
 © 2013, IJSRCSE All Rights Reserved 7

 International Journal of Scientific Research in Computer Science & Engineering
Research Paper Vol-1, Issue-4 ISSN: 2320-7639

Data Dependencies Mining In Database by Removing Equivalent

Attributes

Pradeep Sharma and Vijay Kumar Verma

1
Department of Computer Science Holker Science College Indore, India

*2
Department of Computer Science & Engg. Lord Krishna College of Technology Indore. India

Available online at www.isroset.org

Received: 28 July 2013 Revised: 08 August 2013 Accepted: 20 August 2013 Published: 30 August 2013

Abstract-data Dependency plays a key role in database normalization, which is a systematic process of verifying database

design to ensure the nonexistence of undesirable characteristics. Bad design could incur insertion, update, and deletion

anomalies that are the major cause of database inconsistency [1, 2]. The discovery of Data Dependency from databases has

recently become a significant research problem this paper, we propose a new algorithm, called DM_EC (dependency mining

using Equivalent Candidates) for the discovery of all Dependency from a database. DM_EC takes advantage of the rich theory

of Functional dependencies [1, 3, 4]. The use of Functional dependencies theory can reduce both the size of the dataset and the

number of FDs to be checked by pruning redundant data and skipping the search that follow logically from the Functional

dependencies already discovered. We show that our method is sound, that is, the pruning does not lead to loss of information.

Experiments on datasets show that DM_EC can prune more candidates than previous methods [5].

Keywords- DBMS Normalization, Data Dependencies Mining, Data Mining

I. INTRODUCTION

Database design methodology normally starts with the first

step of conceptual schema design in which users’

requirements are modeled as the entity relationship (ER)

diagram. The next step of logical design focuses on the

translation of conceptual schemas into relations or database

tables. Physical design concerns the performance issues

such as data types, indexing option and other parameters

related to the database management system. Conceptual

schema and logical designs are two important steps

regarding correctness and integrity of the database model.

Database designers have to be aware of specifying

thoroughly primary keys of tables and also determining

extensively relationships between tables. Data

normalization is a common mechanism employed to support

database designers to ensure the correctness of their design

[2, 5, 7].

Normalization transforms unstructured relation into separate

relations, called normalized ones. The main purpose of this

separation is to eliminate redundant data and reduce data

anomaly (i.e., data inconsistency as a result of insert,

update, and delete operations). There are many different

levels of normalization depending on the purpose of

database designer. Most database applications are designed

to be either in the third, or the Boyce-Codd normal forms in

which their dependency relations are sufficient for most

organizational requirements [6].

Figure 1 Normalization steps

Corresponding Author: Vijay Verma

Department of Computer Science & Engg. Lord Krishna

College of Technology Indore. India

Un-normalized

form

Fourth normal

form

First normal

form(1NF)

Boyce codd

normal form
BCNF

Third normal

form(3NF)

Second normal

form(2NF)

Eliminating repeating

group

Eliminate Partial

Functional

Dependency

Fourth normal

form

Eliminate Multi-valued

Dependency

All Determinant must be

Candidate Key

Eliminate Transitive

Dependency

Eliminate Join

Dependency

ISROSET- IJSRCSE Vol-1, Issue-4, PP (7-11) July-August 2013

 © 2013, IJSRCSE All Rights Reserved 8

 II. RELATED WORK

Our main objective is the induction of functional

dependency relationships from the database instances.

Silva and Melkan off was the first team attempting to

discover functional dependencies (FDs) through the data

mining technique. The complexity of discovering FDs from

existing database instances has been studied by Mannila and

Raiha [8, 9]. Early work on FD discovery handled the

complexity problem by means of partitioning the set of

rows according to their attribute values and performs a

level-wise search for desired solution. The later work of

Wyss et al and Atoum et al. applied the minimal cover

concept. Researchers in the application area of database

reverse engineering are also interested in the same

Objective. Lee and Yoo [10] proposed a method to derive a

conceptual model from object-oriented databases. The final

products of their method are the object model and the

scenario diagram describing a sequence of operations. The

work of Perez et al. emphasized on relational object-

oriented conceptual schema extraction. Their technique is

based on a formal method of term rewriting. Rules obtained

from term rewriting are then generated to represent the

correspondences between relational. Chen et al. Also apply

association rule mining to discover new concepts leading to

a proper design of relational database schema [11,12]. The

work of Pannurat et al. and Alashqur are also in the line of

association mining technique application to the database

design. Besides functional dependencies, other kinds of

database relationships are also explored. De Marchi et al.

studied the problem of inclusion dependencies [11, 13]. Fan

et al. proposed the idea to capture conditional FDs. Calders

et al. Introduced a notion of roll-up dependency to be

applied to the OLAP context. Approximate FDs concept has

been recently applied to different subfield of data mining

such as decision tree building, data redundancy detection,

and data cleaning [9, 14, 15].

 III. PROBLEM STATEMENT

Early methods for discovering of FDs were based on

repeatedly sorting and comparing tuples to determine

whether or not these tuples meet the FD definition.

Consider a simple transactional data base

Table 1 transactional database

For example, in Table 1, the tuples are first sorted on

attribute A, then each pair of tuples that have the same

value on attribute A is compared on attribute B, C, D, and

E, in turn, to decide whether or not

A B, A C, A D, A E holds.

Then the tuples are sorted on attribute B and examined to

decide whether or not

B A , B C,B D,B E

This process is repeated for C, D, E, AB, AC, AD, and so

on. After the last candidate BCDE has been checked, all

FDs will have been discovered. All candidates of five

attributes are represented in Figure 2.

Figure 2 all candidate set for five attribute

This approach is inefficient because of this extra sorting and

because it needs to examine every value of the candidate

attributes to decide whether or not a FD holds. As a result,

this approach is highly sensitive to the number of tuples and

attributes. It is impracticable for a large dataset.

IV. EQUIVALENT ATTRIBUTES

a. Equivalent Attribute: - Let X and Y be candidates over a

dataset D, if X→Y and Y→ X hold, then X and Y are said

to be equivalent candidates, denoted as X ↔ Y

b. Armstrong augmentation and transitivity rules:-

(1) Let X, Y and Z be candidates over D. If X↔Y and

XW → Z holds, then YW → Z holds.

(2) Let X, Y and Z be candidates over D. If XΦY and

WZ→ X hold, then WZ→ Y holds

c. Nontrivial closure:- Let F be a set of FDs over a dataset D

and X be a candidate over D. The

Closure of candidate X with respect to F, denoted

Closure(X), is defined as {Y | X →Y can be deduced from

F by Armstrong's axioms}. The nontrivial closure of

candidate X with respect to F, denoted Closure’(X), is

defined as Closure’(X) = Closure(X) – X.

Tuple No A B C D E

T1 0 0 0 2 0

T2 0 1 0 2 0

T3 0 2 0 2 2

T4 0 3 1 2 0

T5 4 1 1 1 4

T6 4 3 1 1 2

T7 0 0 1 2 0

ISROSET- IJSRCSE Vol-1, Issue-4, PP (7-11) July-August 2013

 © 2013, IJSRCSE All Rights Reserved 9

d. Cardinality of the partition:- Let t1, t2, …, tn be all tuples

in a dataset D, and X be a candidate over D. The partition

over X, denoted |πx| is a set of the groups, such that ti and tj

are in the same group if ti[X] = tj[X]. The number of the

groups in the partition is called the cardinality of the

partition, denoted |πx| [13, 14, 15].

V. PROPOSED METHODS

The proposed methods first reduce the size of the database

to be searched, and the remainder reduces the number of

candidates. Before giving pruning rule about equivalent

candidates, we henceforth restrict the term equivalent

candidate XΦY to a canonical form such that X is always

the candidate that is generated earlier than candidate Y. For

example, for a relational schema R={A, B, C, D}, canonical

form corresponds to alphabetical order. So AΦB and

BC→D are in canonical form, but DΦB and CB→D are

not. We use following pruning rules

Pruning rule 1. If XΦY, then candidate Y can be deleted.

Pruning rule 2. If X is a key, then any superset XY of X

does not need to be

checked.

Proposed Algorithm

Purpose: To discover all functional dependencies in a dataset.

Input: Database D and its attributes X1, X2, ... Xm

Output: FD_SET, EQ_SET and KEY_SET

{

1. Initialization Step

set R = {X1, X2, ..., Xm}, set FD_SET = ,

set EQ_SET = , set KEY_SET =

set CANDIDATE_SET = {X1, X2, ..., Xm}

Xi CANDIDATE_SET, set Closure’[Xi] =

2. Iteration Step

While CANDIDATE_SET≠ do

 {

Xi CANDIDATE_SET do

 {

 ComputeNonTrivialClosure(Xi)

 ObtaintFDandKey

 }

 ObtainEQSet (CANDIDATE_SET)

 PruneCandidates (CANDIDATE_SET)

 GenerateNextLevelCandidates

 (CANDIDATE_SET)

 }

3. Display (FD_SET, EQ_SET, KEY_SET)

}

Now we can explain the working of proposed algorithms

through a example .consider the given database in table 1

Level 1

Candidates |πx| Closure FD

A 2 D A→D

B 4 Φ

C 2 Φ

D 2 A D→A

E 4 Φ

Table 2

At level 1

FD_Set = {A→D, D→A} and EQ_Set= {A, D}

Prune_Set = {A, B, C, E}

At Level 2

FD_Set = { AB→E, BE→A, CE→A } and EQ_Set= {AB,

BE} Prune_Set = {AB, AC, AE, BC,CE}

Candidates |πx| Closure FD

AB 6 E AB→E

AC 3 ∂

AE 5 Φ

BC 6 Φ

BE 6 A BE→A

CE 6 Φ CE→A

Table 3

At level 3 no candidate generates so search is terminated.

Final dependencies are

FD_Set= {A→D, D→A, AB→E, BD→E, BE→A,

BE→D, CE→A, CE →D}

EQ_set={A, D},{AB, BE}

ISROSET- IJSRCSE Vol-1, Issue-4, PP (7-11) July-August 2013

 © 2013, IJSRCSE All Rights Reserved 10

VI. EXPERIMENTS AND PERFORMANCE ANALYSIS

The working of Proposed Algorithms can be denoted by a

simple diagram on the database given in table 1

ABCDE

ABCD ABCE ABDE ACDE BCDE

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

AB AC AD AE BC BD BE CD CE DE

 A B C D E

 Figure 3(working of proposed methods)

At level1 there are five candidates in which A and D are

fond to be equivalent so d can be remove at next there are

20 comparisons are made and at next level there are only

12 comparisons are made.

Now he working of TANE Algorithms can be denoted on

the same on the database given in table 1

ABCDE

ABCD ABCE ABDE ACDE BCDE

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

AB AC AD AE BC BD BE CD CE DE

 A B C D E

 Figure 4(working of proposed methods)

Comparison of both algorithms using number of

dependency checking table

Search

level

Proposed

algorithms

TANE

Level1 5 5

Level1 20 20

Level1 12 21

Total 37 46

Table 4 Dependency Comparison table

Figure 5 Comparison graph

VII. CONCLUSION

In this paper we identify several properties of functional

dependencies, equivalences, and nontrivial closures that

allow them to be used during the knowledge discovery

process Like TANE, proposed algorithm is based on

partitioning the database and comparing the number of

partitions and provides additional pruning rules, based on

our analysis of the

Theoretical properties of functional dependencies. These

pruning rules are guaranteed not to eliminate any valid

candidates, they reduce the size of the dataset or the number

of checks required. Form the example and the results show

that the pruning rules in the proposed algorithm are valuable

because they increase the pruning of candidates and reduce

the overall amount of checking required to find the same

FDs.

REFERENCE

[1] St. Fephane Lopes, Jean-Marc Petit, and Lot_ Lakh

Efficient Discovery of Functional Dependencies and

Armstrong Relations C. Zaniolo et al. (Eds.): EDBT

2000, LNCS 1777, pp. 350{364, 2000. Springer-Verlag

Berlin Heidelberg 2000.

[2] Jixue Liu, Jiuyong Li, Chengfei Liu, and Yong Feng

Chen Discover Dependencies from Data—A Review

IEEE Transactions On Knowledge And Data

Engineering, Vol. 24, No. 2, February 2012.

[3] Catharine Wyss, Chris Giannella, and Edward

Robertson FastFDs: A Heuristic-Driven, Depth-First

Algorithm for Mining Functional Dependencies from

Relation Instances Computer Science Department,

Indiana University, Bloomington, IN 47405, USA

[4] Fabien De Marchi CLIM: Closed Inclusion dependency

mining in databases This work has been partially

Funded by the French National Research Agency

ISROSET- IJSRCSE Vol-1, Issue-4, PP (7-11) July-August 2013

 © 2013, IJSRCSE All Rights Reserved 11

DEFIS 2009 Program, project DAG ANR-09-EMER-

003-01

[5] Katalin Tunde Janosi Rancz And Viorica Varga A

Method For Mining Functional Dependencies In

Relational Database Design Using Fca Studia Univ.

Babes_{Bolyai, Informatics, Volume Liii, Number 1,

2008

[6] Wenfei Fan Dependencies Revisited for Improving Data

Quality PODS’08, June 9–12, 2008, Vancouver, BC,

Canada.Copyright 2008 ACM

[7] Pierre Allard⋆, Sebastien Ferr´e, and Olivier Ridoux

Discovering Functional Dependencies and IRISA,

Universities de Rennes 1, Campus de Beaulieu 35042

Rennes Cedex, France Association Rules by

Navigating in a Lattice of OLAP Views

[8] Y. V. Sreevani1, Prof. T. Venkat Narayana Rao2

Identification and Evaluation of Functional

Dependency Analysis using Rough sets for Knowledge

Discovery (IJACSA) International Journal of

Advanced Computer Science and Applications, Vol. 1,

No. 5, November 2010

[9] Fabien De Marchi1, St´ephane Lopes2, and Jean-Marc

Petit1 Efficient Algorithms for Mining Inclusion

Dependencies C.S. Jensen et al. (Eds.): EDBT 2002,

LNCS 2287, pp. 464–476, 2002. Springer-Verlag

Berlin Heidelberg

[10] Vijaya Lakshmi, Dr. E. V. Prasad A Fast and

Efficient Method to Find the Conditional Functional

Dependencies in Databases International Journal of

Engineering Research and Development e-ISSN: 2278-

067X, p-ISSN: 2278-800X, www.ijerd.com Volume 3,

Issue 5 (August 2012).

[11] Hong Yao · Howard J. Hamilton Mining functional

dependencies from data Received: 15 September 2007

Springer Science Business Media,

[12] Daisy Zhe Wang Michael Franklin Luna Dong Anish

Das Sarma Alon Halevy Discovering Functional

Dependencies in Pay-As-You- Go Data Integration

Systems Electrical Engineering and Computer Sciences

University of California at Berkeley

[13] Jalal Atoum, Dojanah Bader and 1Arafat Awajan

Mining Functional Dependency from Relational

Databases Using Equivalent Classes and Minimal

Cover Journal of Computer Science 4 (6): 421-426,

2008

[14] Nittaya Kerdprasop And Kittisak KerdprasopData

Engineering Research Unit Functional Dependency

Discovery via Bayes Net Analysis Recent Researches

in Computational Techniques, Non-Linear Systems and

Control ISBN: 978-1-61804-011-4

[15] Mark Levene and Millist W. Vincent Justification for

Inclusion DependencyNormal Form IEEE Transactions

On Knowledge And Data Engineering, Vol. 12, No. 2,

March/April 2000

