5
2 0.875 0.875 0.875 

R6
2 0.875 0.083 0.083 

R7
2 0.962 0.1688 0.993 

R8
2 0.962 0.1688 0.936 

RMSE 71.806 337.728 30.774 

MAE 61.754 242.888 24.130 

MSE 7218.657 133070.89 1325.871 

[
∑(y ŷ) 

n
]

   

 

∑|y-ŷ|

n
Root Mean Squared Error (RMSE) =                  . 

 

∑(y-ŷ)
 

n-p
Mean Absolute Error (MAE) =             .  

 

Mean Squared Error (MSE) =                . 
 

Where, n is the total number of observed values and p 

denotes the number of model parameters. 

VI.   ANALYSIS ( FROM TABLE. 1 AND TABLE. 2) 

 

(i) For linear intercept model in the Table 1 & Table 2, it is 

seen that   

  R1
2
= R2

2
= R3

2
= R4

2
= R5

2
= R6

2
 

(ii) For linear no-intercept model and non linear model in the 

Table 1, it is seen that R2
2 
and R3

2
 exceed 1. A similar finding 

was proposed by Kvalseth (1985) for power model. 

 

iii) For linear no-intercept model, in the Table 2, it is seen 

that R1
2 
and R4

2
 become negative in some situations. 

 

  ̂  ̂  ̂  ̂  ̂(iv) For all 5 models viz.,    =19.429 + 23.738x,   = 

27.1667x, 

  ̂  ̂  ̂    =38.340x
0.8070

,   = 41.1706e
0.2218x

,    = 184.6090 +     

(-172.049)1/x and all 3 models viz.,    = 594.929+(-9.507)x,  

      = 4.2219x,   = 657.207e
 (-0.0322)x

, the values of R5
2
 are 

same in the Table 1 and in the Table 2 respectively. Because  

R5
2
 measures the strength of the association between the 

response and explanatory variables when non linear model is 

transformed in to a linear model. Further the variables x & y 

of the Numerical Example 1 are closely related and same 

thing happens in the Numerical Example 2. 

 

(v) For no-intercept and exponential models in the Table 1, 

the value R6
2
 exceeds 1. 

 

(vi) In the Table 1, for all 4 models except exponential model 

the value of R7
2
 and R8

2
 are different from their common 

value. Further in case of an exponential model, the value of 

R8
2
 exceeds one in the Table 1. The findings drawn here 

corroborate what Kvalseth (1985) drew for power model in 

his studies. 

    

Table.3 Findings of Fitted models 

(For Numerical Example 1) 

 

Fitted  Models 

  ̂ 

 

y̅ 

 

ŷ 

 

e̅ 

 

Remarks 

     = 

19.429+ 3.738x 

 

126.25 

 

126.25 

 

0.0 

ŷ = y̅ &  e̅ 

= 0 

  ̂     = 

     27.1667x 

 

126.25 

 

122.25 

 

3.99 

ŷ ≠ y̅ & 

e̅ ≠ 0 

  ̂    = 

 38.340x0.8070                     

  ̂ 

 

126.25 

 

126.25 

 

0.149 

ŷ = y̅ &  

e̅ ≠ 0 

    = 

41.1706e0.2218x 

 

126.25 

 

1263 

 

-0.496 

ŷ = y̅ & 

e̅ ≠ 0 

  ̂  

    =184.6090+  

(-172.049)1/x 

 

 

126.25 

 

126.16 

 

0.09 

ŷ = y̅ & 

e̅ ≅ 0 

 

Table.4 Findings of Fitted models 

( For Numerical Example 2 ) 

 

Fitted  Models 

 

 

y̅ 

 

ŷ 

 

e̅ 

 

Remarks 

  ̂ 

     = 594.92 + 

-9.507x 

 

309.71 

 

309.72 

 

0.0 

 

 

ŷ = y̅ &  e̅ 

= 0 
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  ̂ 

    = 4.2219x 

 

309.71 

 

126.65 

 

183.05 

 

 

ŷ ≠ y̅ & 

e̅ ≠   

  ̂ 

    =  

657.207e-0.032x 

 

309.71 

 

309.70 

 

4.483 

 

 

ŷ = y̅ & 

e̅ ≠   

 

VII. SOME POSSIBLE SHORTCOMINGS OF 

USE OF R
2
 

(i) For linear no-intercept model and non linear model, it is 

seen that R2
2 
and R3 

2
 exceed 1 (exemplified in the Table 1). 

(ii) For linear no-intercept model, it is seen that R1
2
 and R4

2
 

become negative in some situations ( exemplified in the 

Table  2). 

 

(iii) For the linear no - intercept model and for non linear 

models in the Table 1. & Table 2, it is recommended that R4
2
 

is rejected, sinc a nonzero mean residual  ̅ should be regarded 

as contributing to a reduction in the model fit rather than to an 

increase as implied by  

∑(    ̂ )
 ∑  

 
R4

2
 = 1 -                                        

∑(    ̅ ) ∑(   ̅⁄  )  ,   =         ̂,  and =   . 

∑(    ̂ )
 (iv) R1

2 
= 1 -   ∑(   ̂) ∑(    ̅⁄ ) ,  

for no-intercept linear models may possibly be negative in 

some different situations where                     is large. ( 

Montgomery and Peck 2003, pp, 47-48) i.e. R1
2
< 0, but in 

linear case   ≤ R1
2
 ≤  , in general. 

(v)  For no-intercept and exponential models, it is seen that 

R6
2
 exceeds 1 (exemplified in the Table 1). 

(vi)  Except exponential model the value of R7
2
 and R8 

2
 are 

equivalent from their common value (exemplified in the 

Table  1). 

(vi) R8
2
 ≥  , for non linear models, (exemplified in the 

Table1). 

VIII. CONCLUSION 

The study of the present paper reveals that R
2 

statistics are 

distinctly more sensitive to extreme values, as they contain 

terms involving squared residuals or squared values of the 

dependent variable or both. That is, these statistics have 

relatively low degree of resistance towards outliers in the 

data set.               

R
2
 values are found sensitive to nonlinear model and no-

intercept linear model. This is reflected as the evidence in the 

example.               

In the same manner the method of least square itself is not 

resistant one as it relies on equal weights to all observations. 

That is why R
2
 values are less resistant. It is also clear from 

the above two examples that  when resistant or robust model 

fitting technique is used for data containing  no outliers or 

when clearly appropriate least squares regression model is 

used, R1
2
 is generally preferable than alternative R

2
, which 

will lead to potentially expected results.    

Our empirical findings are in conformity with those revealed 

by statisticians like Kvalseth [6], Hahn [2,3 ], Marquardt and 

Snee [8 ],  Montgomery and Peck [7 ],Theil [10] etc.   
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