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Abstract- When a thin horizontal fluid layer overlying a porous layer is heated from below, convection starts after that the 

temperature difference between the lower and upper surfaces has reached a critical value. Two effects are responsible for this 

motion: buoyancy and variation of the surface tension with temperature; the first effect is usually referred to as Rayleigh-

Benard instability, the second as Marangoni instability. In the present work, we examine the role of the application of a vertical 

magnetic field on a thin horizontal electrically conducting fluid layer overlying a porous layer. An analytical solution is 

obtained for constant-flux thermal boundary conditions, for which the onset of supercritical cellular convection occurs at a 

vanishingly small wave number and can thus be predicted by the present theory. The critical Rayleigh number, 
c

mR , and  

critical Marangoni number, 
cM , are found to depend on the Chandrasekhar number, 

mQ  ,the depth ratio,  , the Darcy 

number, Da , the Bond number, 
0B ,  and the Crispation number, .Cr  Results are presented for a wide range of each of the 

governing parameters. The results are compared with limiting cases of the problem and are found to be in agreement. 

Keywords:  Bernard-Marangoni convection; Magnetic field; Two-layer System. 

 

I. INTRODUCTION 

 

The study of the electrically conducting fluid flows under the influence of a magnetic field is fundamental to many subjects, 

ranging from astro- and geo-physical to industrial and laboratory 

scales.  Diverse engineering applications, such as the design of thermonuclear fusion reactors and electromagnetic processing 

of materials, including semiconductor crystal growth, often rely on contactless flow control techniques by means of a magnetic 

field ([1]-[4]). In solidification and crystal growth processes, magnetic fields have been used to suppress fluctuations and 

improve the quality of products ([5]-[8]). 

 

The flow of an electrically conducting fluid through a magnetic field generates an electromotive force, which induces 

electric currents. The interaction of these currents with the magnetic field creates the electromagnetic (Lorentz) body force, 

acting as a brake on the fluid. Owing to a complex coupling between the electromagnetic and dynamical phenomena, a wide 

range of magnetohydrodynamic (MHD) effects can occur within the fluid, depending on the flow’s geometry, boundary 

conditions, and the orientation of a magnetic field and gravity. First of all, the magnetic field may change the flow 

characteristics by modifying its velocity profile and confining viscous effects to thin boundary layers. Furthermore, due to the 

stabilizing action of the Lorentz force, magnetic fields are known to accelerate the damping of perturbations. 

 

The problem we wish to investigate is one of Rayleigh- Benard-Marangoni convection in a system consisting of 

porous layer underlying a fluid layer where there is magnetic field through the system. The problem of fluid flow over a porous 

medium is encountered in a wide range of industrial and geophysical applications, such as flows in fuel cells, filtration 

processes, the extraction of oil from underground reservoirs, ground-water pollution, the manufacture of composite materials, 

and in flow in biological materials. A detailed review is given by Nield & Bejan [9] , with current highly relevant literature 

including([10]-[22]). 

http://www.isroset.org/
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Nield [23] has investigated the linear stability problem of superposed fluid and porous layers with buoyancy and 

surface tension effects at the deformable upper free surface by using the Beavers–Joseph slip condition at the interface. The 

thermal stability for different systems of superposed porous and fluid regions has also been analyzed by Taslim and Narusawa 

[24]. Chen [25] has implemented a linear stability analysis to investigate the effect of throughflow on the onset of thermal 

convection in a fluid layer overlying a porous layer with an idea of understanding the control of convective instability by the 

adjustment of throughflow. McKay[26] has considered the onset of buoyancy-driven convection in superposed reacting fluid 

and porous layers. Nield [27] has argued about the modelling of Marangoni convection in a fluid saturated porous medium and 

has suggested the consideration of composite porous–fluid layer system in analyzing the problem. Khalili et al. [28] have 

obtained the closed form solution for Chen’s model by considering the upper and lower boundaries are insulating to 

temperature perturbations.  

 

The aim of the present study is to study analytically natural convection in a cavity consisting of a fluid layer over a 

saturated porous layer with magnetic field. Such problems, despite its importance in industrial and geophysical situations. In 

the present study we investigate the effect of magnetic field on the thermal convection of a two-layer system consists of a 

horizontal fluid layer overlying a layer of porous medium saturated with the same fluid with uniform heating from below (Fig. 

1). The flow in porous medium is assumed to be governed by Darcy’s law. Beavers-Joseph classical slip condition is used. The 

boundaries are considered to be insulated to temperature perturbations. A regular perturbation technique with wave number as  

a  perturbation parameter is used to solve the eigen value problem in a closed form. The paper is organized as follows. In Sect. 

2 the governing equations describing the problem are derived. Section 3 describes the analytical method used to solve the 

problem. The results are discussed in Sect. 4 and a conclusion is presented in Sect. 5. 

  

 

II. PHYSICAL  MODEL   AND  MATHEMATICAL FORMULATION 

 

The composite system under investigation is shown schematically in Fig. 1. A horizontal porous layer of thickness 
md  extends 

below a fluid layer of thickness d  subject to a uniform vertical magnetic field of strength H  and a uniform vertical 

temperature gradient. A Cartesian coordinate system  , ,x y z  is chosen with the origin at the interface and the z  axis 

vertically upward. The gravity acts in the vertical direction with constant acceleration g , the lower boundary of the porous 

layer is taken to be rigid, while the upper surface has a deflection   , ,x y t from mean (see Fig.1). 

 

 

 

 

 

 

 

 

                                  H                                                                 H  

 

Figure 1:  Physical configuration 
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The governing equations for the fluid and the porous layers are: 

Fluid layer: 

0V 
        

             (1)  

     2

0 0 01
4

V
V V p g T T V H H

t


   



 
               

        (2)   

  2T
V T T

t



   


                (3) 

    2H
H V V H H

t



     


             ( 4)  

Porous layer: 

0mV 
          

       (5)
 

   0
0 01

4

m m m
m m m m m

V
p V g T T H H

t K

  
 

 


         

         (6)   

  2m
m m m m m

T
A V T T

t



   


.                       (7)  

    2m
m m m m m

H
H V V H H

t



     


              (8) 

In the above equations, ( , , )V u v w  is the velocity vector, p is the pressure,T is the temperature, , H is the magnetic field,   

and  is the thermal diffusivity,   is the fluid viscosity,   magnetic permeability,  is the thermal expansion coefficient,   

is the porosity of the porous medium, A  is the ratio of heat capacities and 
0  is the reference fluid density, The subscript m

refers to the value of the parameter in the porous region. 

 

2.1 The Boundary conditions 

Suppose that  z d  and mz d  are maintained at constant temperature uT  and lT  respectively. In terms of W and mW , 

the axial velocity components of the fluid and porous layers , these requirements lead to the following conditions  

0, 0, 0
T H

W at z d
z z

 
   

 
                  (9) 

0, 0, 0m m
m m

T H
W at z d

z z

 
    

 
        (10) 

At the deformable free surface,  , , , 1z d x y t     

ˆ, . 0tu v w k T n GT
t x y

  
     

  
            (11) 

                                      (12) 

 ˆ ˆ2 . , 2 . .nt a nnd T t p p d n
T


  


     

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,

, 2 0

0

m m

m
m m

m

W W T T

TT w
p p at z

z z z

HH

z z

  


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

  
   

   
 

    

         (13) 

and the final condition is due to Beavers & Joseph [30] which has the form 

 

   , 0m m

u v
u u v v at z

z zK K

  
    

 
                   (14) 

 

The basic state is quiescent and is of the form 

   0, 0, 0,0, , 0,0,mm mV V H h H h


   
      

                   (15) 

The temperature distributions in the basic state are given by  

 
 0

0

u

b

T T z
T z T

d


  ,               0 z d                              (16) 

 
 0

0

l m

mb m

m

T T z
T z T

d


  ,          0m md z  

      
                        

(17)
 

Where 0
m u m l

m m

d T d T
T

d d

 

 





 is the interface temperature.  

To investigate the stability of the basic state, infinitesimal disturbances are superimposed in the form 

 , , ( ) ,b b m mT T z p p z p V VV V        ,     , m m mH H z H H z 
 

              (18) 

  , ( ) .m mb m m m mb m mT T z p p z p    
   

                       (19) 

Following the standard linear stability analysis procedure and noting that the principle of exchange of stability holds, we arrive 

at the following stability equations:  

 
2

2 2 2 2D a W QD W Ra   
  

                (20)
  

 2 2D a W   
  

                                     (21)
   

 2 2D a DW                                        (22) 

 2 2 2 2

m m m m m m m m mD a W Da Q D W R a    
   

          (23)
 

 2 2

m m m mD a W    .
    

                  (24) 

 2 2

m m m m mD a D W                                                                                                                  (25) 

Here,W is the amplitude of perturbed vertical velocity and   is the amplitude of perturbed temperature,   is the amplitude 

of perturbed magnetic field,  /D d dz ,   3

0 /uR g T T d     is the Rayleigh number, 
2 2a l m  is the overall 

horizontal wave number and 
2 2 2 2/h z     is the Laplacian operator with 

2 2 2 2 2/ / .h x y      The 

corresponding quantities for the porous region are 
mW , 

m , m  /m mD d dz ,

  4 2

0 /m l m v mv TR g T T d K RDa      ,
2

mQ Q , 
2 2

ma l m  and 
2

m  2 2 2/mh mz   with
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2 2 2 2 2/ / .mh m mx y       Further,
2/v mDa K d  is the Darcy number, /T m    is  the    ratio of    thermal    

diffusivities.  

The boundary conditions are: 

( ) 0 at 1iW D B Z D z                              26
  

 2 2 0 at 1D W Ma Z z                 27
  

   2 2 2 2

03 0 at 1Cr D a Q DW B a a Z z                 28
 

0 1m m m m m mW D D at z      .
    

        (29) 

At the interface (i.e., z = 0) the continuity of velocity, temperature, heat flux, normal stress and the Beavers and Joseph 1967 

slip conditions are imposed. Accordingly, the conditions are:
 

m

T

W W



 ,

T

m




   , 

m mD D 

 

                  (30) 

0 m mD D                                                                                                                              (31) 

4
2 23 m m

T

D a DW D W
Da






                               (32) 

3
2

m m

T

D D W D W
Da Da

 



 
  

 
    

                       (33) 

where
md d  is the ratio of fluid layer to porous layer thickness and   is the Beavers-Joseph slip parameter. Thus, the 

problem is reduced to an eigen value problem consisting of a eighth order ordinary differential equation in the fluid layer and a 

sixth order ordinary differential equation in the porous layer, subject to 14 boundary conditions. If matching of the solutions in 

the two layers is to be possible, the wave numbers must be the same for the fluid and porous layers, so that we have

/ /m ma d a d   and hence / ma a  . 

 

III. SOLUTION BY REGULAR PERTURBATION TECHNIQUE 

 

Since the critical wave number is exceedingly small for the assumed temperature boundary conditions ([9]), the eigen 

value problem is solved using a regular perturbation technique with wave number a  as a perturbation parameter. Accordingly, 

the dependent variables are expanded in powers of  
2a   in the form 

     2

0

, , , ,
N

i

i i i

i

W a W 


  
        

      (34)

   
2

2
0

, , , ,

i
N

m m m mi mi mi

i

a
W W 



 
   

 


        

     (35) 

Substitution of Eqs. (34) and (35) into Eqs.  (20) 25 and the boundary conditions  (26) 33 yields a sequence of 

equations for the unknown functions  ( ), ( ),i i iW z z z , ( )mi mW z  and  ( ),mi m miz z for 0,1,2,3......i  . 

At the leading order in    Eqs.  (20) 25 become, respectively, 

4 3

0 0 0D W QD W 
        

            (36) 

2

0 0D W                  (37) 

2

0 0D DW  
           

                         (38) 

2 2

0 0m m m m mD W Q D W R  
       

                     (39)
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2

0 0m m mD W                  (40) 

2

0 0m m mD DW                                  (41) 
 

and the boundary conditions  (26) 33 become
  

 

3

0 0 0 0 00, 0, 0, 0 at 1W D D D W Q DW z      
 
                                  (42) 

0 00, 0, at 1.m m m mW D z    
 

                      (43) 

And at the interface(        ) 

0 0m

T

W W



 , 

0 0
T

m




   , 

0 0 0 0, 0m m m mD D D D     

   

       (44)

 

 

4
3 2

0 0 0m m

T

D W D W D W
Da






 

        

      (45)

 
3

2

0 0 0m m

T

D W DW D W
Da Da

 

  


  .                          (46)

 

The solution to the zeroth order Eqs. (36) (41) is given by 

0 0 00, , 1TW





    , 
0 0 00, 1 , 1n m mW     .

 

                        (47)

 

At the first order in 
2a  Eqs.  (20) 25 then reduce to 

4 2

1 1
TD W QD W R



 

                
(48) 

2

1 1
TD W



   

       

              (49)

 

 

2

1 11D DW                    (50) 

2 2

1 1m m m m m mD W DaQ D W R  
        

                    (51)
 

2

1 11m m mD W  
                                   

(52) 

2

1 11m mD DW                     (53) 

and the boundary conditions  (26) 33 become 

2 3 0
1 1 1 0 1 1 00, 0, 0 1T

B
W D D W M Z D W QDW Z at z

Cr





 
          

 
            (54) 

1 10, 0, 1.m m m mW D at z    
                       

(55) 

And at the interface(        ) 

1 1

1
m

T

W W


 , 

 

1 13

T
m




   ,

 

1 1 1 12

1
, 0m m m mD D D D 


    

   

                    (56) 

2
3 2

1 1 1m m

T

D W D W D W
Da







 

           

          (57)

 

2

1 1 1m m

T

D W DW D W
Da Da

 

  


  .

    

                        (58) 

The general solutions of Eq. (49) and (52) are respectively given by                            
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2

1 1 2 3 4
2

Qz Qz TW R C C z C e C e z
Q





  
     

       

                     (59)

 

 

2
2

1 5 6 42 1

T
m m m

m

Da
W R C z C z

DaQ





 
   

    

                        (60) 

where

       

2
1 4

0

,
T

C
C C

B Q

 
  
 

1
2 3 4 ,

2

QT C
C C e C





 
    

 

 10 9 6

3

4

,
b b C

C
b




 6 3 3

4

1

T Tb C C
C

C

    



 

 3

1
5 6 6, ,

2 (1 2 ) 2 (1 2 )

mDaQ QC
C C C



 


  

   

2
3

1

2

2
m

Da
b Q

Q




 
    

 2 3

2b DaQ  

3

3 2 ,m

T

b DaQ


 

 
   
 

3

4
6

mT

T

QQ
b



  

 
  
 
 

,  5 1 ,mb Q Q DaQ  
6

2
,

6

mT

T

DaQ
b



  

 
  
 
 

2

7 1 3 ,
T

b
b b b

 

 
  
 

2

8 3 5 ,
T

b
b b b

 

 
  
 

 9 4 5 7 62b b b b b  ,
 1 7 8 6

10

4

1 7

,

T

b b b b
b

b
b b

 



 

 
 

2 3

0 0 06 Da (B -Cr M)  + (2 B - 3 CrM)  + 6B Da  (1- )        

Equations (48) and (51) involving 
2

1D  and 
2

1m mD  respectively provide the solvability requirement which is given by 

. 

                                                 (61)    

 

                                                        

The expressions for 
1W  and 

1mW  are back substituted into Eq. (61) and integrated to yield an expression for the critical 

Rayleigh number
c

mR , which is given by 
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  The expression for 
c

mR  is evaluated for different values of various physical parameters and the results are discussed in detail 

in the next section. 

 

IV. RESULT AND DISCUSSION 

 

We consider a linear stability analysis to investigate analytically the effects of deformable surface and magnetic field on the 

onset of Rayleigh-Benard -Marangoni convection in a system consisting of porous layer underlying a fluid layer heated from 

below. The marginal stability of the composite system considered in this investigation is given by equation (63). We can check 

this formula against known results for the following limiting cases:  

 

 i   Case of a pure porous layer ( 1  ) : 

In the absence of  Magnetic field ( Chandrasekhar number 0)Q  , it is readily found from equation (63) that 

 

        12,cR                                                                                                                    (64) 

 

In agreement with the result predicted in the past by  Nield [30], for the case of a horizontal Darcy porous layer heated from the 

bottom by a constant heat flux. 

 

 ii Case of a horizontal fluid layer ( 1  ) : 

In the absence of  Magnetic field ( Chandrasekhar number 0)Q  , it is readily found from equation (63) that 

a) 320cR                  (65) 

 

which is also a value reported in the past by Sparrow et al. [31] in the case of a fluid layer with a solid horizontal lower 

boundary and a free upper surface. 

 

b) 720cR                  (66) 

 

which is also a value reported in the past by Sparrow et al.[31] in the case of a fluid layer with a rigid boundaries. 

 

 iii Case of a horizontal fluid layer ( 1  ) for pure Marangoni Convection. 

In the absence of  Magnetic field ( Chandrasekhar number 0)Q   and absence of surface deflection  0 ,Cr   it is readily 

found from equation (63) that 

 

      48,cM                                                                                                                        (67) 

 

is the known exact value for a signal fluid layer ([32]). The critical Marangoni number computed for different values of Q  

when 
T  = 0.725, Da  = 0.001,  = 1 and Cr  = 0 are tabulated in Table 1. The results of Wilson [33] are also exhibited in 

the Table for the sake of comparison. It is seen that our results are in good agreement with those of Wilson [33] for pure 

Marangoni convection in a signal fluid layer.  

 

To gain physical insight into the onset of the convection, we illustrate the eigen functions of vertical velocity W  and 

corresponding streamline patterns in Figures 2.  Figures 2a–c present the analytically predicted velocity profile at the vertical 
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centerline of a system for 1  and various values of the Chandrasekhar number 
mQ .  A significant change in the velocity 

field is observed upon varying the values of Da  and 
mQ . When the permeability of the porous medium is low enough, for 

instance
mQ  for 

410Da  (when the permeability of the porous medium is low) Figures 1a-c indicates that the intensity of 

the convective motion inside the system is relatively weak. In fact, the major part of the flow is confined in the pure fluid layer 

 0 1z  , while the fluid is almost at rest in the porous part. Figure 2d shows some part of the flow in porous layer 

 1 0z     when the permeability of the porous medium is high ( 0.1Da  ). 

 

Table 1: Comparison of critical Marangoni number with those of Wilson [33] for different values of Q  

 and 0Cr    when Da =0.001, 
T = 0.725,   = 1. 

 

 

Q  

Wilson [33] 

 

cM  

Present study  

 and 0Cr  

cM  

410
 48.00024 48.0135 

310
 48.00240 48.0147 

210
 48.02400 48.17821 

110
 48.24000 48.3678 

1 50.39997 50.83241 

10 71.97468 72.13891 
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Figure 2 : The effect of ,mQ for a fluid–porous bed system, on the vertical velocity distribution 

 

(a) 
41, 10Da   (a) 

40.5, 10Da   (a) 
40.1, 10Da   (a) 1, 0.1.Da    

 

First we will discuss Rayleigh-Benard convection (in the absence of Marangoni number 0M  ) and  the results are 

presented for The results are presented for 
33.04 10Da    (which correspond to 3-cm-deep porous layer consisting of 3-

mm-diameter glass beads ([25]) 0.1,oB  0.725, 1T and   0Cr  the range of depth ratio 
410 

approximating pure porous layer case to 1   (two layers of equal depth). The variation of  
c

mR   obtained as a function of 

depth ratio ζ for different values of the Chandrasekhar number 
mQ    are presented in a Figure.3.  Figure 3 reveals the effect   

on the values of  
c

mR for various values of 
mQ . It is clear from this figure that there is a precipitation drop of the values of the 

critical 
c

mR as   increases, which means that the magnetic field has a stabilizing effect in this system. The variation of  
c

mR   

obtained as a function of Chandrasekhar number 
mQ    for different values of the depth ratio ζ are presented in a Figure.4.  It is 

clear from the figure that 
c

mR increases continuously as 
mQ  increases which means that the magnetic field has a stabilizing 

effect in this system. Moreover
c

mR decreases continuously as the thickness of the fluid layer increases 
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Figure 3 : Critical  Rayleigh number 
c

mR  versus      for different values of  mQ  . 

 

 

 

Figure 4 : Critical  Rayleigh number 
c

mR  versus mQ    for different values of  . 
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In the absence of thermal buoyancy  . 0i e R   we merely consider the Marangoni convective instability at the 

upper free surface.   The effects of Cr  on 
cM are shown in Figure 5 and 6.  Figure 6 represents the graph of  

cM as a 

function of
mQ for different values of Cr  (i.e., influence of surface tension) for fixed values of 

64 10 , 0.1,oDa B  

0.725, 1, 1, 0,T R      0iB 
 
(Since we are dealing with layers of small thickness, the value of iB  does not 

appreciably affect the results for 0iB  , Takashima[34]. From figure, it may be noted that an increase in value of 
mQ  is to 

decrease the value of cM  and thus making system more unstable. The reason being that an increase in Cr  is to increase the 

deflection of the upper free surface, which in turn, promotes instability much faster.  But this trend goes on diminishing with an 

increase in the value of 
mQ  value of 0.1Cr   , cM   remains almost invariant with

mQ . 

 

The variation of  cM   obtained as a function of depth ratio ζ for different values of  Bond number 0B  for fixed 

values of 
64 10 , 0, 0.725.i TDa B     4, 1, 10 10.mCr and Q     are presented in a figure8. From 

figure8 it is obvious that in contrast to the effect of ,Cr  increase in the value of 0B   makes the system more stable, although it 

has negligible effect for small values of . the reason for this may be attributed to the fact that an increase in the gravity effect, 

which keep the free surface flat against the effect of surface tension, which forms a meniscus on the free surface, and hence an 

increase in 0B   makes the system more stable. 

 

 Figure 9 show the effect of varying   on cM as a function of depth ratio  . We note that virtually all values of 

> 1 have no effect on onset of convection. When fluid layer is relatively thin, however, an increase in   from 0.1 to 1 slightly 

increases the critical Marangoni number. But a reverse behaviour is noticed with further increase in the thickness of the fluid 

layer and ultimately all the curves of   merge in to one for values of 0.3  . 

 

The variation of 
cM   

 
 obtained as a function of depth ratio ζ for different values  of 

mQ  and Da   when 

00.725, 1, 0.001, 0.1,T Cr B      are presented in a Fig9 . As expected, the effect of decrease in Da   is to 

increase the critical Marangoni number. Furthermore, the variation in Da  has a significant effect on the onset of convection 

for the values of 0.2,  while the curves of different Da  merge in to one when 0.2   for both types of temperature 

conditions. Further it indicates that the presence of magnetic field is to hasten delay the onset of Marangoni convection. 

 

 

The main results are summarized on fig. 11 where the critical Marangoni cM  is represented as a function of the 

critical Rayleigh number 
c

mR  for various values of Chandrasekhar number mQ . For a given value of mQ ,  all the 

representative points below the curve denote stable situations while the points which are found beyond the curve represent 

unstable motions. 
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Figure 5 : Critical Marangoni number 
cM  versus mQ    for different values of   with 0.001Cr  . 

 

 

Figure 5 : Critical Marangoni number 
cM  versus mQ    for different values of   with 0Cr  . 
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Figure 6 : Variations of the critical Marangoni number 
cM  and depth ratio   with  different 

                  values of  Cr   (
610, 4 10 , 0.725,m TQ Da      0.1, 0 0.5oB R and    ). 
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Fig. 9. Variation of 
cM with  for different values of   when, 0.725T   

64 10 , 0.1, 0 0.001.oDa B R and Cr    
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Figure 10 : Variations of the critical Marangoni number 
cM  and depth ratio   with  different 

values of  Darcy number Da  and Chandrasekhar number 
mQ . 
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Fig.11  Critical  Rayleigh number 
c

mR  versus
cM     for different values of  mQ  . 

 

V. CONCLUSSION  

 

The above analysis was concerned with a linear analysis of Benard-Marangoni instability in an electrically conducting 

fluid layer overlying a porous layer, heated from below and submitted to a vertical magnetic field with deformable upper free 

surface. If the free surface is non deformable  0Cr  then the presence of the magnetic field  mQ  always has the 

stabilizing effect of increasing the  /c c

mR M , and any particular disturbance can be stabilized completely by a sufficiently 

strong magnetic field  mQ . If the free surface is allowed to deform  0Cr  The effect of allowing the free surface to 

deform  0Cr  is always to destabilize the system.We conclude that a vertical magnetic field always has a stabilizing effect 

on the onset of steady Benard-Marangoni convection in superposed fluid and porous layers, but that when the free surface is 

deformable situations with a sufficiently large Marangoni number
cM  will always have unstable modes no matter how strong 

the applied magnetic field. 
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