
© 2013, IJSRCSE All Rights Reserved 20

International Journal of Scientific Research in Computer Science and Engineering

Research Paper

Volume-1, Issue-1, Jan- Feb-2013

Available online at www.isroset.org

Defect Prediction in Software Entities Classified in Terms of Level Dependencies

Narendra Kumar Rao. B
#1

, Rama Mohan Reddy. A
#2

, Bhaskar Kumar Rao. B
#3

#1
Dept. of CSE, JNTU, India, narendrakumarrao@yahoo.com
#2

Dept. of CSE, SVU, India, ramamohansvu@yahoo.com
#3

Dept. of CSE, SRM, India, bhaskarkumarraob@gmail.com

Abstract- Unit testing is the core fundamental to ensure code is in accordance with the design specifications. The coding and unit testing

standard reflects the stability of project (not to mention the testing effort).Code stability is greatly influenced by the efforts of unit

testing, which can be automated to reduce the human efforts. In spite of several tools identified for unit testing, tools need to be able to

identify the level dependencies or depth of program entity usage in software fragments. This factor greatly influences unit testing

complexity. Higher the level of dependency, the greater the complexity of unit testing the code. Here based on level dependencies we

predict defects in any expression. A predicting defect-prone software component is an economically important activity and so has

received a good deal of attention. However, making sense of the many, and sometimes seemingly inconsistent, a result is difficult. The

main objectives of this paper are unbiased and comprehensive comparison between competing prediction systems. This paper mainly

focuses on two learning algorithms OneR, Naive Bayes. By using those two algorithms we calculate the error rate. We can predict defects

based on those error rates.

Keywords- Unit Testing, Level Dependency, Defect Prediction.

1. INTRODUCTION

Unit testing is the first and the most important level of testing.

As soon as the programmer develops a unit of code, the unit is

tested for various scenarios. As the application is being built it

is much more economical to find and eliminate the bugs early

on. Hence Unit Testing is the most important of all the testing

levels [1]. As the software project progresses ahead it becomes

more and more costly to find and fix the bugs [2].

Steps in Unit Testing:

Step 1: Create a Test Plan.

Step 2: Create Test Cases and Test Data.

Step 3: If applicable create scripts to run test cases.

Step 4: Once the code is ready execute the test cases.

Step 5: Fix the bugs if any and re test the code.

Step 6: Repeat the test cycle until the “unit” is free of all bugs.

Extensive research effort is being invested into software unit

testing automation for several years and the emergence of

commercial applications implementing some of the resulting

ideas are evidence of the attraction of automated testing

solutions. One approach to fully automated testing is random

testing.[3] In the Unit software testing literature, the random

strategy is often considered to be one of the less preferred

approaches.

2. DEFECT PREDICTION MECHANISM

Defect prediction it’s a new research area for software quality

surety. A project team always designs to produce a quality

product with zero or few defects. Quality of a product is

correlated with the number of defects as well as money and

time. So, defect prediction mechanism is very important in the

field of software quality.

Software Defect: A software defect is an error, flaw, mistake,

failure or fault in a computer program or system that produces

an incorrect or unexpected result.

Defect Identification: Identifying and locating defects in

software projects is a difficult task. Further, estimating the

density of defects are more difficult. So, the software project

team is fully focused on finding and fixing all the defects.

Defect Prediction: Defect prediction is defined as predicting

defects in software components. A learning algorithm is

selected and used to build a dataset and predict software

defect[8].

Figure1 Defect Prediction Mechanism

Data Items: A data item describes an atomic state of a

particular object concerning a specific property at a certain

time point. A collection of data items for the same object at the

same time forms an object instance (or table row). In this

paper, data items are identifiers.

Learning Algorithms: It focuses on the prediction, based

on known properties learned from the training data.

In this paper, two algorithms are used for defect prediction.

The two algorithms are:

1. OneR algorithm

2. Naive Bayes algorithm

ISSN: 2320 - 7639

http://www.isroset.org/
mailto:narendrakumarrao@yahoo.com
mailto:ramamohansvu@yahoo.com
mailto:bhaskarkumarraob@gmail.com

ISROSET - International Journal of Scientific Research in Computer Science and Engineering, Vol-1, Issue-1, 2013

© 2013, IJSRCSE All Rights Reserved 21

2.1 OneR Approach:

OneR is a simple and a very effective classification mostly

used in machine learning applications. OneR is difficult to be

improved further, due to its simplicity it can be enhanced by

providing better methods for handling some of the

exceptions[9].

Def: OneR short for “one rule”, it’s a simple classification

algorithm that gives a one level decision tree.

It is simple and accurate. It is also able to predict missing

values and numeric attributes.

A rule is simply a set of attribute values bound to their

majority class; one such binding for each attribute value of the

attribute the rule is based on.

Pseudo-code for the OneR algorithm:

INPUT: training data T, attributes H

For each attribute A,

For each value VA of the attribute, make a rule as

follows:

count how often each class appears

find the most frequent class Cf

create a rule when A=VA; class attribute value = Cf

calculate NCWA

 End For-Each

 Calculate the error rate of all rules

End For-Each

If more then one rule has the smallest error rate

Choose the rule with the Highest NCW among the

equal error rate rules

Else

Chose the rule with the smallest error rate

End If

OUTPUT:

The output of above algorithm is it returns the attribute with

the lowest error rate

If two attributes have the same error rate,then it chooses

randomly. So in sometimes an error may be occur. So,we have

to calculate Net Class Weight for each artifact.

Net Class Weight:

It is defined as the probability of giving a correct value with

the available values. As oneR is based on a single artifact, we

calculate the NCw for each artifact.

Where:

€C= Total nmber of class C in the data set.

€C
A
= Total number of class C correctly classified by attribute

A.

EXAMPLE: Following example illustrates the outcome of the

above algorithm when applied on the weather data given in the

following table.

OUTLOOK TEMP HUMIDITY WINDY PLAY

Sunny Hot High False No

Sunny Hot High True No

Overcast Hot High False Yes

Rainy Mild High False Yes

Rainy Cool Normal False Yes

Rainy Cool Normal True No

Overcast Cool Normal True Yes

Sunny Mild High False No

Sunny Cool Normal False Yes

Rainy Mild Normal False Yes

Sunny Mild Normal True Yes

Overcast Mild High True yes

Overcast Hot Normal False Yes

Rainy Mild High True No

Table 2.1: shows the dataset for playing tennis

From the above table:

Total number of “yes” classes in the data set=9

Total number of “no” classes in the data set=5

For example let us consider outlook attribute for calculating

the error rate and NCW:

 Play

Yes No

Outlook

Sunny 2 3

Overcast 4 0

Rainy 3 2

Table 2.2: Total no of chances for playing tennis

There are three cases are possible for outlook. They are

if outlook=sunny then play =no

if outlook=overcast then play =yes

 if outlook=rainy then play =yes

 Errors Total errors NCW

Sunny—no 2/5

4/14

7/9+3/5=

1.377
Overcast--yes 0/4

Rainy—yes 2/5
Table 2.3: calculation of error rate and NCW

So that it calculates the error rate and NCW for each and

every attribute. Then it finally selects “Humidity” as the rule

as it has the highest NCW among the two rules the smallest

error rate.

Advantages:

 It is simple and easy to understand.

 It calculates net class weight for each artifact due to

these errors may be reduced.

Disadvantages:

 Randomly selecting an artifact when error rates are

equal.

 Over fitting of nominal artifacts with near values

2.2 Naive Bayes Approach:

The Naive Bayes Classifier assigns an instance sk with

attribute values(A1=V1, A2=V2,………,An=Vn) to class Ci with

maximum probability(Ci/(V1,V2,……,Vn)) for all i.

It uses the Bayes rule and assumes independene of attributes. It

is mainly based on Bayesian theorem. It needs discrete values

to work properly[10]. For each column, a domain has to be

associated. It uses the following formula in order to calculate

the probability of each attribute:

P(H/E)=P(H)/P(E)∏I P(Ei/H)

Where:

 Ei = fragments of evidence Ei

ISROSET - International Journal of Scientific Research in Computer Science and Engineering, Vol-1, Issue-1, 2013

© 2013, IJSRCSE All Rights Reserved 22

 P(H) = Prior Probability

 P(H/E) = Posterior Probability

Pseudo code for Naive Bayes algorithm :

INPUT: training set T, attributes H, initial number of attributes

k.

Initialize M with one attribute.

k ← k0

repeat

Add k new attributes to M, initialized using k

random examples from T.

Remove the k initialization examples from T.

repeat

E-step: Fractionally assign examples in T to attributes, using

M.

M-step: Compute maximum likelihood parameters for M,

using the filled-in data.

If log P(H|M) is best so far, save M in Mbest.For every loop,

prune low-error rate attributes of M.

until log P(H|M) fails to improve by ratio δEM.

M ← Mbest

Return Mbest.

OUTPUT: selects an attribute with highest probability and

returns to main.

EXAMPLE: Following example illustrates the outcome of the

above algorithm when applied on the weather data given in the

following table.

If we apply the naive bayes algorithm for the table 2.1 the

following procedure has to be followed:

From the table 2.1:

Total number of “yes” classes in the data set=9

Total number of “no” classes in the data set=5

It calculates the probability for each and every attribute

whether he/she can play or not in particular condition.

For example, let us consider outlook attribute. Here three

conditions are there. They are sunny, overcast, rainy. So it

calculates the probability for each and every case:

Outlook PLAY=yes PLAY=no

Sunny 2/9 3/5

Overcast 4/9 0/5

Rainy 3/9 2/5

Likewise, it calculates for temperature, humidity, wind.

Temperature Play=yes Play=no

Hot 2/9 2/5

Mild 4/9 2/5

Cool 3/9 1/5

Humidity Play=Yes Play=No

High 3/9 4/5

Normal 6/9 1/5

Wind Play=Yes Play=No

Strong 3/9 3/5

Weak 6/9 2/5

 Naive Bayes algorithm mainly concentrates on play=no

classes .So that we calculate the probability for each and

every attribute. From the above all cases it is observed that

the humidity when play=no attribute has the highest

probability.so it selects that particular attribute and return.

 It also checks the probability of playing aor not when we

given a condition.

Advantages:

 The Naive Bayes algorithm affords fast to train and

fast to evaluate.

 It scales linearly with the number of predictors and

rows.

 Surprisingly good for real-world problems

Disadvantages:

 Not capable of solving more complex problems.

3. PROPOSED SYSTEM

A technique is proposed in which test inputs generated by

random generator so as to make the output more useful to a

test engineer. The technique aims to help the engineer isolate

the root cause of a failing test input resulting in a failure. The

result of the technique makes it easier to isolate the cause of

failure in the form of back tracing process. Current paper aims

at performing the level-based testing of given program in the

form of back tracing for defect identification and correction.

Random test cases are selected from test suit, if test cases

passes it generates the expected results, else any test case

failed, the tool starts identification of defect by the identifying

the dependent nature of programming entities and its

dependencies over other sub entities. Any Programming entity

used in the program is dependent on other entities which may

result in appropriate or in-appropriate results of its dependent

entities. For example, Consider the task of testing a procedure

that to find the roots of quadratic equation. The quadratic

equation in the form of ax2+bx+c=0 the roots of the quadratic

equation is given by formula given quadratic

equation, the roots are either real and equal,(or) the roots are

either real and distinct, (or) roots are imaginary. Figure-1

shows the program of quadratic equation:

 void main()

 {

1: int a,b,c,d,e,f,g;

2: printf(“Enter the three values”);

3: scanf(“%d%d%d”,&a,&b,&c);

4: d=((b*b)-(4*a*c));

5: if(d==0)

{

6: printf(“Roots are real and equal”);

7: f=-b/(2*a);

8: printf(“x1=%d\nx2=%d”,f,f”);

}

9: else if(d>0)

{

10: printf(“Roots are real and distinct”);

11: e=sqrt(d);

12: f=(-b+e)/(2*a);

13: g=(-b-e)/(2*a);

ISROSET - International Journal of Scientific Research in Computer Science and Engineering, Vol-1, Issue-1, 2013

© 2013, IJSRCSE All Rights Reserved 23

14: printf(“x1=%d\nx2=%d”,f,g);

}

15: else

{

16: printf(“Roots are imaginary”);

17: d=-d;

18: e=sqrt(d);

19: f=-b/(2*a);

20: g=e/(2*a);

21: printf(“x1=%d+%d\nx2%d-%d”,f,g,f,g);

}

getch();

 }

 Above program evaluates the roots of the given quadratic

equation:

The above program is input to the Unit testing tool(CUnit), test

cases are automatically generated by the tool. These test cases

together are called as test suite.[6] Tool selects a test case

randomly from the test suite and executes the test case. If it

gives the expected results then the test case is pass, otherwise

it is failed. We have to identify the root cause of a failing test

input which results in a failure. In this current approach, a tool

is built which automatically builds corresponding tree for a

given program and easily notify the root cause of the defect,

using a procedure discussed below.

4. PROCEDURE TO BUILD ENTITY TREE:

For example, the above program shows the quadratic equation

program which is input to a Unit testing tool, then it randomly

generates a test case and run. Suppose it is failed at

statement12 then the expression is given below. f = (-b+e)/

(2*a);//test case is failed at this statement. The statements

relevant to the failed statements are given below:

d=((b*b)-(4*a*c));

e=sqrt(d);

f=(-b+e)/(2*a);

The tool automatically verifies which level of testing should be

done. If a level1 testing is selected this tool performs one step

tracing and verifies the statements in the code. Here above

expression contains three variables i.e. b, e and a. The actual

‘f’ value is affected by these variables (sub divided into

integrative sub-components), so at this point we have to verify

these three variables. This tool generates the tree for the above

expression as shown in Figure-2

Figure-2 shows level-1 testing of expression (-b+e)/(2*a).

The above tree contains three variables, in which ‘b’,‘a’ are

direct variables and ‘e’ is indirect variable. so we have to

verify the direct and indirect variables. If these variables return

the correct values then fault in L-value otherwise fault in R-

value.

The faults in R-value can be of three types which are as

follows:

1. Faults in direct variables: Faults in direct variables are

only caused by giving the wrong inputs by the user or by

assignment of constants.

2. Faults in indirect variables: The second type faults occur

due to previous wrong assignment values to the indirect

variables or expressions.

3. Faults in functions: The third type faults occur due to the

functions which are either standard functions or user-

define functions.

o Functions return wrong.

o Parameters are either direct variables or indirect

variables (reference variables).

In the above experiment for these wrong assignment values, a

level-2 testing is required. This tool generates tree for level-2

testing of expression is shown in Figure 3.

Figure-3 shows level-2 testing of expression sqrt(d).

To find wrong assignment values the tool generates tree for

level-3 testing of expression is shown in figure-4.

Figure-4 shows level-3 testing of expression (b*b)-(4*a*c)

Procedure Main:

Step 1: Generate Test cases for the code to be tested, by

creating a test suit, along with expected results for the

corresponding steps.

Step 2: Select a Random Generation tool (CUnit) for selecting

a test case to be tested.

Step 3: Execute the test case ,record the result in form of logs,

and perform the following

a. If the test case executes correctly, the program terminates

successfully, resulting in expected result.

b. If the test case fails at a particular condition, the asserted

condition fails, and logs are recorded so far and procedure

Level-Defect-Verification is invoked.

Step 4: Terminate instantaneously.

Procedure Level-Defect-Verification [7]:

Step 1: Split the aborted statement of the program to

integrative sub-components.

Step 2: Identify the individual programming entities from

subcomponents which can be one of the following

o Direct variable

o Indirect variables

o Functions

ISROSET - International Journal of Scientific Research in Computer Science and Engineering, Vol-1, Issue-1, 2013

© 2013, IJSRCSE All Rights Reserved 24

Step 3: Perform the following steps until End-of-File is

encountered for the log file (assertion logs).

Step 4: Generate the Tracing tree for Integrative

Subcomponents of the statement encountered in Step1.

Step 5: For the sub tree identify the corresponding sub entities,

because the sub tree may again comprise of entities which may

be an one of the following of the form in Step 2.

Step 6: If absurd values are identified at the given step, then

verification has identified an error and it needs to be corrected,

else proceed and repeat the generation of tracing tree from Step

4.

Step 7 : Return to main function.

Procedure level-defect-prediction:

Step 1: Takes the tested identifiers as input from the procedure

Level-Defect-Verification.

Step 2: Builds table which consists of tested identifiers and

their properties.

Step 3: The table is manually or automatically filled according

to their conditions.

Step 4: Next , it applies any one of the above algorithm to

calculate error rate of each and every attribute.

Step 5: After calculating error rate, it predict which one is

occurring most frequently and returns to main.

Defect Prediction: Defect prediction means predicting the

defects in a simple program or module or a project or a

software component [8]. After constructing a table for datasets

as described above, a learning algorithm is selected. Then this

module selects an algorithm, builds a prediction model and

predict software defect. It is very useful for improving the

generalization ability of the predictor. After the predictor is

built, it can be used to predict the defect proneness of new

software components.

 For defect prediction, we are using two algorithms as

described above. First, it generates the table as shown below.

Items Range Dtype Result

e Within Equal true

e Within Ntequal False

e Within Ntequal True

e Out of Equal True

e Out of Ntequal False

b Within Equal true

b Within Ntequal False

b Within Ntequal True

b Out of Equal True

b Out of Ntequal False

a Within Equal true

a Within Ntequal False

a Within Ntequal True

a Out of Equal True

a Out of Ntequal False

c Within Equal true

c Within Ntequal False

c Within Ntequal True

c Out of Equal True

c Out of Ntequal False

d Within Equal true

d Within Ntequal False

d Within Ntequal True

d Out of Equal True

d Out of Ntequal False

If we apply the OneR algorithm as discussed in the section 2.1

for above table, the following steps are generated.

Step 1: It calculates total number of true and false cases for

every attribute as shown below:

Attributes True False

E 3 2

B 3 2

A 3 2

C 3 2

D 3 2

Attributes True False

Within 10 5

Out of 5 5

Attributes True False

Equal 10 0

Ntequal 5 10

Step 2: Then, it calculates the error rate and net calss weight

for every attribute.

Attribute = items total error rate = 0.40 NCW = 1.50

Attribute = range total error rate = 0.40 NCW = 1.1667

Attribute = dtype total error rate = 0.20 NCW = 1.1667

Step 3: Finally, it selects the attribute with the least error rate.

OneR algorithm selects dtype as OneRule [9].

By using this approach we can predict defects that occur more

frequently in a program.

If we apply the Naive Bayes algorithm as discussed in the

section 1.1 for above table, the following steps are generated.

Step 1: First it calculates total number of true and false cases

for every attribute.

For data items:

Attribute True False

e 3 2

b 3 2

a 3 2

c 3 2

d 3 2

For range items:

Attributes True False

Within 6 3

Out of 3 3

For dtype items:

Attributes True False

Equal 6 0

Ntequal 3 6

ISROSET - International Journal of Scientific Research in Computer Science and Engineering, Vol-1, Issue-1, 2013

© 2013, IJSRCSE All Rights Reserved 25

Step 2: Then, it calculates the total probability for each and

every attribute in true and false cases.

Total probability for data items in case of true and false:

Items True False

e 0.20000 0.20000

b 0.20000 0.20000

a 0.20000 0.20000

c 0.20000 0.20000

d 0.20000 0.20000

Total probability for range items in case of true and false:

Range True False

Within 0.66667 0.50000

Out of 0.33333 0.50000

Total probability for dtype items in case of true and false:

Dtype True False

Equal 0.66667 0.00000

Notequal 0.33333 0.00000

Naive Bayes algorithm [10] considers only false cases as

described above in section 2.2. From the above all tables we

can conclude that it selects not equal as error as it contains

least probability.

Naive Bayes selects not equal as error.

By using this approach we can predict defects and also the

reason for the defect that occurs frequently in a program.

5. RESULTS

The results show that we should choose different learning

schemes for different data sets (i.e., no scheme dominates),and

last, that our proposed framework is more effective and less

prone to bias than previous approaches. In Naive Bayes

approach, we can estimate or predict the defects based on

artifacts i.e., more than one artifact. In oneR algorithm, it tells

only what type of defect frequently occurs whereas in Naive

Bayes approach, it tells the reason for the defect that occurs

frequently. Both the algorithms are used for defect prediction

only.

6. CONCLUSION AND FUTURE WORK

The current work is in its primitive stages, still it needs to be

endorsed for various syntactic constructs, needs to be verified

with various programming paradigms for its

applicability, but one thing this approach does provide is

clarity for developer for unit testing and its depth based on its

entities which may be used in maintenance projects ,where a

part of code added needs to be verified for its exactness. Also

defect prediction mechanism has extended to modules, projects

and software components.

REFERENCES
[1]. Kent beck, test-driven development by example, addison wesley,

2002.

[2]. Roy osherove, the art of unit testing with examples in .net,

manning publications, 2009.

[3]. C.nebut, “automatic test generation: a use case driven approach” ,

ieee transactions on software engineering, vol. 32, no. 3,pp140-156,

march 2006.

[4]. S.vegas, “maturing software engineering knowledge through

classifications: a case study on unit testing techniques” , ieee

transactions on software engineering, vol. 35, no 4,pp-551-556,

july/aug-2009.

[5]. Ciupa, ilinca, et al. "experimental assessment of random testing for

object-oriented software." 2007.

[6]. Oriat, catherine. "jartege: a tool for random generation of unit tests

for java classes." quality of software architectures and software

quality (2005): 242-256.

[7]. Narendra kumar rao, b., a. Rama mohan reddy, and k. Ravi. "level

dependencies of individual entities in random unit testing of

structured code."electronics computer technology (icect), 2011 3rd

international conference on. Vol. 6. Ieee, 2011.

[8]. Qinbao song, zihan jia, martin shepperd, shi ying, and jin liu, “a

general software defect-proneness prediction framework” ieee

transactions on software engineering, vol. 37, no. 3, may/june 2011.

[9]. Buddhinath, gaya, and damien derry. "a simple enhancement to one

rule classification." department of computer science & software

engineering. University of melbourne, australia (2006).

[10]. Radlinski, lukasz. "a survey of bayesian net models for software

development effort prediction." international journal of software

Engineering and Computing2.2 (2010): 95-109.

AUTHORS PROFILE

 Mr. B. Narendra Kumar Rao, obtained Bachelor Degree in Computer
Science and Engineering from University of
Madras, M.Tech in Computer Science from JNTU,
Hyderabad and at present pursuing Ph.D. He has
more than 10 years of experience in Area of
Computer Science and Engineering which includes
four years of Industrial Experience and six years of
Teaching Experience. Research interests include

Software Engineering and Embedded Systems. Currently he is working
as Associate Professor in Department of Computer Science and
Engineering at Sree Vidanikethan Engineering College.

Dr. A. Rama Mohan Reddy, obtained his Bachelor Degree in
Mechanical Engineering and Master’s degree in
Computer Science Engineering from NIT Warangal
and Ph.D degree from Sri Venkateswara University
and at present working as an Professor in
Department of Computer Science and Engineering,
Sri Venkateswara University College of
Engineering. His areas of interest include Software

Architecture and data mining. He has more than 27 years of experience
in teaching and research.

Mr.B.Bhaskar Kumar Rao,obtained his bacheolar
in B.Tech Computer Science and Engineering from
JNTU,Anantapur.He is currently pursuing his Post
Graduation from SRM University,Chennai.His
research areas include Software Engineering and
Cloud Computing.

