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Abstract-data Dependency plays a key role in database normalization, which is a systematic process of verifying database 

design to ensure the nonexistence of undesirable characteristics. Bad design could incur insertion, update, and deletion 

anomalies that are the major cause of database inconsistency [1, 2]. The discovery of Data Dependency from databases has 

recently become a significant research problem this paper, we propose a new algorithm, called DM_EC (dependency mining 

using Equivalent Candidates) for the discovery of all Dependency from a database. DM_EC takes advantage of the rich theory 

of Functional dependencies [1, 3, 4]. The use of Functional dependencies theory can reduce both the size of the dataset and the 

number of FDs to be checked by pruning redundant data and skipping the search that follow logically from the Functional 

dependencies already discovered. We show that our method is sound, that is, the pruning does not lead to loss of information. 

Experiments on datasets show that DM_EC can prune more candidates than previous methods [5]. 
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I. INTRODUCTION 

Database design methodology normally starts with the first 

step of conceptual schema design in which users’ 

requirements are modeled as the entity relationship (ER) 

diagram. The next step of logical design focuses on the 

translation of conceptual schemas into relations or database 

tables. Physical design concerns the performance issues 

such as data types, indexing option and other parameters 

related to the database management system. Conceptual 

schema and logical designs are two important steps 

regarding correctness and integrity of the database model. 

Database designers have to be aware of specifying 

thoroughly primary keys of tables and also determining 

extensively relationships between tables. Data 

normalization is a common mechanism employed to support 

database designers to ensure the correctness of their design 

[2, 5, 7]. 

 

Normalization transforms unstructured relation into separate 

relations, called normalized ones. The main purpose of this 

separation is to eliminate redundant data and reduce data 

anomaly (i.e., data inconsistency as a result of insert, 

update, and delete operations). There are many different 

levels of normalization depending on the purpose of 

database designer. Most database applications are designed 

to be either in the third, or the Boyce-Codd normal forms in 

which their dependency relations are sufficient for most 

organizational requirements [6]. 

 

 

 

 

 

 

 

 

      

      

      

      

      

      

      

      

      

      

      

      

   

 

 

 

 

 

 

 

 

 

Figure 1 Normalization steps 
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  II. RELATED WORK 

Our main objective is the induction of functional 

dependency relationships from the database instances.  

Silva and Melkan off was the first team attempting to 

discover functional dependencies (FDs) through the data 

mining technique. The complexity of discovering FDs from 

existing database instances has been studied by Mannila and 

Raiha [8, 9]. Early work on FD discovery handled the 

complexity problem by means of partitioning the set of 

rows according to their attribute values and performs a 

level-wise search for desired solution. The later work of 

Wyss et al  and Atoum et al. applied the minimal cover 

concept. Researchers in the application area of database 

reverse engineering are also interested in the same 

Objective. Lee and Yoo [10] proposed a method to derive a 

conceptual model from object-oriented databases. The final 

products of their method are the object model and the 

scenario diagram describing a sequence of operations. The 

work of Perez et al.  emphasized on relational object-

oriented conceptual schema extraction. Their technique is 

based on a formal method of term rewriting. Rules obtained 

from term rewriting are then generated to represent the 

correspondences between relational. Chen et al.  Also apply 

association rule mining to discover new concepts leading to 

a proper design of relational database schema [11,12]. The 

work of Pannurat et al. and Alashqur are also in the line of 

association mining technique application to the database 

design. Besides functional dependencies, other kinds of 

database relationships are also explored. De Marchi et al. 

studied the problem of inclusion dependencies [11, 13]. Fan 

et al. proposed the idea to capture conditional FDs. Calders 

et al.  Introduced a notion of roll-up dependency to be 

applied to the OLAP context. Approximate FDs concept has 

been recently applied to different subfield of data mining 

such as decision tree building, data redundancy detection, 

and data cleaning [9, 14, 15]. 

   

 III. PROBLEM STATEMENT 

Early methods for discovering of FDs were based on 

repeatedly sorting and comparing tuples to determine 

whether or not these tuples meet the FD definition.  

Consider a simple transactional data base  

 

Table 1 transactional database 

For example, in Table 1, the tuples are first sorted on 

attribute A, then each pair of tuples that have the same 

value on attribute A is compared on attribute B, C, D, and 

E, in turn, to decide whether or not  

 

A      B, A      C, A      D, A       E holds.  

 

Then the tuples are sorted on attribute B and examined to 

decide whether or not  

 

B       A , B       C,B      D,B       E 

 

This process is repeated for C, D, E, AB, AC, AD, and so 

on. After the last candidate BCDE has been checked, all 

FDs will have been discovered. All candidates of five 

attributes are represented in Figure 2.  

   

 
Figure 2 all candidate set for five attribute 

 

This approach is inefficient because of this extra sorting and 

because it needs to examine every value of the candidate 

attributes to decide whether or not a FD holds. As a result, 

this approach is highly sensitive to the number of tuples and 

attributes. It is impracticable for a large dataset. 

 

IV. EQUIVALENT ATTRIBUTES 

a. Equivalent Attribute: - Let X and Y be candidates over a 

dataset D, if X→Y and Y→ X hold, then X and Y are said 

to be equivalent candidates, denoted as X ↔ Y 

 

b. Armstrong augmentation and transitivity rules:-  

(1) Let X, Y and Z be candidates over D. If X↔Y and 

XW → Z holds, then YW → Z holds. 

(2) Let X, Y and Z be candidates over D. If XΦY and 

WZ→ X   hold, then WZ→ Y holds 

c. Nontrivial closure:- Let F be a set of FDs over a dataset D 

and X be a candidate over D. The  

Closure of candidate X with respect to F, denoted 

Closure(X), is defined as {Y | X →Y can be deduced from 

F by Armstrong's axioms}. The nontrivial closure of 

candidate X with respect to F, denoted Closure’(X), is 

defined as Closure’(X) = Closure(X) – X. 

Tuple No  A B C D  E 

T1 0 0 0 2 0 

T2 0 1 0 2 0 

T3 0 2 0 2 2 

T4 0 3 1 2 0 

T5 4 1 1 1 4 

T6 4 3 1 1 2 

T7 0 0 1 2 0 
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d. Cardinality of the partition:- Let t1, t2, …, tn be all tuples 

in a dataset D, and X be a candidate over D. The partition 

over X, denoted |πx| is a set of the groups, such that ti and tj 

are in the same group if ti[X] = tj[X]. The number of the 

groups in the partition is called the cardinality of the 

partition, denoted |πx| [13, 14, 15]. 

 

V. PROPOSED METHODS  

The proposed methods first reduce the size of the database 

to be searched, and the remainder reduces the number of 

candidates. Before giving pruning rule about equivalent 

candidates, we henceforth restrict the term equivalent 

candidate XΦY to a canonical form such that X is always 

the candidate that is generated earlier than candidate Y. For 

example, for a relational schema R={A, B, C, D}, canonical 

form corresponds to alphabetical order. So AΦB and 

BC→D are in canonical form, but DΦB and CB→D are 

not. We use following pruning rules  

 

Pruning rule 1. If XΦY, then candidate Y can be deleted. 

Pruning rule 2. If X is a key, then any superset XY of X 

does not need to be 

checked. 
 

Proposed Algorithm 

Purpose: To discover all functional dependencies in a dataset. 

Input: Database D and its attributes X1, X2, ... Xm 

Output: FD_SET, EQ_SET and KEY_SET 

{ 

1. Initialization Step 

set R = {X1, X2, ..., Xm}, set FD_SET = , 

set EQ_SET = , set KEY_SET =

set CANDIDATE_SET = {X1, X2, ..., Xm} 

Xi CANDIDATE_SET, set Closure’[Xi] = 

2. Iteration Step 

While CANDIDATE_SET≠ do 

  { 

Xi CANDIDATE_SET do 

     { 

       ComputeNonTrivialClosure(Xi) 

        ObtaintFDandKey 

       } 

    ObtainEQSet (CANDIDATE_SET) 

    PruneCandidates (CANDIDATE_SET) 

   GenerateNextLevelCandidates 

      (CANDIDATE_SET) 

    } 

3. Display (FD_SET, EQ_SET, KEY_SET) 

} 

Now we can explain the working of proposed algorithms 

through a example .consider the given database in table 1 

 

Level 1  

Candidates  |πx| Closure  FD 

A 2 D A→D 

B 4 Φ  

C 2 Φ  

D 2 A D→A 

E 4 Φ  

Table 2 

At level 1 

FD_Set = {A→D, D→A} and EQ_Set= {A, D} 

Prune_Set = {A, B, C, E} 

At Level 2  

FD_Set = { AB→E, BE→A, CE→A } and EQ_Set= {AB, 

BE} Prune_Set = {AB, AC, AE, BC,CE} 

Candidates  |πx| Closure  FD 

AB 6 E AB→E 

AC 3 ∂  

AE 5 Φ  

BC 6 Φ  

BE 6 A BE→A 

CE 6 Φ CE→A 

Table 3 

 

At level 3 no candidate generates so search is terminated. 

Final dependencies are  
 

FD_Set= {A→D, D→A, AB→E, BD→E,          BE→A, 

BE→D, CE→A, CE →D} 

EQ_set={A, D},{AB, BE} 
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VI. EXPERIMENTS AND PERFORMANCE ANALYSIS  

The working of Proposed Algorithms can be denoted by a 

simple diagram on the database given in table 1 
                                         

ABCDE 

 

ABCD    ABCE    ABDE    ACDE    BCDE 

 
ABC   ABD  ABE  ACD  ACE ADE  BCD  BCE  BDE CDE 

 

 

AB   AC   AD   AE   BC   BD   BE   CD   CE   DE 

 

 

                                     A     B     C    D     E 

                 Figure 3(working of proposed methods) 

At level1 there are five candidates in which A and D are 

fond to be equivalent so d can be remove at next  there are 

20 comparisons are made  and at next level there are only 

12 comparisons are made. 

 

Now he working of TANE Algorithms can be denoted on 

the same on the database given in table 1 

 
ABCDE 

 

ABCD    ABCE    ABDE    ACDE    BCDE 

 
ABC   ABD  ABE  ACD  ACE ADE  BCD  BCE  BDE CDE 

 

 

AB   AC   AD   AE   BC   BD   BE   CD   CE   DE 

 

 

                                     A     B     C    D     E 

                 Figure 4(working of proposed methods) 

 

Comparison of both algorithms using number of 

dependency checking table  

Search 

level 

Proposed 

algorithms 

TANE 

Level1 5 5 

Level1 20 20 

Level1 12 21 

Total 37 46 

Table 4 Dependency Comparison table 

 
Figure 5 Comparison graph 

 

VII. CONCLUSION  

In this paper we identify several properties of functional 

dependencies, equivalences, and nontrivial closures that 

allow them to be used during the knowledge discovery 

process Like TANE, proposed algorithm is based on 

partitioning the database and comparing the number of 

partitions and  provides additional pruning rules, based on 

our analysis of the 

 

Theoretical properties of functional dependencies. These 

pruning rules are guaranteed not to eliminate any valid 

candidates, they reduce the size of the dataset or the number 

of checks required. Form the example and the results show 

that the pruning rules in the proposed algorithm are valuable 

because they increase the pruning of candidates and reduce 

the overall amount of checking required to find the same 

FDs. 
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