
 © 2013, IJSRCSE All Rights Reserved 1

 Forn International Journal of Scientific Research in Computer Science and Engineering
Research Paper Vol-1, Issue-4 ISSN: 2320-7639

Histogram Computations on GPUs Kernel using Global and Shared

Memory Atomics

C.P.Patidar
1*

 and Meena Sharma
2

*1
Department of Information Technology, Institute of Engineering and Technology, DAVV, India

2
Department of Computer Engineering, Institute of Engineering and Technology, DAVV, India

Available online at www.isroset.org

Received: 28 June 2013 Revised: 12 July 2013 Accepted: 06 August 2013 Published: 30 August 2013

Abstract– In this paper we implement histogram computations on a Graphics Processing Unit (GPU).

Our Histogram computations is implemented using compute unified device architecture (CUDA) which is a minimal

extension to C/C++. In this development Histogram computations, computed on GPU’s global memory as well as on

shared memory. We also perform Histogram computations on CPU and consider it as a baseline performance.

Experimental results demonstrate that shared memory in GPU gives seven times speedup over our baseline CPU.

Keywords – GPUs, Histograms, CUDA, Global Memory, Shared Memory.

I. INTRODUCTION

A Graphics Processing Unit or a GPU [1] is a chip in

computer video cards or in play station. GPUs are usually

used in personal computers and on video game consoles.

Primarily it is used for entertainment and visualization

applications. Now a days GPUs are also found in portable

devices due to their user interfacing and more software

applications interaction [1]. GPUs are now also found

frequently in portable devices, embedded systems and

consumer electronics devices. Fig 1 shows the

development growth of GPU over CPU in recent years.

GPUs come with many cores, now a day they come with

up to 512 cores. There are two major vendors of GPU

NVIDIA and AMD, formerly known as ATI.

GPU programming environment for GPGPU (general

purpose GPU) with CUDA (compute unified device

architecture) [2] is based on C. CUDA is a minimal

extension to C environment. CUDA provides

heterogeneous programming model, which means serial

program with parallel kernels. In which serial codes

executes on host (CPU) and parallel codes executes on

device threads (GPU threads). CUDA can provide large

speedups on data parallel applications and algorithm

which require huge data computations [2]. Image

processing, Data mining, Sequence alignment, Histogram

computations, and many bioinformatics applications [12]

require huge amount of data computations [5].

CPU gets overwhelms in such types of applications where

huge amount of data computations are required. GPUs

give better performance in such types of applications due

to their parallel and multi core architecture [3].

Histogram computation is also suitable application that

can be implemented on GPUs and we can get many fold

improvement over CPU. Oftentimes, algorithms require

the computation of a histogram of some set of data.

Essentially, given a data set that consists of some set of

elements, a histogram represents count of the frequency

of each element.

Fig 1: Growth of the power of GPUs vs. CPUs in the last

few years (Adapted from NVIDIA [2]).

For example, if we created a histogram of the letters in

the phrase “HISTOGRAM COMPUTATION ON GPU”,

the result will be as shown in Fig 2. Histogram

computations are used in computer science for image

processing, data compression, computer vision, machine

learning, audio encoding, and many others.

1 2 1 3 4 2 1 2 2 1 2 2 2

H I S T O G R A M C P U N

Fig 2: Letter frequency histogram built from the string

“HISTOGRAM COMPUTATION ON GPU”

We require an environment in which we can develop

using CUDA C [2]. The prerequisites to computing

histograms in CUDA C are as follows:

 A CUDA-enabled graphics processor (Graphics Card).

 An NVIDIA device driver (System Software) for

performing communication between our program and

CUDA-enabled hardware. Corresponding Author: C. P. Patidar

 ISROSET- IJSRCSE Vol-1, Issue-4, PP (1-6) July-August 2013

 © 2013, IJSRCSE All Rights Reserved 2

 A CUDA development toolkit to compile and run

code for NVIDIA GPUs using CUDA C.

 We will also need a compiler for CPU to run our

programs on CPU.

In this paper our work emphasized use of shared memory

because shared memory is so faster than global memory.

It may be hundreds or more time faster. Threads cannot

cooperate via global memory but they can cooperate via

shared memory. For taking the advantage of shared

memory, we scheduled some computation on the device

that forms blocks. Also partition our data sets into data

subsets so they can be fitted into shared memory [5].

After partitioning we handle each data set with one thread

block. For this we loaded the subset form global memory

to shared memory then perform computation on the

subset from shared memory. At the end we copy results

from shared memory to global memory.

The organization of paper is as follows: We review the

used GPU architecture in section II and then describe the

atomic operations in section III. In section IV we describe

the computations of Histogram on CPU to calculate our

baseline performance then in section V describe

computations on global memory and then on shared

memory. Experimental results that show speedups of

GPU are shown in section VI. Conclusion of paper is

given in section VII.

II. GT 610 GPU ARCHITECTURE

Our work implemented on NVIDIA GeForce GT 610

GPU. GeForce GT 610 comprises 48 CUDA cores.

The 48 CUDA cores access a common 2GB of DRAM

memory, known as device or global memory through a 64

KB L2 cache. The GPU operates at clock rate 1.62 GHz

with memory clock rate 533 MHz. The memory bus

width is 64-bit and the total amount of constant memory

is 64 KB. The amount of shared memory which is

available per block is 48 KB and the total number of

registers available per block is 32 KB. The maximum

number of threads per multiprocessor in our GPU is 1.5

KB and the maximum number of threads per block in our

GPU is 1.5 KB.GT 610 support 1024*1024*64 maximum

size for each dimension of a block. Also GT 610 supports

65535*65535*65535 maximum size for each dimension

of a grid. A GT 610 connects to the CPU, called host

processor via a PCI bus. GT 610 supports master-slave

programming model [2]. In which we can write a

program for master that is host and this program execute

on the device that is GT 610. GT 610 supports CUDA

programming language also which is a minimal extension

to C/C++. To achieve high performance on GT 610 we

used blocks and distribute the task on shared memory and

this is the main focus of this paper.

III. ATOMIC OPERATIONS

Usually atomic operations are not used when writing

traditional single-threaded applications. One might need

atomic operations in multithreaded applications. For

example in C, the decrement operator:

A--;

This is a single expression in standard C\C++, and after

executing this expression, the value in A should be one

less than it was prior to executing the decrement. But

what sequence of operations does this imply? To subtract

one from the value of A, we first need to know what

value is currently in A. After reading the value of A, we

can modify it. And finally, we need to write this value

back to A. So the three steps in this operation are as

follows:

 Read the value in A.

 Subtract 1 from the value read in step 1.

 Write the result back to A.

Sometimes, this process is generally called a read-

modify-write operation, since step 2 can consist of any

operation that changes the value that was read from A.

There may be a chance where two threads want to

perform decrement on the value in A. As an example the

two threads are x and y. Now x and y both want to

decrement value in A. x and y both want to perform

operations read, subtract and write as mentioned above.

x and y both give six operations in total. The six

operations may be in any sequence. In this way they can

give wrong result. It means if threads gets executed in any

order we will be get unpredictable results. In this example

multiple threads want to read or write shared memory

(values). For getting correct results we need a way to

perform these three operations (read, subtract or modify

and write) without being interrupted by another thread.

Such operations are known as “atomics” because the

execution of these operations cannot be split into smaller

parts by other threads. CUDA provides facility for atomic

operations that supports to operate safely on memory also

when many threads wants to access the same memory

locations [11]. Histogram computation is also such an

application that requires the use of atomic operations to

compute the correct sum.

IV. HISTOGRAM COMPUTATIONS ON CPU

This section shows Histogram computations on the Intel

Core 2 Duo CPU 2.20 GHz, CPU. There are two reasons

of computing a histogram on CPU in this paper. The

primary reason is for taking baseline performance and

another one is for understanding Histogram computations

on a single threaded CPU. Histogram may be computed

for pixels, audio, video, biological sequences or any

random stream of bytes [8]. In this paper we approach

Histogram computations for randomly generated stream

of bytes. We use a utility function rand() to generate

random stream of bytes. We can create any size of

random data by using this rand() function. We create N

MB (Here N may be 50, 100, 200 or any data value)

stream of random data as our data samples. Each random

8-bit byte can vary from 0 to 255(from 0x00 to 0xFF). In

our application histogram needs to contain 256 bins for

keeping the track of the occurrence of each value in the

 ISROSET- IJSRCSE Vol-1, Issue-4, PP (1-6) July-August 2013

 © 2013, IJSRCSE All Rights Reserved 3

data. For this purpose we have to define an array of size

256 and initially fill all the 256 bins with zero. Now we

need to compute the frequency of the occurrence of the

value generated by function rand() with a dynamic

memory allocation function. The generated memory

locations are contained in a pointer of type unsigned char.

and the pointer is named as “location”. If we see any

value from 0 to 255 in array location[] (Here [] shows

location is an array) we want to increment the value of the

corresponding array named as bin[] (Here also [] shows

bin is an array) [9].

We need to increment the value we have in the bin

numbered location[i] in array. Since bin location[i] in

array is located at bin[location[i]] in array, we can

increment the desired counter as follows:

bin[location[i]]++;

We perform this operation for each element in location

array. In this way, we’ve completed Histogram

computations for the input data. Histogram sum should

always be same, regardless of the random input array [8].

Every bin counts the numbers of times we have find the

corresponding data element, thus the sum of all of these

bins will be the total number of data elements we’ve

encountered [9]. The execution time and sum for different

values of N is shown in section V RESULTS. In the next

section we will compute the same for GPU with CUDA.

V. HISTOGRAM COMPUTATIONS ON GPU

A. Computation on global memory

This section shows histogram computations on the GPU’s

global memory. When our data size is very large and

different threads examining different parts of the location

it might give a speedup. When multiple threads may

want to increment the same bin of the output histogram at

the same time a problem arises. To handle such problems

we use atomic increments to get rid of a situation like the

one discussed in section III ATOMIC OPERATIONS.

The concept is similar to CPU implementation of

Histogram computation. Here we CUDA C to computer

Histograms on GPU and get results from the GPU. We

initialize events for timing.

cudaEvent_t start, stop;

After this, we work on GPU memory. We allocate space

for randomly generated input data and output histogram.

After allocating space to the input buffer, we copy the

array loation[] we generated with random() function to

the GPU [6]. After this allocation of the histogram, we

set all 256 elements of location [] array to zero just like

we did in the section

VI. HISTOGRAM COMPUTATIONS ON CPU.

unsigned char *dev_location;

unsigned int *dev_bin;

cudaMemcpy (dev_location, location, N*1024*1024,

cudaMemcpyHostToDevice));

Here cudaMemset() is a CUDA runtime function. This

function is similar to the standard C function memset().

The C library function memset() does not returns an error

code while cudaMemset() return [4]. The returned error

code informs the caller whether something wrong

happened while attempting to GPU memory. memset()

operates on host memory while cudaMemset() operates

on GPU memory.

Now the next step is launching the histogram kernel. We

have performed computations of the histogram on the

GPU. After all, we copied the histogram back to the CPU.

Thus perform a copy from device to host by writing [4].

cudaMemcpy(bin, dev_bin,256 * sizeof(int),

cudaMemcpyDeviceToHost)

Finally we verify that the computed GPU histogram

matches with the output of the CPU.

Our kernel launch is more complicated because of

performance concerns. In our application the histogram

contains 256 bins. Use of 256 threads per block is

convenient and gives high performance as results. As a

sample data with 200MB of data, the total numbers of

bytes are 209,715,200.

There are two ways of launching the kernel:

 Launch a single block and have each thread

examine 819,200 data elements.

 Launch 819,200 blocks and have each thread

examine a single data element.

The optimal solution is at a point between these two

extremes. When we execute some performance

experiments, optimal performance is obtained when the

number of blocks we launch is exactly twice the number

of multiprocessors GPU comprises. GT 610 has 48

multi- processors, thus histogram kernel executes faster

on a GT 610 when launched with 96 parallel blocks. We

have methods for querying various properties of the GPU

on which our application is executing. We use

multiProcessorCount device property to dynamically size

our launch based on our current hardware platform [10].

This gives the number of block in GPU.

cudaDeviceProp p;

cudaGetDeviceProperties(&p, 0);

int blocks = p.multiProcessorCount;

The kernel that computes the histogram is given a pointer

to the input data array, the length of the input array, and a

pointer to the output histogram. Initially the kernel

computes a linearized offset into the input data array.

Each thread starts with an offset between 0 and the

number of threads minus 1. Then it strides by the total

number of threads that have been launched.

int i = threadIdx.x + blockIdx.x * blockDim.x;

int stride = blockDim.x * gridDim.x;

 ISROSET- IJSRCSE Vol-1, Issue-4, PP (1-6) July-August 2013

 © 2013, IJSRCSE All Rights Reserved 4

As soon as each thread knows it’s starting offset i and the

stride it should use, the control passes through the input

array incrementing the appropriate histogram bin.

After comparing it with baseline performance, we find

that this performance is almost equivalent to the baseline

performance as shown in section V RESULTS. It gives

not a better improved performance whether it runs on the

GPU. It shows that the atomic operation on global

memory is causing the problem.

When numbers of threads are trying to refer same

memory locations, there is a chance of occurrence of

contention for 256 histogram bins. This leads in a long

queue of pending jobs, and there is no performance gain.

We ensure atomicity of the decrement operation, if and

only if the hardware is serialized. We try to improve the

performance by using shared memory in the next part.

B. Computation on shared memory

In this section, each parallel block will compute a

separate histogram in shared memory. This saves the time

of transfer between host and device. Now atomic

operations are required within the block because multiple

threads within the block can still examine data elements

with the same value as in Fig. 3 depicted [11]. It shows

per-thread local memory, per block-shared memory and

per device global memory. When we compute histograms

on global memory there are thousands of threads were

competing. As a great improvement here only 256 threads

will be competing for 256 addresses and it reduces

contention from the global memory implementation. It

involves allocating and initializing a shared memory

location to hold each block’s intermediate histogram. Our

approach is such that every thread’s write has completed

before the subsequent reading and modifying the location

[8].

Fig 3: Per-thread local memory, Per-thread shared

memory, Per-device global memory.

After initializing the histogram, the next step is same as

our previous GPU histogram computation on global

memory. Here we use the shared memory buffer of array

temp[] instead of the global memory buffer of array bin[]

and that we call a function __syncthreads() [4]to ensure

that the last write is unmodified [10].

int i = threadIdx.x + blockIdx.x * blockDim.x;

int offset = blockDim.x * gridDim.x;

__syncthreads();

At last we merge each block’s temporary histogram into

the global buffer array bin[]. We break the input in two

parts. One thread look at one half and another thread

look at other half. In this manner every thread computes

separate histograms. If thread P encounters byte 0xFC

100 times in the input and thread Q encounters byte 0xFC

50 times, the byte 0xFC appeared 150 times in the input.

In this way each bin of the final histogram is the sums of

the corresponding bins in thread P’s histogram and thread

Q’s histogram. We extend this method for all threads or

for any number of threads, thus merging every block’s

histogram into a single final histogram comprises adding

each entry in the block’s histogram to the corresponding

entry in the final histogram.

In shared memory we use 256 threads and 256 histogram

bins; each thread atomically adds a single bin to the final

histogram’s total [9].

This implementation of our Histogram computations

improves dramatically over the previous GPU

implementation. Adding the shared memory component

drops our running time on a GT 610 to a considerable

amount. The results are shown in next section.

VII. EXPERIMENTAL RESULTS

We perform Histogram computations on our benchmark

machine, Intel Core 2 Duo CPU 2.20 GHz, and on

GeForce GT 610 GPU for different data samples.

We take results on different data samples from both

global and shared memory on GT 610 GPU. The results

for 50MB, 100MB, 200MB, 300MB and 400MB is

shown in TABLE I.

On GT 610 GPU, with Global memory but without

Shared memory, the Histogram computation for different

data samples not gives a not a better performance gain

over the benchmark machine (CPU). For example 200MB

array of data can be constructed in 569.3 ms on GPU

whereas it can be constructed in 690 ms on CPU as

shown in TABLE I. In fact, this is not a better

performance gain over the benchmark machine (CPU). It

is a low-performance implementation simply because it

runs on the GPU.

On GT 610 GPU, with Shared memory, the Histogram

computation for different data samples gives up to

sevenfold speedups. As shown in TABLE I the 100MB

array of data can be constructed in 74.1 ms on GT 610

whereas it is constructed on CPU in 350 ms. It improves

dramatically over the CPU as well as GT 610 GPU, with

Global memory. After adding the shared memory it drops

running time on a GT 610 irrespective of the size. The

pictorial experimental results are shown in the form of a

graph in Fig. 4.

 ISROSET- IJSRCSE Vol-1, Issue-4, PP (1-6) July-August 2013

 © 2013, IJSRCSE All Rights Reserved 5

Histogram counts for different data samples (Size in MB)

are as follows:

 For 50 MB Histogram sum is 54428800.

 For 100 MB Histogram sum is 104857600.

 For 200 MB Histogram sum is 209715200.

 For 300 MB Histogram sum is 414572800.

 For 400 MB Histogram sum is 419430400.

 Time in ms

 Data size

Fig 4: Graph that shows results on CPU as well as on

GPU with Global and Shared memory.

TABLE I

EXECUTION TIME FOR VARIOUS MEMORY SIZE

VIII. CONCLUSION AND FUTURE WORK

In this paper we have presented the implementation of the

Histogram computations on GPU. For this purpose we

use CUDA [2] programming language. Hence the result

represents improvement up to a sevenfold boost in speed

over the benchmark machine. Thus despite the early GPU

implementation with global memory in adapting the

Histogram computations, our implementation that uses

shared memory (atomics) should be considered a success.

In our opinion, CUDA is also built upon a solid software

and hardware platform. Thus CUDA is also a promising

technology [7].

One future work is to use GPU and CUDA architecture

for the implementation of sequence alignment as a

bioinformatics application [2]. Shared memory atomics

will be appropriate match for sequence alignment [12].

ACKNOWLEDGMENT

We wish to thank Vaibhav Jain for their helpful insight

and support.

REFERENCES

[1]. J. D. Owens, D. Luebke, N. Govindaraju, M.

Harris, J. KrÄuger, A. E. Lefohn, and T. Pur-

cell, “A Survey of General-Purpose

Computation on Graphics Hardware," Computer

Graphics Forum, vol. 26, pp. 80-113, Mar.

2007.

[2]. NVIDIA Corporation, CUDA: Compute Unified

Device Architecture Programming Guide," tech.

rep., NVIDIA, 2007.

[3]. S. Sengupta, M. Harris, Y. Zhang, and J. D.

Owens, “Scan Primitives for GPU

Computing,"in GH '07: Proceedings of the

22nd ACSIGGRAPH/EUROGRAPHICS

Symposium on Graphics Hardware, Switzerland,

Eurographics Association, 2007, pp. 97-106.

[4]. M. Harris, J. Owens, S. Sengupta, Y. Zhang, and

A. Davidson. “CUDPP: CUDA Data Parallel

Primitives Library".

[5]. P. Harish and P. Narayanan, “Accelerating Large

Graph Algorithms on the GPU Using CUDA" in

High Performance Computing HiPC 2007, pp.

197-208.

[6]. H. Nguyen, GPU Gems 3. Addison-Wesley

Professional, 2007.

[7]. Y. Luo and R. Duraiswami, “Canny Edge

Detection on Nvidia CUDA" in Proc. of IEEE

Computer Vision and Pattern Recognition, 2008,

pp. 1-8.

[8]. V. Podlozhnyuk, “64-bin histogram”, NVIDIA,

Tech. Rep., 2007.

[9]. K. H. Knuth, “Optimal data-based binning for

histograms,” ArXiv Physics e-prints, May

2006.

[10]. Compute Unified Device Architecture (CUDA)

Programming Guide.

[11]. NVIDIA. CUDA Compute Unified Device

Architecture Programming Guide 2.0, July

2008.

[12]. C. Ling, K. Benkrid, and T. Hamada, “A

parameterisable and scalable smith-waterman

algorithm implementation on cuda- compatible

gpus,” Application Specific Processors, 2009.

SASP ’09. IEEE 7th Symposium on, pp. 94–100,

jul. 2009

C.

D.

0
200
400
600
800

1000
1200
1400
1600

50
MB

100
MB

200
MB

300
MB

400
MB

CPU

GPU with global
memory

GPU with
shared memory

Processor Execution Time in ms for various memory

size(in MB)

50 100 200 300 400

Intel Core 2

Duo CPU

2.20 GHz

170 350 690 1050 1390

 GT 610

GPU,1.62

GHz (global

memory)

140.9 281 569.3 841.1 1122.2

GT 610

GPU,1.62

GHz (shared

memory)

38.8 74.1 147.8 220 316.3

 ISROSET- IJSRCSE Vol-1, Issue-4, PP (1-6) July-August 2013

 © 2013, IJSRCSE All Rights Reserved 6

C. P. Patidar received the B. E. degree

in information technology and pursuing

M.E. degree in computer engineering.

He is an assistant professor of

Information Technology at the Devi

Ahilya University Indore, India. His

research interests are in GPGPU

computing, CUDA programming multithreaded

architecture and memory architecture of computers.

Meena Sharma received the B.E. degree

in computer engineering and M. Tech.

degree in computer science in 1992 and

2004 respectively. She received the Ph.

D. Degree in computer engineering in

2012. She is an associate professor of

Computer Engineering at the Devi Ahilya University

Indore, India. Her research interests are in software

engineering, software quality matrices and object oriented

modelling and design.

