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Abstract– In this paper we implement histogram computations on a Graphics Processing Unit (GPU).

Our Histogram computations is implemented using compute unified device architecture (CUDA) which is a minimal 

extension to C/C++. In this development Histogram computations, computed on GPU’s global memory as well as on 

shared memory. We also perform Histogram computations on CPU and consider it as a baseline performance. 

Experimental results demonstrate that shared memory in GPU gives seven times speedup over our baseline CPU. 
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I. INTRODUCTION 

A Graphics Processing Unit or a GPU [1] is a chip in 

computer video cards or in play station. GPUs are usually 

used in personal computers and on video game consoles. 

Primarily it is used for entertainment and visualization 

applications. Now a days GPUs are also found in portable 

devices due to their user interfacing and more software 

applications interaction [1]. GPUs are now also found 

frequently in portable devices, embedded systems and 

consumer electronics devices. Fig 1 shows the 

development growth of GPU over CPU in recent years. 

GPUs come with many cores, now a day they come with 

up to 512 cores. There are two major vendors of GPU 

NVIDIA and AMD, formerly known as ATI.  

 

GPU programming environment for GPGPU (general 

purpose GPU) with CUDA (compute unified device 

architecture) [2] is based on C. CUDA is a minimal 

extension to C environment. CUDA provides 

heterogeneous programming model, which means serial 

program with parallel kernels. In which serial codes 

executes on host (CPU) and parallel codes executes on 

device threads (GPU threads). CUDA can provide large 

speedups on data parallel applications and algorithm 

which require huge data computations [2]. Image 

processing, Data mining, Sequence alignment, Histogram 

computations, and many bioinformatics applications [12] 

require huge amount of data computations [5]. 

 

CPU gets overwhelms in such types of applications where 

huge amount of data computations are required. GPUs 

give better performance in such types of applications due 

to their parallel and multi core architecture [3]. 

 

Histogram computation is also suitable application that 

can be implemented on GPUs and we can get many fold 

improvement over CPU. Oftentimes, algorithms require 

the computation of a histogram of some set of data. 

Essentially, given a data set that consists of some set of 

elements, a histogram represents count of the frequency 

of each element. 

 

 
 

Fig 1: Growth of the power of GPUs vs. CPUs in the last 

few years (Adapted from NVIDIA [2]). 

For example, if we created a histogram of the letters in 

the phrase “HISTOGRAM COMPUTATION ON GPU”, 

the result will be as shown in Fig 2. Histogram 

computations are used in computer science for image 

processing, data compression, computer vision, machine 

learning, audio encoding, and many others.  
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Fig 2: Letter frequency histogram built from the string 

“HISTOGRAM COMPUTATION ON GPU” 

 

We require an environment in which we can develop 

using CUDA C [2]. The prerequisites to computing 

histograms in CUDA C are as follows: 

 A CUDA-enabled graphics processor (Graphics Card). 

 An NVIDIA device driver (System Software) for 

performing communication between our program and 

CUDA-enabled hardware. Corresponding Author: C. P. Patidar 



   ISROSET- IJSRCSE                                                                                        Vol-1, Issue-4, PP (1-6) July-August 2013 

    © 2013, IJSRCSE All Rights Reserved                                                                                                                                       2 

 A CUDA development toolkit to compile and run           

code for NVIDIA GPUs using CUDA C.  

 We will also need a compiler for CPU to run our 

programs on CPU.  

 

In this paper our work emphasized use of shared memory 

because shared memory is so faster than global memory. 

It may be hundreds or more time faster. Threads cannot 

cooperate via global memory but they can cooperate via 

shared memory. For taking the advantage of shared 

memory, we scheduled some computation on the device 

that forms blocks. Also partition our data sets into data 

subsets so they can be fitted into shared memory [5]. 

 

After partitioning we handle each data set with one thread 

block. For this we loaded the subset form global memory 

to shared memory then perform computation on the 

subset from shared memory. At the end we copy results 

from shared memory to global memory. 

 

The organization of paper is as follows: We review the 

used GPU architecture in section II and then describe the 

atomic operations in section III. In section IV we describe 

the computations of Histogram on CPU to calculate our 

baseline performance then in section V describe 

computations on global memory and then on shared 

memory. Experimental results that show speedups of 

GPU are shown in section VI. Conclusion of paper is 

given in section VII. 

   

II. GT 610 GPU ARCHITECTURE 

 

Our work implemented on NVIDIA GeForce GT 610 

GPU. GeForce GT 610 comprises 48 CUDA cores. 

The 48 CUDA cores access a common 2GB of DRAM 

memory, known as device or global memory through a 64 

KB L2 cache. The GPU operates at clock rate 1.62 GHz 

with memory clock rate 533 MHz. The memory bus 

width is 64-bit and the total amount of constant memory 

is 64 KB. The amount of shared memory which is 

available per block is 48 KB and the total number of 

registers available per block is 32 KB. The maximum 

number of threads per multiprocessor in our GPU is 1.5 

KB and the maximum number of threads per block in our 

GPU is 1.5 KB.GT 610 support 1024*1024*64 maximum 

size for each dimension of a block. Also GT 610 supports 

65535*65535*65535 maximum size for each dimension 

of a grid. A GT 610 connects to the CPU, called host 

processor via a PCI bus. GT 610 supports master-slave 

programming model [2]. In which we can write a 

program for master that is host and this program execute 

on the device that is GT 610. GT 610 supports CUDA 

programming language also which is a minimal extension 

to C/C++.  To achieve high performance on GT 610 we 

used blocks and distribute the task on shared memory and 

this is the main focus of this paper. 

 

III. ATOMIC OPERATIONS  

 

Usually atomic operations are not used when writing 

traditional single-threaded applications. One might need 

atomic operations in multithreaded applications. For 

example in C, the decrement operator: 

A--; 

 

This is a single expression in standard C\C++, and after 

executing this expression, the value in A should be one 

less than it was prior to executing the decrement. But 

what sequence of operations does this imply? To subtract 

one from the value of A, we first need to know what 

value is currently in A. After reading the value of A, we 

can modify it. And finally, we need to write this value 

back to A. So the three steps in this operation are as 

follows: 

 Read the value in A. 

 Subtract 1 from the value read in step 1.  

 Write the result back to A. 

 

Sometimes, this process is generally called a read-

modify-write operation, since step 2 can consist of any 

operation that changes the value that was read from A. 

There may be a chance where two threads want to 

perform decrement on the value in A. As an example the 

two threads are x and y. Now x and y both want to 

decrement value in A. x and y both want to perform 

operations read, subtract and write as mentioned above. 

x and y both give six operations in total. The six 

operations may be in any sequence. In this way they can 

give wrong result. It means if threads gets executed in any 

order we will be get unpredictable results. In this example 

multiple threads want to read or write shared memory 

(values). For getting correct results we need a way to 

perform these three operations (read, subtract or modify 

and write) without being interrupted by another thread. 

Such operations are known as “atomics” because the 

execution of these operations cannot be split into smaller 

parts by other threads. CUDA provides facility for atomic 

operations that supports to operate safely on memory also 

when many threads wants to access the same memory 

locations [11]. Histogram computation is also such an 

application that requires the use of atomic operations to 

compute the correct sum. 

 

IV. HISTOGRAM COMPUTATIONS ON CPU 

This section shows Histogram computations on the Intel 

Core 2 Duo CPU 2.20 GHz, CPU. There are two reasons 

of computing a histogram on CPU in this paper. The 

primary reason is for taking baseline performance and 

another one is for understanding Histogram computations 

on a single threaded CPU. Histogram may be computed 

for pixels, audio, video, biological sequences or any 

random stream of bytes [8]. In this paper we approach 

Histogram computations for randomly generated stream 

of bytes. We use a utility function rand() to generate 

random stream of bytes. We can create any size of 

random data by using this rand() function. We create N 

MB (Here N may be 50, 100, 200 or any data value) 

stream of random data as our data samples. Each random 

8-bit byte can vary from 0 to 255(from 0x00 to 0xFF). In 

our application histogram needs to contain 256 bins for 

keeping the track of the occurrence of each value in the 
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data. For this purpose we have to define an array of size 

256 and initially fill all the 256 bins with zero. Now we 

need to compute the frequency of the occurrence of the 

value generated by function rand() with a dynamic 

memory allocation function. The generated memory 

locations are contained in a pointer of type unsigned char. 

and the pointer is named as “location”. If we see any 

value from 0 to 255 in array location[] (Here [] shows 

location is an array) we want to increment the value of the 

corresponding array named as bin[] (Here also [] shows 

bin is an array) [9].  

 

We need to increment the value we have in the bin 

numbered location[i] in array. Since bin location[i] in 

array is located at bin[location[i]] in array, we can 

increment the desired counter as follows: 

bin[location[i]]++; 

 

We perform this operation for each element in location 

array. In this way, we’ve completed Histogram 

computations for the input data. Histogram sum should 

always be same, regardless of the random input array [8]. 

Every bin counts the numbers of times we have find the 

corresponding data element, thus the sum of all of these 

bins will be the total number of data elements we’ve 

encountered [9]. The execution time and sum for different 

values of N is shown in section V RESULTS. In the next 

section we will compute the same for GPU with CUDA. 

 

V. HISTOGRAM COMPUTATIONS ON GPU 

A.  Computation on global memory 

This section shows histogram computations on the GPU’s 

global memory. When our data size is very large and 

different threads examining different parts of the location 

it might give a speedup.  When multiple threads may 

want to increment the same bin of the output histogram at 

the same time a problem arises. To handle such problems 

we use atomic increments to get rid of a situation like the 

one discussed in section III ATOMIC OPERATIONS. 

The concept is similar to CPU implementation of 

Histogram computation. Here we CUDA C to computer 

Histograms on GPU and get results from the GPU. We 

initialize events for timing.  

     

cudaEvent_t     start, stop; 

 

After this, we work on GPU memory. We allocate space 

for randomly generated input data and output histogram. 

After allocating space to the input buffer, we copy the 

array loation[] we generated with random() function to 

the GPU [6].  After this allocation of the histogram, we 

set all 256 elements of location [] array  to zero just like 

we did in the section  

 

VI. HISTOGRAM COMPUTATIONS ON CPU. 

unsigned char *dev_location; 

unsigned int *dev_bin; 

cudaMemcpy (dev_location, location, N*1024*1024, 

cudaMemcpyHostToDevice ) ); 

Here cudaMemset() is a CUDA runtime function. This 

function is similar to the standard C function memset(). 

The C library function memset() does not returns an error 

code while cudaMemset() return [4]. The returned error 

code informs the caller whether something wrong 

happened while attempting to GPU memory. memset() 

operates on host memory while cudaMemset() operates 

on GPU memory.  

 

Now the next step is launching the histogram kernel. We 

have performed computations of the histogram on the 

GPU. After all, we copied the histogram back to the CPU. 

Thus perform a copy from device to host by writing [4]. 

cudaMemcpy( bin, dev_bin,256 * sizeof(int ), 

cudaMemcpyDeviceToHost )  

 

Finally we verify that the computed GPU histogram 

matches with the output of the CPU.  

 

Our kernel launch is more complicated because of 

performance concerns. In our application the histogram 

contains 256 bins. Use of 256 threads per block is 

convenient and gives high performance as results. As a 

sample data with 200MB of data, the total numbers of 

bytes are 209,715,200.  

 

There are two ways of launching the kernel: 

 Launch a single block and have each thread 

examine 819,200 data elements.  

 Launch 819,200 blocks and have each thread 

examine a single data element. 

 

The optimal solution is at a point between these two 

extremes. When we execute some performance 

experiments, optimal performance is obtained when the 

number of blocks we launch is exactly twice the number 

of multiprocessors GPU comprises.  GT 610 has 48 

multi- processors, thus histogram kernel executes faster 

on a GT 610 when launched with 96 parallel blocks. We 

have methods for querying various properties of the GPU 

on which our application is executing. We use 

multiProcessorCount device property to dynamically size 

our launch based on our current hardware platform [10]. 

 

This gives the number of block in GPU.  

cudaDeviceProp p;     

cudaGetDeviceProperties( &p, 0 );     

int blocks = p.multiProcessorCount; 

 

The kernel that computes the histogram is given a pointer 

to the input data array, the length of the input array, and a 

pointer to the output histogram. Initially the kernel 

computes a linearized offset into the input data array. 

Each thread starts with an offset between 0 and the 

number of threads minus 1. Then it strides by the total 

number of threads that have been launched.     

int i = threadIdx.x + blockIdx.x * blockDim.x;     

int stride = blockDim.x * gridDim.x; 
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As soon as each thread knows it’s starting offset i and the 

stride it should use, the control passes through the input 

array incrementing the appropriate histogram bin. 

 

After comparing it with baseline performance, we find 

that this performance is almost equivalent to the baseline 

performance as shown in section V RESULTS. It gives 

not a better improved performance whether it runs on the 

GPU. It shows that the atomic operation on global 

memory is causing the problem. 

 

When numbers of threads are trying to refer same 

memory locations, there is a chance of occurrence of   

contention for 256 histogram bins. This leads in a long 

queue of pending jobs, and there is no performance gain. 

We ensure atomicity of the decrement operation, if and 

only if the hardware is serialized. We try to improve the 

performance by using shared memory in the next part. 

 

B. Computation on shared memory 

In this section, each parallel block will compute a 

separate histogram in shared memory. This saves the time 

of transfer between host and device. Now atomic 

operations are required within the block because multiple 

threads within the block can still examine data elements 

with the same value as in Fig. 3 depicted [11]. It shows 

per-thread local memory, per block-shared memory and 

per device global memory. When we compute histograms 

on global memory there are thousands of threads were 

competing. As a great improvement here only 256 threads 

will be competing for 256 addresses and it reduces 

contention from the global memory implementation. It 

involves allocating and initializing a shared memory 

location to hold each block’s intermediate histogram. Our 

approach is such that every thread’s write has completed 

before the subsequent reading and modifying the location 

[8]. 

 

Fig 3: Per-thread local memory, Per-thread shared 

memory, Per-device global memory. 

 

After initializing the histogram, the next step is same as 

our previous GPU histogram computation on global 

memory. Here we use the shared memory buffer of array 

temp[] instead of the global memory buffer of array  bin[] 

and that we call a function  __syncthreads()  [4]to ensure 

that the last write is unmodified [10]. 

int i = threadIdx.x + blockIdx.x * blockDim.x; 

int offset = blockDim.x * gridDim.x; 

__syncthreads(); 

At last we merge each block’s temporary histogram into 

the global buffer array bin[].  We break the input in two 

parts.  One thread look at one half and another thread 

look at other half. In this manner every thread computes 

separate histograms. If thread P encounters byte 0xFC 

100 times in the input and thread Q encounters byte 0xFC 

50 times, the byte 0xFC appeared 150 times in the input. 

In this way each bin of the final histogram is the sums of 

the corresponding bins in thread P’s histogram and thread 

Q’s histogram. We extend this method for all threads or 

for any number of threads, thus merging every block’s 

histogram into a single final histogram comprises adding 

each entry in the block’s histogram to the corresponding 

entry in the final histogram.  

 

In shared memory we use 256 threads and 256 histogram 

bins; each thread atomically adds a single bin to the final 

histogram’s total [9].   

 

This implementation of our Histogram computations 

improves dramatically over the previous GPU 

implementation. Adding the shared memory component 

drops our running time on a GT 610 to a considerable 

amount. The results are shown in next section. 

 

VII. EXPERIMENTAL RESULTS 

 

We perform Histogram computations on our benchmark 

machine, Intel Core 2 Duo CPU 2.20 GHz, and on 

GeForce GT 610 GPU for different data samples. 

We take results on different data samples from both 

global and shared memory on GT 610 GPU. The results 

for 50MB, 100MB, 200MB, 300MB and 400MB is 

shown in TABLE I.   

 

On GT 610 GPU, with Global memory but without 

Shared memory, the Histogram computation for different 

data samples not gives a not a better performance gain 

over the benchmark machine (CPU). For example 200MB 

array of data can be constructed in 569.3 ms on GPU 

whereas it can be constructed in 690 ms on CPU as 

shown in TABLE I.  In fact, this is not a better 

performance gain over the benchmark machine (CPU). It 

is a low-performance implementation simply because it 

runs on the GPU. 

 

On GT 610 GPU, with Shared memory, the Histogram 

computation for different data samples gives up to 

sevenfold speedups. As shown in TABLE I the 100MB 

array of data can be constructed in 74.1 ms on GT 610 

whereas it is constructed on CPU in 350 ms. It improves 

dramatically over the CPU as well as GT 610 GPU, with 

Global memory. After adding the shared memory it drops 

running time on a GT 610 irrespective of the size. The 

pictorial experimental results are shown in the form of a 

graph in Fig. 4.  
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Histogram counts for different data samples (Size in MB) 

are as follows: 

 For 50 MB Histogram sum is 54428800. 

 For 100 MB Histogram sum is 104857600. 

 For 200 MB Histogram sum is 209715200. 

 For 300 MB Histogram sum is 414572800. 

 For 400 MB Histogram sum is 419430400. 

 

        Time in ms 

 
       Data size 

Fig 4: Graph that shows results on CPU as well as on 

GPU with Global and Shared memory. 

 

TABLE I 

EXECUTION TIME FOR VARIOUS MEMORY SIZE 

 

 

VIII. CONCLUSION AND FUTURE WORK 

 

In this paper we have presented the implementation of the 

Histogram computations on GPU. For this purpose we 

use CUDA [2] programming language. Hence the result 

represents improvement up to a sevenfold boost in speed 

over the benchmark machine. Thus despite the early GPU 

implementation with global memory in adapting the 

Histogram computations, our implementation that uses 

shared memory (atomics) should be considered a success. 

In our opinion, CUDA is also built upon a solid software 

and hardware platform. Thus CUDA is also a promising 

technology [7].  

 

One future work is to use GPU and CUDA architecture 

for the implementation of sequence alignment as a 

bioinformatics application [2]. Shared memory atomics 

will be appropriate match for sequence alignment [12].  
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