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Abstract— In this paper, we discuss some results on fixed point theorems in     weak contraction on fuzzy metric spaces, 

which are study of generalisation of some existing results are also given in the form of corollary.  

 

Keywords— fuzzy metric space, continuous t-norm,     weak contraction

I.  INTRODUCTION  

In 1965, Zadeh[17] initiated the concept of fuzzy sets theory. In 1975, Kramosil and Michalek [12] introduced 

concept of fuzzy metric space. In 1988, Grabiec [6] propounded of the Banach contraction theorem in fuzzy metric spaces. 

Here after George and Veeramani [5] modified the definition of fuzzy metric spaces from [12]. Many researchers using [5, 6, 

13, 14] and developing fuzzy metric spaces see,[1, 9, 10]. In 1984, M.S.Khan, M.Swaleh and S.Sessa[8] discussed Banach 

fixed point theorem in metric spaces via altering distance function. In 2012, Y.Shen, Dong Qiu and Wei Chen [16] proved 

fuzzy metric space using altering distance function as follows  

                                           (1.1) 

 obtained fixed point result for self-mapping of    Recently, many authors using altering distance function and give their 

contribution in various metric spaces [3, 4]. 

In this paper, we proved some fixed point theorems in     weak contraction on fuzzy metric spaces, which are our 

study of generalisation of some existing results. 

 

Definition 1.1 A fuzzy set  ̃ is defined by  ̃                            .In the pair          ), the first element   

belongs to the classical set   , the second element       belongs to the interval       , is called the membership function.  

  

Definition 1.2 A binary operation                     is a continuous t-norm if it satisfies the following conditions:   

 1.    is associative and commutative,  

 2.    is continuous,  

 3.        for all         ,  
  4.         whenever     and     for all    

                     
  

Example 1.3   

1.  Lukasievicz   -norm:                    

2.  Product   -norm:          

3.  Minimum   -norm:               

Definition 1.4 A fuzzy metric space is an ordered triple         such that   is a nonempty set,   is a continuous   -norm and   

is a fuzzy set on                 satisfies the following conditions:          and         

1.                 ,   

2.             if and only if          

3.                     
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4.                                

 5.                       is left-continuous.  

Then   is called a fuzzy metric on   .  

  

Definition 1.5 A fuzzy metric space is an ordered triple such that   is a non-empty set,   is a continuous   -norm and   is a 

fuzzy set on                 satisfies the following  

conditions:          and         

1.             ,      

2.             if and only if          

3.                     

4.                                  

5.                       is continuous.  

 Then   is called a fuzzy metric on   .  

  

Definition 1.6 Let         be a fuzzy metric space, for     the open ball          with a centre     and a radius       

is defined by 

                          . 

A subset     is called open if for each      there exist     and       such that             Let   

denote the family of all open subsets of   . Then   is topology on   , called the topology induced by the fuzzy metric   .  

  

Definition 1.7 Let         be a fuzzy metric space   

1.   A sequence    in   is said to be convergent to a point   in         if    
   

           for all     .  

2.   sequence    in   is called a Cauchy sequence in         , if for each       and     , there exists      such that 

               for each         

3.   A fuzzy metric space in which every Cauchy sequence is convergent is said to be complete.  

4.   A fuzzy metric space in which every sequence has a convergent subsequence is said to be compact  

  

Lemma 1.8 Let         be a fuzzy metric space. For all                is non-decreasing function.  

Proof. If                   for some       . 

Then                                       , 

Thus                            ,  

(since              ) 

which is a contradiction  

  

Definition 1.9 A function               is called control  function or an altering distance function if it satisfies the 

 following properties:   

 (CF1).    is strictly decreasing and continuous;  

(CF2).         ,      if        if and only if     . It is obvious that    
    

            .  

 where   in class of function  .  

II. MAIN RESULTS 

  

Theorem 2.1 Let         be a complete strong fuzzy metric space with continuous t-norm   and let   is a self-mapping in   

such that  

 

                                              

                                            

                                 

                                            

 (2.1) 

 where   and   are altering distance function and ultra altering distance function respectively,                  for all 

      Then   has a unique fixed point in     
  

Proof. Let   be any arbitrary point in   and define a sequence      such that           
Assume that             for some      then    is a fixed point of    
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Suppose          put        and      in equation (2.1) we get  

                                                                            

                                                            

                                                                                           

                                         

                                                 (2.2) 

 

                                                                               

                                                                             

                                                                 

 

                                                                              

                                                                             

                                                                 

 

                                                                 

                                                              

                                                                 

  

                                                                                  

                                  (2.3) 

 

Here         is a strong fuzzy metric space then we have  

                                         (by using (GV4’)) 

 

                                                    

  

                                                    (2.4) 

 Using above inequalities in (2.3) we get  

 

                                               

                                

                                               

                                

                                

                                               

 

  

 

                                               

                                

                                                
 (2.5) 

                                                 (2.6) 

 Then the above inequality (2.4) becomes  

 

                                               

                                

                                
 

Continuing this process, we get,  

                                                 (2.7) 

 Similarly,  

                                                   (2.8) 

 Then the inequality (2.5) becomes 

                                                 (2.9) 

 Hence                                 

This gives                               
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Since the sequence              is non decreasing 

Taking limit      we get  

    
   

                                   (2.10) 

 

Suppose that        for some     as      
Now (2.7) becomes,  

                         (2.11) 

 which is a contradiction. 

Hence    
   

                   

Next we prove that the sequence    is a Cauchy’s sequence. 

Assume that    is not a Cauchy’s sequence then for any           then there exists sequence    
 and    

 where 

        and                 

                  
    

        (2.12) 

 Let    be least integer exceeding    satisfying the above property  

                 
                                  (2.13) 

 

Put         and          

 

                                                               

                                       

                    

                                         

                                          

                                       

                    

                                         

 

  

 

       
    

                   
                 

    

       
                      

    

                   

                
               

     

               
                 

    

       
                      

    

                   

                
               

     

 (2.14) 

 

If                
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 (2.15) 

 then we get,  

        
                  

    
            

           (2.16) 

  

                                     
            

           

 Applying the previous inequalities we get  

 
                                 

            
    

     

       
          

 (2.17) 

 Also (2.13) and (CF1) we get  

              
             (2.18) 

 Substituting (2.16), (2.17), and (2.18) in (2.15) we have 

 

 

       
    

                  
                

    

       
    

           
               

             
           

    
    

       
                       

     

              
                

    

       
    

           
               

             
           

    
    

       
                       

     

 

 

 

 
       

    
                  

   

       
                 

 (2.19) 

 Using (2.12) we obtain,  

        
    

            (2.20) 

 

 

 
                    

   

       
                 

 (2.21) 

 

Taking     in above inequality we obtain  

               (2.22) 
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Which is a contradiction,     

Hence    is a Cauchy’s sequence. 

Since   is complete and there exist     such that            

That is             as     

Put        and     in equation (2.1) we get  

 

                                        

                           

                                           
 (2.23) 

 

Taking     in (2.23)  

                    (2.24) 

Therefore,              and     . 

To prove Uniqueness, 

Suppose that   is another fixed point of   , that is      where      

                   (2.25) 

 Hence     is the unique fixed point of     
  

Corollary 2.2 Let         be a complete strong fuzzy metric space with continuous t-norm   and let   is a self-mapping in   . 

If there exists a control function   and       such that  
                                                                         

                                                            
 (2.26) 

 Then   has a unique fixed point in     
  

Proof. The proof of the above theorem (2.1) considering the fuzzy contraction on the fuzzy metric space           
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