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 Abstract—In this paper, to estimate AR(1) time series model First-difference GMM and Level GMM estimation methods have 

been considered, which have already performed well for estimation of AR(1) panel data model. A Monte Carlo simulation is 

carried out in order to study the performances of the above mentioned estimators and OLS estimator. Further, comparison 

among these estimators have been done in terms of bias and RMSE. Study reveals that, in many cases the OLS and First 

difference GMM estimators behave same in terms of Bias and RMSE. For all the negative values of autoregressive parameter 

the RMSE and bias of Level GMM estimator is larger than the remaining estimators. But in the case of positive values of 

autoregressive parameter Level GMM estimator performs better than First-difference GMM and OLS estimators especially, 

when sample size is small and autoregressive parameter is close to one.  
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I.   INTRODUCTION 

 

There are numerous time series models available in the 

literature. The most widely used models are the 

Autoregressive (AR) models, the Integrated (I) models and 

the Moving Average (MA) models. A common approach for 

modelling time series is AR model. The first order 

autoregression (AR(1)) is simple time series model, which 

can be analyzed through various standard methods. One of 

them is Ordinary Least Squares(OLS). The pioneers who 

worked in the area of OLS estimation of AR(1) time series 

model are [1] to [4] and more recent contributions include [5] 

to [7]. Their findings show that, the bias of the OLS estimator 

becomes large when sample size is small and an 

autoregressive parameter is near to unity. 

The OLS method requires the assumption of orthogonality 

between the error term and regressor, which is often not 

satisfied in various applications. In such cases, the OLS 

estimator becomes inconsistent. To overcome this problem 

many estimation methods emerged in the study of estimation 

of AR(1) model. GMM being one of them relaxes the 

assumption of orthogonality and is used for estimation of 

AR(1) model, see [8] to [17]. Recent studies show an 

estimation and inference of a panel AR(1) model with small 

T. 

In the context of panel data, to estimate AR(1) model many 

estimation methods are proposed. Two consistent estimation 

methods among them are First-difference GMM (Dif) 

Proposed by [18] and Level GMM (Lev) introduced by [19]. 

In this paper, the above mentioned two estimation methods to 

estimate AR(1) time series model have been considered. In 

First-difference GMM method, the constant is removed from 

the AR(1) model and then instruments from the differenced 

AR(1) model are considered, where as in Level GMM 

estimation method the constant is removed directly from the 

instruments and GMM estimation is performed. The bias and 

RMSE of the above two estimators are compared along with 

OLS estimator through simulation results. 

 

The paper is organized as follows; Section 2 provides model, 

assumptions and model estimators. Section 3 presents Monte 

Carlo simulation to investigate the performances of the 

considered estimators. Section 4 contains results and 

discussion. Finally, section 5 concludes the paper. 
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II.   THE MODEL AND ESTIMATORS 

First order autoregressive time series model  

  

)1(.,2,3,== 1 Ttuyy ttt   where 

  is constant,   is the parameter of  interest with 1|<|  . 

Following are the assumptions:  
 

Assumption 1  

}{ tu  ),2,3,=( Tt   are i.i.d across time and independent 

of 1y  with ,0=)( tuE
  

.=)( 2

utuVar     

Assumption 2  

The autoregressive process ty  is initialized at some random 

quantity 1y  with <2

1Ey  allowing for stationarity by 

setting 
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Based on the above assumptions two types of estimation 

methods are considered viz. First-difference GMM estimation 

method and Level GMM estimation method. 

 

1. First-Difference GMM Estimation:  

In the model (1), the constant   causes a correlation 

between the lagged endogeneous variable 1ty  and error 

term tu . First differences of model (1) is performed to 

remove the constant and one-step First-difference GMM 

estimator is proposed based on the following 2)( T  

moment conditions  

         )2(0=)( '

td uZE   

where dZ  is a 2)(2)(  TT  instrumental matrix 

employed by [20] and tu  is a 12)( T  vector. 
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Based on the moment conditions (2) the one-step first-

difference GMM estimator is obtained and is given by,  
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where 1
 ty  is the 2)(1  T  vector 

),,,( 132  Tyyy  , ty  is the 2)(1  T  vector 

),,,( 43 Tyyy   , dZ  is a 2)(2)(  TT  matrix 

and dddd ZGZW =  is a 2)(2)(  TT  weight matrix 

with dG  is same as H  in the estimator proposed by [18].  

 

2. Level GMM Estimation: 

On the basis of Arellano and Bover (1995) Level GMM 

estimator is proposed for AR(1) time series model. Here the 

constant   is wiped out from the instrumental variable. The 

one-step Level GMM estimator is based on the moment 

conditions  

)4(0=)( uZE l
  

where lZ  is a 2)(2)(  TT  instrumental matrix 

employed by [20] and tu  is a 12)( T  vector. 
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Based on the moment conditions (4) the one-step Level 

GMM estimator is obtained and is given by, 
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where 1

ty  is the 2)(1  T  vector ),,,( 132 Tyyy  , ty  

is the 2)(1  T  vector ),,,( 43 Tyyy  , lZ  is a 

2)(2)(  TT  matrix ),,,( 21 lNll ZZZ   and 

,= llll ZGZW   is a 2)(2)(  TT  weight matrix with 

lG  is a 2)(2)(  TT  diagonal matrix.  

 

III.   MONTE CARLO SIMULATION STUDY 
 

In this Monte Carlo simulation study, the data is generated 

from the following AR(1) model to investigate the finite 

sample performance of the above mentioned  estimators. 
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ttt uyy  1=    

where tu  is iid )(0, 2N . The initial condition is 





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



 2

2

1
1

0,



Ny :  which is similar to the assumption in 

[21]. For the parameters, 1= , 1=2  and 1,1)(  

is considered, in particular [0.5,0.98]  is considered. 

The sample size ,50,1005,10,20,40=T  and 200  is 

chosen. The number of replications is 10000. 

 

IV.   RESULTS AND DISCUSSION 

 
The results of the study are discussed through the tables and 

graphs respectively. When ̂ (dif), ̂ (lev) and ̂ (ols) are 

compared, it is found that, in the case of T=5 and 10 bias of 

̂ (lev) is the smallest and bias of ̂ (ols) is the largest 

among mentioned estimators. ̂ (dif) and ̂ (ols) have 

almost equal bias for all the values of   over the range T=20 

to 200. When T=20, ̂ (lev) has less bias than ̂ (dif) and 

̂ (ols) except at the value of 0.5= . When the sample 

sizes are 40,50,100 and 200, ̂ (lev) has lower bias than 

̂ (dif) and ̂ (ols) except at the values of 0.7< , 

0.75< , 0.8<  and 0.85<  respectively. In other 

words, when   is near to unity, ̂ (lev) is more preferable 

to the other two with regard to the bias. 

 

Pertaining to the RMSE, for T=5, the RMSE of ̂ (lev) is the 

smallest and bias of ̂ (ols) is the largest among three 

estimators. For the cases of 10T , ̂ (dif) and ̂ (ols) 

have almost identical RMSE for all considered   values. 

When T=10 and 20, the RMSE of ̂ (lev) is lesser than the 

RMSE of ̂ (dif) and ̂ (ols). When the sample sizes are 40, 

50, 100 and 200, the RMSE of ̂ (lev) is smaller than 

̂ (dif) and ̂ (ols) except at the values of 0.65< , 

0.75< , 0.85<  and 0.9<  respectively. 

 

The graphs are plotted in figures 1-4 for the simulation 

results. Figure 1 depicts the comparison of means of ̂ (dif), 

̂ (lev) and ̂ (ols) with reference to true line over the entire 

range of  . From all graphs in figure 1, it is observed that, 

in terms of bias, ̂ (dif) and ̂ (ols) perform almost same in 

all the cases except at T=5. When 0< , ̂ (lev) has 

greater bias than other two estimators, but when   is near to 

unity ̂ (lev) has small bias than other two. To understand 

clearly, in figure 2, the means of above three estimators have 

been plotted only for 0.5> . ̂ (lev) has small bias when 

T is not so large. As T increases, bias of ̂ (lev) also 

increases, although ̂ (lev) has smallest bias for 0.80>  

for all values of T. 

 

Figure 3 shows the distinction of RMSE of ̂ (lev), ̂ (dif) 

and ̂ (ols) for entire range of  . From figure 3, it is 

noticed that ̂ (dif) and ̂ (ols) behave almost same in all 

the cases except at T=5. RMSE of ̂ (lev) is largest in 

negative range of  . Next, it starts decreasing from -0.5 and 

performs better than other two estimators as   approaches 

unity. For more clarity, the RMSE of above considered 

estimators is plotted in figure 4 for 0.5> . From figure 4, 

it is observed that, ̂ (lev) has less RMSE, especially when T 

is too small. As T increases ̂ (dif) and ̂ (ols) perform 

better than ̂ (lev) but as   approaches unity ̂ (lev) 

performs excellent than remaining two estimators. 

 

V.   CONCLUSION 
 

In this study, an estimation of AR(1) time series model is 

done by using First-difference GMM (Arellano and Bond 

(1991))and Level GMM (Arellano and Bover (1995)) 

estimation methods. Monte Carlo simulation is carried out to 

investigate the performances of the considered estimators. 

Based on the simulation results, it is observed that, for all the 

negative values of   the RMSE and bias of Level GMM 

estimator is larger than the remaining estimators. In the case 

of 0<  in terms of bias and RMSE, Level GMM estimator 

does not perform best. But in the case of 0>  , especially 

when   is close to unity, the Level GMM estimator has 

small bias and is more efficient than First-difference GMM 

and OLS estimators. 
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Table  1: Simulation results of comparison of the Bias and RMSE of ̂ (dif), ̂ (lev) and ̂ (ols) (T = 5,10,20 and 40). 

T 
   

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 0.98 

5 

̂ (dif) 0.018 0.023 0.051 0.053 0.084 0.114 0.121 0.139 0.174 0.208 0.232 

̂ (lev)
 0.593 0.592 0.61 0.623 0.648 0.674 0.7 0.718 0.749 0.783 0.798 

̂ (ols) -0.034 -0.03 -0.01 -0.009 0.01 0.029 0.039 0.052 0.071 0.095 0.112 

Bias(dif) -0.482 -0.527 -0.549 -0.597 -0.616 -0.636 -0.679 -0.711 -0.726 -0.742 -0.748 

Bias(lev) 0.093 0.042 0.01 -0.027 -0.052 -0.076 -0.1 -0.132 -0.151 -0.167 -0.182 

Bias(ols) -0.534 -0.58 -0.61 -0.659 -0.69 -0.721 -0.761 -0.798 -0.829 -0.855 -0.868 

RMSE(dif) 0.842 0.907 0.928 0.958 0.939 0.982 0.975 1.01 1.031 1.055 1.066 

RMSE(lev) 0.622 0.6 0.68 0.563 0.586 0.573 0.575 0.572 0.587 0.594 0.596 

RMSE(ols) 0.682 0.721 0.743 0.786 0.816 0.84 0.873 0.907 0.936 0.958 0.972 

10 

̂ (dif) 0.24 0.277 0.3 0.338 0.362 0.391 0.419 0.448 0.469 0.509 0.529 

̂ (lev) 0.618 0.642 0.647 0.67 0.687 0.711 0.736 0.761 0.788 0.827 0.852 

̂ (ols) 0.232 0.268 0.29 0.327 0.35 0.378 0.403 0.432 0.451 0.486 0.503 

Bias(dif) -0.26 -0.273 -0.3 -0.312 -0.338 -0.359 -0.381 -0.402 -0.431 -0.441 -0.451 

Bias(lev) 0.118 0.092 0.047 0.02 -0.013 -0.039 -0.064 -0.089 -0.112 -0.123 -0.128 

Bias(ols) -0.268 -0.282 -0.31 -0.323 -0.35 -0.372 -0.397 -0.418 -0.449 -0.464 -0.477 

RMSE(dif) 0.418 0.424 0.446 0.454 0.474 0.487 0.506 0.521 0.543 0.554 0.566 

RMSE(lev) 0.304 0.293 0.287 0.282 0.277 0.279 0.278 0.277 0.286 0.289 0.289 

RMSE(ols) 0.413 0.421 0.442 0.452 0.472 0.487 0.506 0.522 0.546 0.56 0.573 

20 

̂ (dif) 0.372 0.411 0.455 0.489 0.53 0.568 0.607 0.638 0.672 0.707 0.733 

̂ (lev) 0.668 0.68 0.701 0.716 0.736 0.757 0.781 0.808 0.842 0.88 0.904 

̂ (ols) 0.371 0.41 0.454 0.488 0.528 0.566 0.605 0.635 0.669 0.703 0.728 

Bias(dif) -0.128 -0.139 -0.145 -0.161 -0.17 -0.182 -0.193 -0.212 -0.228 -0.243 -0.247 

Bias(lev) 0.168 0.13 0.101 0.066 0.036 0.007 -0.019 -0.042 -0.058 -0.07 -0.076 

Bias(ols) -0.129 -0.14 -0.146 -0.162 -0.172 -0.184 -0.195 -0.215 -0.231 -0.247 -0.252 

RMSE(dif) 0.249 0.254 0.256 0.266 0.269 0.277 0.277 0.292 0.3 0.31 0.312 

RMSE(lev) 0.242 0.217 0.199 0.187 0.172 0.168 0.166 0.164 0.162 0.16 0.159 

RMSE(ols) 0.249 0.254 0.256 0.265 0.268 0.277 0.277 0.292 0.301 0.311 0.314 

40 

̂ (dif)
 0.434 0.481 0.526 0.57 0.616 0.661 0.704 0.748 0.786 0.827 0.849 

̂ (lev)
 0.69 0.709 0.726 0.748 0.768 0.791 0.813 0.844 0.873 0.915 0.939 

̂ (ols)
 0.435 0.482 0.527 0.57 0.616 0.662 0.705 0.749 0.787 0.828 0.849 

Bias(dif) -0.066 -0.069 -0.074 -0.08 -0.084 -0.089 -0.096 -0.102 -0.114 -0.123 -0.131 

Bias(lev) 0.19 0.159 0.126 0.098 0.068 0.041 0.013 -0.006 -0.027 -0.035 -0.041 

Bias(ols) -0.065 -0.068 -0.073 -0.08 -0.084 -0.088 -0.095 -0.101 -0.113 -0.122 -0.131 

RMSE(dif) 0.159 0.157 0.159 0.16 0.158 0.158 0.157 0.158 0.163 0.165 0.169 

RMSE(lev) 0.22 0.195 0.168 0.146 0.128 0.113 0.105 0.096 0.095 0.087 0.087 

RMSE(ols) 0.159 0.156 0.158 0.159 0.157 0.157 0.156 0.157 0.162 0.164 0.168 
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Table  2: Simulation results of comparison of the Bias and RMSE of ̂ (dif), ̂ (lev) and ̂ (ols) (T = 50,100 and 200). 

T 
   

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 0.98 

50 

̂ (dif) 0.445 0.494 0.541 0.587 0.633 0.678 0.724 0.769 0.81 0.852 0.874 

̂ (lev)
 0.694 0.713 0.733 0.752 0.775 0.796 0.822 0.852 0.881 0.921 0.947 

̂ (ols) 0.446 0.495 0.542 0.588 0.635 0.679 0.725 0.771 0.811 0.853 0.875 

Bias(dif) -0.055 -0.056 -0.059 -0.063 -0.067 -0.072 -0.076 -0.081 -0.09 -0.098 -0.106 

Bias(lev) 0.194 0.163 0.133 0.102 0.075 0.046 0.022 0.002 -0.019 -0.029 -0.033 

Bias(ols) -0.054 -0.055 -0.058 -0.062 -0.065 -0.071 -0.075 -0.079 -0.089 -0.097 -0.105 

RMSE(dif) 0.139 0.14 0.136 0.137 0.134 0.133 0.131 0.13 0.135 0.134 0.138 

RMSE(lev) 0.217 0.19 0.164 0.14 0.12 0.103 0.09 0.082 0.082 0.073 0.071 

RMSE(ols) 0.139 0.139 0.135 0.136 0.133 0.132 0.13 0.129 0.133 0.132 0.136 

100 

̂ (dif) 0.474 0.52 0.569 0.617 0.665 0.713 0.762 0.809 0.856 0.9 0.925 

̂ (lev) 0.705 0.723 0.745 0.766 0.788 0.812 0.837 0.865 0.899 0.936 0.963 

̂ (ols) 0.476 0.522 0.571 0.619 0.668 0.716 0.764 0.812 0.859 0.904 0.928 

Bias(dif) -0.026 -0.03 -0.031 -0.033 -0.035 -0.037 -0.038 -0.041 -0.044 -0.05 -0.055 

Bias(lev) 0.205 0.173 0.145 0.116 0.088 0.062 0.037 0.015 -0.001 -0.014 -0.017 

Bias(ols) -0.024 -0.028 -0.029 -0.031 -0.032 -0.034 -0.036 -0.038 -0.041 -0.046 -0.052 

RMSE(dif) 0.093 0.092 0.09 0.088 0.085 0.082 0.079 0.076 0.074 0.073 0.074 

RMSE(lev) 0.215 0.185 0.159 0.132 0.107 0.086 0.068 0.056 0.048 0.043 0.039 

RMSE(ols) 0.092 0.091 0.089 0.087 0.083 0.08 0.077 0.074 0.071 0.069 0.07 

200 

̂ (dif) 0.483 0.534 0.581 0.632 0.68 0.73 0.779 0.826 0.876 0.923 0.95 

̂ (lev) 0.709 0.73 0.75 0.773 0.795 0.819 0.845 0.874 0.907 0.945 0.971 

̂ (ols) 0.487 0.537 0.585 0.635 0.684 0.734 0.783 0.831 0.881 0.929 0.955 

Bias(dif) -0.017 -0.016 -0.019 -0.018 -0.02 -0.02 -0.021 -0.024 -0.024 -0.027 -0.03 

Bias(lev) 0.209 0.18 0.15 0.123 0.095 0.069 0.045 0.024 0.007 -0.005 -0.009 

Bias(ols) -0.013 -0.013 -0.015 -0.015 -0.016 -0.016 -0.017 -0.019 -0.019 -0.021 -0.025 

RMSE(dif) 0.064 0.063 0.061 0.058 0.057 0.054 0.051 0.049 0.045 0.042 0.041 

RMSE(lev) 0.214 0.185 0.156 0.13 0.104 0.081 0.059 0.043 0.033 0.026 0.022 

RMSE(ols) 0.063 0.062 0.060 0.057 0.055 0.052 0.049 0.045 0.041 0.037 0.036 

 

̂ (dif)= Difference GMM estimator, ̂ (lev)= Level GMM estimator, ̂ (ols)= Ordinary Least Square estimator, Bias(dif)= 

Bias of Difference GMM estimator, Bias(lev)= Bias of Level GMM estimator, Bias(ols)= Bias of OLS estimator, RMSE= Root 

Mean Square Error, RMSE(dif)= RMSE of Difference GMM estimator, RMSE(lev)=RMSE of Level GMM estimator, 

RMSE(ols)=RMSE of OLS estiator 
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Figure  1: Means of Difference GMM, Level GMM and OLS estimators ( 1<<1  ).  
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Figure  2: Means of Difference GMM, Level GMM and OLS estimators ( 0.5 ). 
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Figure  3: RMSEs of Difference GMM, Level GMM and OLS estimators ( 1<<1  ). 
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Figure  4: RMSEs of Difference GMM, Level GMM and OLS estimators ( 0.5 ). 
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