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Abstract— Data depth concept used to measure the deepness of a given point in the entire multivariate data cloud. It leads to 

center-outward ordering of sample points used rather than usual smallest to largest rank. The ordering starts from middle and 

moves in all directions. Multivariate location and scatter can be computed by using the depth value of each data point. Various 

depth procedures have been established by many authors. In this paper, a new depth procedure is proposed, namely Modified 

Mahalanobis Depth (MMD), which calculates depth based on robust distance with Minimum Covariance Determinant (MCD) 

approach and a weight function is established to determine the location and scale. The superiority of the proposed depth based 

procedure over existing depth procedures has been studied in simulated environment using R software with respect to 

application in discriminant analysis. The proposed depth procedure performs well when compared with the existing procedures 

even with higher contamination levels and larger sample sizes. 
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I.  INTRODUCTION  

 

Location and scatter plays a very important part in 

multivariate statistical methods. Data depth is one of the 

main emerging concepts to determine such measures. Data 

depth measures deepness of a given point in the whole data 

cloud. This concept is essential since it leads to a center-

outward ordering rather than usual smallest to largest rank. It 

means the ordering starts from the center and moves in all 

directions.  

 

The depth value for every data point can be calculated by 

using various established depth procedures. The data point 

which has the highest depth value is considered as the 

deepest point and the lowest depth value as outlier.  The data 

point which has the maximum depth value, which 

approaches to 1, is considered as the best location. 

     

Various depth procedures have been developed in the 

literature [1]-[16]. Comprehensive surveys on data depth are 

described in [17]-[19]. 

      

In this paper, a new depth procedure and a new weight 

function associated with the study are proposed to estimate 

location and dispersion. The new procedure uses robust 

distance with the Minimum Covariance Determinant (MCD) 

approach instead of Mahalanobis distance.  

    

In Section II, various existing depth procedures are defined. 

The proposed depth procedure, (MMD) is explained in 

section III. The new weight function to estimate location and 

scale is described in section IV. In section V, the 

performance of the proposed depth procedure is compared 

with existing procedures in a simulating environment with 

application in discriminant analysis in the form of apparent 

error rate (AER). The conclusion is presented in last section.    
 

II. MATERIALS AND METHODS  

 

The existing depth procedures, based on distances, projection 

pursuit, halfspaces, weighted mean and neighbourhoods are 

summarized in this section. 

 

A. Mahalanobis Depth 

 

Mahalanobis depth (MD) can be calculated from  

Mahalanobis distance [20]. Let pXXXX ,...,, 21  be a 

p dimensional multivariate data set X and let 

http://www.isroset.org/
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 pxxxX ...21 be a sample mean vector and the 

covariance matrix 
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Then the Mahalanobis distance of each point can be 

estimated  

 

     XSXd 


  xxS,xx; 1
, (2) 

 

and from this distance, (MD) can be computed by  

 

     1
S,xx;1S,x x;


 dMD , (3) 

 

The deepest point in the entire data has the largest depth 

value. 

 
B. Halfspace Depth  

 
The idea of halfspace depth was originally developed by [1]. 

For some number x, consider partition into two components: 

all points equal  to or less than x are considered as a closed 

halfspace and all values less than x as open halfspace. 

Similarly, all values equal to or greater than x are considered 

as closed halfspace and all values greater than x as open 

halfspace. In general, for two dimensions, for any line, the 

values above this line shape the closed halfspace and the 

values below the line are considered as  open halfspaces and 

for p=3, for any plane form two closed halfspaces and 

similarly two open halfspaces.  

    

Let Η be any closed halfspace have the value x and let  Ηp  

be the probability associated withΗ. Then Tukey’s Halfspace 

depth (HD) is  

 
  xhavinghalfspaceclosedaispHD Η:ΗinfΗ  (4) 

 

 

 
C. Zonoid Depth 

 
Zonoid depth (ZD) was defined by [8] by using the Zonoid 

trimming concept introduced by Koshevoy and Mosler [5]. 

Multivariate trimming concept was used in this depth 

procedure. That is, the multivariate trimmed regions are 

centered about the mean instead of the median.  

For probability distribution   and  1,0 , ZD of a point 

x that belongs to multivariate data cloud is defined as 

 

    



 


otherwise

someforifSup
ZD

,0

,Dx,Dx:   , 
(5) 

 

If x lies outside  D  for all  , then the depth of x 

equals to zero; if depths of x equal to 1 then x is the 

expectation. 

    

D.  Spatial Depth 

 
The idea of spatial quantiles was introduced by [21] and 

Spatial depth (SD) was formulated by [7] and extended by 

[22]. A generalization of L1 norm in univariate case form 

spatial quantiles.  Spatial depth is also known as L1-depth. 

     

 For a distribution function F, spatial quantile function FQ  

and the interpretation of  x1

FQ  as a measure of 

outlyingness, SD is given by 

 

 x1 1 FQSP ,   (6) 

The point corresponding to maximal depth is considered as 

the spatial median and the point that has the lowest depth 

value is considered as the outlier. 

 

E.  Projection Depth 

 
     Projection depth (PD) has been proposed by [6]. Both 

Projection depth and halfspace depth are closely related, 

which reflects the projection pursuit methodology. This 

procedure involves supremum over infinitely numerous 

direction vectors hence the computation of PD appears 

intractable.  

 

Let x be any point in the data cloud, u be any p dimensional 

vector having unit norm. M denotes the median of data cloud 

X, MAD represents the Median Absolute Deviation. Then 

PD is defined as 
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, (7) 

F.  Local Depth 

 
The concept of local depth (LD) was proposed by[12]. This 

procedure is a local extension of depth. The construction of 

this depth is obtained by conditioning the distribution to 

appropriate neighbourhoods. For defining a neighbourhood 
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of a point, depth of a point is calculated in the idea of 

symmetrisation of a distribution.  

Let x be any point in the entire data cloud X, and instead of a 

distribution
XP   a distribution 

XxX

x PPP  22121 is 

used. 

     For any  1,0 , the minimum depth region bigger or 

equal to  , 

 

 
 

 FDFR
A







 ,   (8) 

where         FDPoA :  then for a 

locality parameter  , a neighbourhood of a point x as 

s  PRx


. 

     Formally, let  PD ,  be a depth function, then LD with 

respect to a point x is defined as 

 

 
xPzDzLD ,:  ,   (9) 

where     PRPP xx

   is conditional distribution of P 

conditioned on  PRx


. 

 

III. PROPOSED DEPTH PROCEDURE 

 

The proposed procedure is formulated by using the concept 

of MCD estimator instead of the conventional estimator of 

location and scale in the Mahalanobis distance, namely the 

MMD procedure. The robust MCD estimator was proposed 

by [23] to locate the robust measure of location and scatter.   

The computational depth procedure for MMD is as follows: 

     

Let pXXX ,...,, 21 be a p dimensional multivariate data 

set X and x  be a numerical vector whose depth is to be 

calculated.   

1) Find center ( XM ) and the covariance matrix      

  ( XCov ) using robust MCD estimator  

2)  Compute the distance  

           XXXx MxMxd 



1

cov , (10) 

3)   Sort the distance given in step 2 and  denote it by     

     
xdS  

4)   Find the median from the distance from step 3 

         
xdxd SMedianMS  , (11) 

      5)  Find the difference between distance value and    

           median from step 2 and step 4. 

 

       
xdxx MSdD  , (12) 

  
6) Find the absolute value of difference given in step 5 

       xx Dabsabs  , (13) 

 

7) Finally the MMD depth can be computed by 

 

      
 x

x
Dabs

MMD



1

1
, 

(14) 

Mahalanobis depth provides reliable results when the data is  

normal. But it gives unreliable results, when the data contain 

outliers, since this depth procedure uses traditional mean 

vector and covariance matrix which are very sensitive to 

outliers. 

The proposed MMD procedure is used to compute depth by 

employing robust estimator and is also it is an advancement 

of MD, since it further calculates the absolute differences 

about median of distances. It gives the highest depth value to 

the best points and establishes reliable results.  

 

IV. PROPOSED WEIGHT FUNCTION  

The weight function has been proposed to estimate location 

and scale after computing depth value of each point in a data 

cloud. Given a notion of depth described in section 2 and 3, 

the depth weight function is computed and is given below. 

 

Consider the depth value for each data point denoted 

by  xDe . Sort the depth values and find the median denoted 

by  xmd . The depth weight function is given by  
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 (15) 

From the above weight function, assign weights  xw  fo 

each data point x . Then the location and scale can be 

computed by,  
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xD , (16) 

and  
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V. EXPERIMENTAL RESULTS  

 

To study the performance of the proposed depth procedure 

(MMD), it was compared with the existing depth procedures 

which were given in the section 2. The experiments were 

carried out under simulation environment in the context of 

discriminant analysis by computing AER with the help of 

packages in R software and are summarised in this section. 

 

The data were simulated with different dimensions p=2 and 

5, the number of groups, g=2 and 3, the size of training 

sample, n=100,1000 and 5000, and various levels of 

contamination (0%,10%, 20%, 30% and 40%). In all the 

cases, the class distributions are normal, but the generated 

data sets have different mean vector and the same covariance 

matrix for 2 dimension, 

       .;4,4;2,2;0,0 2321321 I 
  

 

Generated data were contaminated with different mean 

vectors along with various levels. The computed AER is 

considered to understand the efficiency of the proposed and 

the other depth procedures. The experimental results are 

summarised in the form of tables and is given in appendix.  

      

Ttables 1 and 2 reveal that, all the depth procedures gave the 

same AER when the data were without contamination. But 

when the contamination level increased, all the depth 

procedures showed different results. Zonoid depth gets 

affected even when the contamination level increases to 10%  

and also with increases in sample size and dimensions. 

Halfspace depth gets affected at 20% level of contamination 

at both sample size and dimension increases. In some cases, 

SD gets affected at 30% level of contamination, but is fully 

affected at 40% contamination. At 40% level of 

contamination almost all depth procedures get affected 

except the proposed MMD procedure. It gives better results 

as compared with all other depth procedures. AER increases 

rapidly in all depth procedures except MMD procedure when 

the contamination level increases and also sample size and 

dimension increases. Projection depth also gives almost the 

same result as MMD, but in some cases it gives a little high 

AER compared with MMD. Finally, it is concluded that the, 

proposed MMD procedure performs well as compared with 

the other depth procedures.   

VI. CONCLUSION 

Location and scatter play a very important role in 

multivariate statistical methods. Data depth is one of the 

main emerging concepts to determine such measures. This 

paper proposed a new depth procedure called MMD and also 

proposed a weight function to estimate location and scatter. 

The performance of the proposed depth procedure is 

compared with the existing depth procedures. The 

experiments were carried out with application in discriminant 

analysis by computing AER. The computed AER under the 

proposed depth procedure MMD is lesser than the other 

depth procedures when contamination level increases and 

also when considering various sample sizes and dimensions. 

It is concluded that, the proposed MMD procedure can be 

applied in all multivariate statistical techniques, since it can 

tolerate certain levels of contamination and produces reliable 

results.  
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Table 1 Apparent error rates under various depth procedures (p=2) 

 

Depth  

Procedures 

g=2 / (n1=n2=100) g=3 / (n1=n2=n3=100) 

Error Error 

0.00 0.10 0.20 0.30 0.40 0.00 0.10 0.20 0.30 0.40 

MD 0.05 0.12 0.15 0.24 0.33 0.09 0.15 0.22 0.32 0.48 

HD 0.07 0.12 0.20 0.29 0.35 0.09 0.16 0.26 0.41 0.54 

PD 0.06 0.10 0.15 0.19 0.29 0.10 0.15 0.22 0.28 0.36 

SD 0.06 0.10 0.16 0.26 0.35 0.09 0.15 0.22 0.37 0.53 

ZD 0.05 0.14 0.19 0.27 0.35 0.22 0.3 0.33 0.40 0.51 

LD 0.06 0.11 0.15 0.21 0.40 0.09 0.15 0.21 0.31 0.52 

MMD 0.06 0.10 0.15 0.19 0.23 0.09 0.15 0.20 0.26 0.31 

 (n1=n2=1000)  (n1=n2=n3=1000) 

MD 0.07 0.12 0.17 0.23 0.39 0.09 0.16 0.22 0.31 0.52 

HD 0.07 0.12 0.18 0.30 0.44 0.09 0.15 0.24 0.41 0.59 

PD 0.07 0.12 0.16 0.21 0.26 0.09 0.15 0.21 0.27 0.33 

SD 0.07 0.12 0.17 0.27 0.42 0.09 0.15 0.22 0.36 0.56 

ZD 0.07 0.13 0.19 0.28 0.41 0.16 0.24 0.31 0.41 0.56 

LD 0.07 0.12 0.15 0.21 0.46 0.09 0.15 0.20 0.28 0.59 

MMD 0.07 0.11 0.15 0.19 0.24 0.09 0.14 0.20 0.26 0.32 

 (n1=n2=5000) (n1=n2=n3=5000) 

MD 0.08 0.13 0.18 0.24 0.38 0.11 0.18 0.24 0.32 0.52 

HD 0.08 0.13 0.18 0.30 0.44 0.11 0.17 0.25 0.41 0.59 

PD 0.08 0.12 0.17 0.21 0.26 0.11 0.17 0.22 0.28 0.34 

SD 0.08 0.12 0.18 0.27 0.41 0.11 0.17 0.24 0.36 0.57 

ZD 0.08 0.14 0.20 0.28 0.41 0.11 0.18 0.26 0.38 0.56 

LD 0.08 0.12 0.16 0.21 0.44 0.11 0.16 0.22 0.28 0.58 

MMD 0.08 0.12 0.16 0.20 0.24 0.11 0.16 0.21 0.27 0.32 
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2 Apparent error rates under various depth procedures (p=5) 

 

Depth  

Procedures 

g=2 / (n1=n2=100) g=3 / (n1=n2=n3=100) 

Error Error 

0.00 0.10 0.20 0.30 0.40 0.00 0.10 0.20 0.30 0.40 

MD 0.03 0.08 0.13 0.29 0.36 0.03 0.09 0.16 0.41 0.55 

HD 0.03 0.08 0.16 0.32 0.38 0.03 0.09 0.24 0.43 0.58 

PD 0.03 0.08 0.13 0.17 0.22 0.03 0.09 0.16 0.22 0.29 

SD 0.03 0.08 0.13 0.3 0.37 0.03 0.09 0.19 0.44 0.55 

ZD 0.03 0.12 0.27 0.24 0.41 0.04 0.14 0.23 0.37 0.55 

LD 0.03 0.08 0.13 0.17 0.36 0.03 0.09 0.15 0.22 0.47 

MMD 0.03 0.08 0.13 0.17 0.22 0.03 0.09 0.15 0.22 0.28 

 (n1=n2=1000) (n1=n2=n3=1000) 

MD 0.01 0.06 0.11 0.25 0.43 0.01 0.08 0.15 0.36 0.56 

HD 0.01 0.07 0.15 0.28 0.45 0.01 0.09 0.21 0.39 0.57 

PD 0.01 0.06 0.11 0.16 0.21 0.01 0.08 0.15 0.21 0.28 

SD 0.01 0.06 0.12 0.29 0.45 0.01 0.08 0.17 0.41 0.58 

ZD 0.01 0.08 0.14 0.23 0.4 0.01 0.09 0.19 0.32 0.51 

LD 0.01 0.06 0.11 0.5 0.28 0.01 0.08 0.15 0.21 0.37 

MMD 0.01 0.06 0.11 0.15 0.21 0.01 0.07 0.14 0.21 0.27 

 (n1=n2=5000) (n1=n2=n3=5000) 

MD 0.01  0.06 0.11 0.25 0.44 0.01 0.08 0.15 0.34 0.60 

HD 0.01 0.07 0.14 0.29 0.45 0.01 0.09 0.19 0.40 0.61 

PD 0.01 0.06 0.11 0.16 0.21 0.01 0.08 0.15 0.21 0.28 

SD 0.01 0.06 0.12 0.28 0.46 0.01 0.08 0.16 0.39 0.62 

ZD 0.01 0.06 0.13 0.23 0.39 0.01 0.09 0.17 0.31 0.53 

LD 0.01 0.11 0.11 0.16 0.24 0.01 0.08 0.15 0.21 0.31 

MMD 0.01 0.06 0.11 0.15 0.20 0.01 0.08 0.14 0.21 0.27 

 

 

 

 


